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HANKEL OPERATORS AND WEAK FACTORIZATION

FOR HARDY-ORLICZ SPACES

ALINE BONAMI AND SANDRINE GRELLIER

This paper is dedicated to the memory of Andrzej Hulanicki who was a colleague, a friend we

will never forget.

Abstract. We study the holomorphic Hardy-Orlicz spaces HΦ(Ω), where
Ω is the unit ball or, more generally, a convex domain of finite type or a
strictly pseudoconvex domain in Cn. The function Φ is in particular such that
H1(Ω) ⊂ HΦ(Ω) ⊂ Hp(Ω) for some p > 0. We develop for them maximal
characterizations, atomic and molecular decompositions. We then prove weak
factorization theorems involving the space BMOA(Ω).

As a consequence, we characterize those Hankel operators which are bounded
from HΦ(Ω) into H1(Ω).

Introduction

The following work has been motivated by a new kind of factorization in the
unit disc, obtained in [BIJZ]. Namely, the product of a function in BMOA with
a function in the Hardy space H1 of holomorphic functions lies in some Hardy-
Orlicz space defined in terms of the function Φ1(t) := t

log(e+t)
. Conversely, every

holomorphic function of this Hardy-Orlicz space can be written as the product
of a function in BMOA and a function in H1. This exact factorization relies
heavily on the classical factorization theorem through Blaschke products and
cannot generalize in higher dimension. On the other hand, it has been proven by
Coifman, Rochberg and Weiss in the seventies [CRW] that Hp, for p ≤ 1, admits
weak factorization, namely, F =

∑
j GjHj with

∑
j ‖Gj‖p

q‖‖Hj‖p
r ≤ Cpq‖F‖p

p

when 1
q

+ 1
r

= 1
p
. This has been extended later on by Krantz and Li to strictly

pseudo-convex domains [KL2], then by Peloso, Symesak and the authors of the
present paper to convex domains of finite type [BPS1], [GP]. We rely on the
methods of these two last papers, which are somewhat simpler, to obtain the
weak factorization of Hardy-Orlicz spaces under consideration. Note that such a
weak factorization for Hp is typical of the case p ≤ 1, in opposition to the case
of the unit disc.

1991 Mathematics Subject Classification. 32A35 32A37 47B35.
Key words and phrases. Hardy Orlicz spaces, atomic decomposition, finite type domains,
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HARDY-ORLICZ SPACES 2

A natural application of such factorizations is the characterization of classes
of symbols of Hankel operators. We are able to characterize symbols of Hankel
operators mapping continuously Hardy-Orlicz spaces into H1 for a large class of
Hardy-Orlicz spaces containing H1. We do this for all domains for which we have
weak factorization. However weak factorization is a stronger property, since the
Hardy-Orlicz spaces under consideration are not Banach spaces. We have given
in [BGS] a direct proof of the fact that Hankel operators are bounded on H1 in
the unit ball if and only if their symbol is in the space LMOA, without involving
Hardy-Orlicz spaces, even if the idea of weak factorization indirectly is present in
this Note.

Let us mention, in the same direction, the factorization obtained by Cohn and
Verbitski in the disc [CV], which allows to characterize those symbols for which
the corresponding Hankel operator is bounded from H2 into some Hardy-Sobolev
space. The generalization in higher dimension of their factorization seems much
more difficult than ours.

At the end of this paper, we state the same theorems for a class of domains in
Cn, which includes the strictly pseudoconvex domains and the convex domains
of finite type. We explain rapidly how to modify the proofs.

Let us give some notations and describe more precisely the results. Let Bn be
the unit ball and Sn be the unit sphere in Cn. Let Φ be a continuous, positive and
non-decreasing function on [0,∞). The Hardy-Orlicz space HΦ(Bn) is defined as
the space of holomorphic functions f so that

(1) sup
0<r<1

∫

Sn

Φ(|f(rw)|) dσ(w) < ∞

where dσ denotes the surface measure on Sn. We recover Hardy spaces Hp(Bn)
when Φ(t) = tp. We are especially interested in the case Φp(t) = tp

log(e+t)p , 0 <

p ≤ 1 since the space HΦp(Bn) arises naturally in the study of pointwise product
of functions in Hp(Bn) with functions in BMOA(Bn) inside the unit ball. Indeed,
we prove that the product of an Hp(Bn)-function and of a BMOA(Bn)-function
belongs to the space HΦp(Bn) and, conversely, that there is weak factorization.

We will restrict to concave functions Φ, which satisfy an additional assumption
so that H1(Bn) ⊂ HΦ(Bn) ⊂ Hp(Bn) for some 0 < p ≤ 1. In particular, any
function f in the Orlicz space HΦ(Bn) admits a unique boundary function still

denoted by f which, by Fatou Theorem, satisfies

∫

Sn

Φ(|f |)dσ < ∞.

We also consider the real Hardy-Orlicz space HΦ(Sn) defined as the space of
distributions on Sn which have an atomic decomposition. More precisely, HΦ(Sn)
is the set of distributions f which can be written as

∑∞
j=0 aj , where the aj’s satisfy
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adapted cancellation properties, are supported in some ball Bj and are such that∑
j σ(Bj)Φ(‖aj‖2σ(Bj)

− 1

2 ) < ∞.
We first prove usual maximal characterizations of Hardy-Orlicz spaces. As a

corollary, we obtain that the Hardy-Orlicz space HΦ(Bn) continuously embeds
into HΦ(Sn), while the Szegö projection is a projection onto HΦ(Bn). In partic-
ular, every f ∈ HΦ(Bn) has boundary values that belong to HΦ(Sn), and f may
be written in terms of the Szegö projection of its atomic decomposition. The
work of Viviani [V] plays a central role: atomic decomposition is proved there for
Hardy-Orlicz spaces in the context of spaces of homogeneous type with a restric-
tion on the lower type p of Φ, which, in the case of the unit ball, is the condition
p > 2n

2n+1
. We prove the atomic decomposition for all values of p, with the same

kind of control of the norm as the one obtained by Viviani.
Since the Szegö projection of an atom is a molecule, we also get a molecular

decomposition as in the classical Hardy spaces ([TW] for instance).
The atomic decomposition allows to prove a (weak) factorization theorem on

HΨ(Bn), which coincides with the one for Hp(Bn) when Ψ(t) = tp. In particular,
we generalize the factorization theorem proved in the disc for HΦ1 in [BIJZ]. More
precisely, we prove that, given any f ∈ HΨ(Bn) there exist fj ∈ HΦ(Bn), gj ∈
BMOA(Bn) such that f =

∑∞
j=0 fjgj where Ψ and Φ are linked by the relation

Ψ(t) = Φ
(

t
log(e+t)

)
.

As a consequence, we characterize the class of symbols for which the Hankel
operators are bounded from HΦ(Bn) to H1(Bn). They belong to the dual space
of HΨ(Bn), which can be identified with the BMOA-space with weight ρΨ where
ρΨ(t) = 1

tΨ−1(1/t)
. Weighted BMOA-spaces have been considered by Janson in the

Euclidean space [J]. Here they are defined by

BMOA(ρΨ) :=



f ∈ H2(Bn); sup

B
inf

P∈PN (B)

1

σ(B)ρΨ(σ(B))

∫

B

|f − P |2dσ < ∞



 .

where the integral is taken on the unit sphere, f stands for the boundary values
of the function and balls are defined for the Koranyi metric. Moreover PN(B)
denotes the set of polynomials of degree ≤ N = NΨ in an appropriate basis, with
N large enough.

When Ψ = Φ1, this space is usually referred as the space LMOA of functions
of logarithmic mean oscillation. Duality has been proven in Rn by [J]. Viviani
proves it as a consequence of the atomic decomposition. In the context of holo-
morphic functions, this is also a consequence of the atomic decomposition and
the continuity property of the Szegö projection.

Our method allows us to characterize BMOA(ρΦ) as the class of symbols of
Hankel operators which map HΦ into H1

weak.
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As we said, we have chosen to allow the lower type of Φ to be arbitrarily small,
and not only of upper type larger than 2n

2n+1
(for the unit ball of C

n, or for a
strictly pseudo-convex domain; for a general convex domain of finite type, the
critical index is different). This induces many technical difficulties: for instance,
it is not sufficient to deal with atoms with mean 0 and we need extra moment
conditions; in parallel, one has to deal with polynomials of positive degree to
define the dual space BMO, and not only with constants.

Here and in what follows, H(Bn) denotes the space of holomorphic functions
in Bn. For two functions f and g, we use the notation f <

∼ g when there is some

constant c such that f(w) ≤ c g(w). Here w stands for the parameters that we
are interested in (typically, the constant c will only depend on the geometry of
the domain under consideration). We use the symbols >

∼ and ≈ analogously.

1. Statements of results

1.1. Growth functions and Orlicz spaces. Let us give a precise definition for
the growth functions, which are used in the definition of Hardy-Orlicz spaces, see
also [V].

Definition 1.1. Let 0 < p ≤ 1. A function Φ is called a growth function of order
p if it satisfies the following properties:

(G1) The function Φ is a homeomorphism of [0,∞) such that Φ(0) = 0. More-

over, the function t 7→
Φ(t)

t
is non-increasing.

(G2) The function Φ is of lower type p, that is, there exists a constant c > 0
such that, for s > 0 and 0 < t ≤ 1,

(2) Φ(st) ≤ ctpΦ(s).

We will also say that Φ is a growth function whenever it is a growth function
of some order p < 1. Two growth functions Φ1 and Φ2 define the same Hardy-
Orlicz spaces when Φ1 ≈ Φ2. In particular, the growth function Φ of order p is

equivalent to the function

t∫

0

Φ(s)

s
ds, which is also a growth function of the same

order and satisfies the following additional property.

(G3) The function Φ is concave. In particular, Φ is sub-additive.

Our typical example Φp(t) = tp

log(e+t)p satisfies (G1) and (G2) for p ≤ 1. The

same is valid for the function Φp,α(t) = tp(log(C + t))αp, provided that C is large
enough, for p < 1 and any α, or for p = 1 and α < 0. We modify it as above so
that (G3) is also satisfied. In the sequel we will assume that this modification has
been done, and use as well the notation Φp (or Φp,α) for the modified function.

Remark 1.2. When Φ and Ψ are two growth functions, then Φ ◦ Ψ is also a
growth function.
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Remark also that Φ is doubling: more precisely,

(3) Φ(2t) ≤ 2Φ(t),

a property that will be largely used.
For (X, dµ) a measure space, we call LΦ the corresponding Orlicz space, that

is, the space of functions f such that

‖f‖LΦ :=

∫

X

Φ(|f |)dµ < ∞.

The quantity ‖ · ‖LΦ is sub-additive, but is not homogeneous. One may prefer
the Luxembourg quasi-norm, which is homogeneous but not sub-additive. It is
defined as

‖f‖lux
LΦ = inf



λ > 0 :

∫

X

Φ

(
|f(x)|

λ

)
dµ(x) ≤ 1



 .

It is easily seen that

‖f‖lux
LΦ

<
∼ min{‖f‖LΦ, ‖f‖p

LΦ},

while

||f ||LΦ <
∼ max{‖f‖lux

LΦ , (‖f‖lux
LΦ)p}.

Endowed by the distance ||f − g||LΦ, LΦ is a metric space. When T is a linear
continuous operator from LΦ into the Banach space B, there exists some constant
C such that

‖Tf‖B ≤ C‖f‖lux
LΦ ≤ C‖f‖LΦ.

Conversely, a bounded operator is continuous.

1.2. Adapted geometry on the unit ball. Let us recall here the different
geometric notions (see [R]) that will be necessary for the description of spaces of
holomorphic functions.

For ζ ∈ Sn and w ∈ Bn, we note

d(ζ, w) := |1 − 〈ζ, w〉|.

We recall that, when restricted to S
n × S

n, this is a quasi-distance. For ζ0 ∈ S
n

and 0 < r < 1, we note B(ζ0, r) the ball on Sn of center ζ0 and radius r for the
distance d. Recall that σ(B(ζ0, r)) ≃ rn. In particular,

(4) σ(B(ζ0, λr)) ≃ λnσ(B(ζ0, λr)),

with constants that do not depend of ζ0 and r.
For each ζ0 ∈ Sn, we choose an orthonormal basis v(1), v(2), · · · , v(n) in Cn, such

that v(1) is the outward normal vector to the unit sphere. In particular, we can
choose the canonical basis for the point with coordinates (1, 0, · · · , 0). Let us call
xj + iyj the coordinates of z− ζ0 in this basis. Then y1, y2, · · · , yn, x2, · · · , xn can
be used as coordinates for Sn in a neighborhood of ζ0, say in the ball B(ζ0, δ). We
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can take δ uniformly for all points ζ0. We will speak of the special coordinates

related to ζ0.
Given ζ ∈ Sn we define the admissible approach region Aα(ζ) as the subset of

Bn given by

Aα(ζ) = {z = rw ∈ B
n : d(ζ, w) = |1 − 〈ζ, w〉| < α(1 − r)}.

We then define the admissible maximal function of the holomorphic function f
by Mα(f)

(5) Mα(f)(ζ) = sup
z∈Aα(ζ)

|f(z)|.

1.3. Hardy-Orlicz spaces. Hardy-Orlicz spaces HΦ(Bn) have been defined in
(1). We define on HΦ(Bn) the (quasi)-norms by

‖f‖HΦ(Bn) := sup
0<r<1

∫

Sn

Φ(|f(rw)|) dσ(w),

‖f‖lux
HΦ(Bn) = inf



λ > 0 : sup

0<r<1

∫

Sn

Φ

(
|f(rw)|

λ

)
dσ(w) ≤ 1



 ,

which are finite for f ∈ HΦ(Bn) and define the same topology.
The assumptions on the growth function Φ give the inclusions

(6) H1(Bn) ⊂ HΦ(Bn) ⊂ Hp(Bn).

A major property of Hardy spaces is given by the equivalence with definitions
in terms of maximal functions, which generalize in our setting.

Theorem 1.3. Let α > 0. There exists a constant C > 0 so that, for any
f ∈ HΦ(Bn),

(7) ‖Φ(Mα(f))‖L1(Sn) ≤ C‖f‖HΦ(Bn)

So the two quantities are equivalent.
Next we define the real Hardy-Orlicz spaces on the unit sphere in terms of

atoms.
For ζ0 ∈ Sn, we consider an orthonormal basis v(1), v(2), · · · , v(n) in Cn giving

rise to special coordinates related to ζ0. Recall that, if the coordinates for the
basis v(j) are denoted by wj := xj + iyj , then xj , for j ≥ 2 and yj for j ≥ 1
define local coordinates of Sn inside the ball B(ζ0, δ). We call PN (ζ0) the set of
functions on B(ζ0, δ) which are polynomials of degree ≤ N in these 2n − 1 real
coordinates. Remark that PN (ζ0) does not depend on the choice of v(2), · · · , v(n).
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Definition 1.4. A square integrable function a on Sn is called an atom of order
N ∈ N associated to the ball B := B(ζ0, r0), for some ζ0 ∈ S

n, if the following
properties are satisfied:

(A1) supp a ⊆ B;
(A2)

∫
Sn a(ζ)P (ζ)dσ(ζ) = 0 for every P ∈ PN(ζ0) when r0 < δ.

The second condition is also called the moment condition. It is only required
for small balls.

We can now define the real Hardy-Orlicz spaces. Recall that the term “real” is
related with the fact that the definition makes sense for real functions, and does
not require any assumption of holomorphy. Here we consider complex valued
functions, since in particular we are interested in the fact that these spaces contain
boundary values (in the distribution sense) of holomorphic functions of HΦ(Bn).

Definition 1.5. The real Hardy-Orlicz space HΦ(Sn) is the space of distributions
f on S

n which can be written as the limit, in the distribution sense, of series

(8) f =
∑

j

aj ,
∑

j

σ(Bj)Φ(‖aj‖2σ(Bj)
− 1

2 ) < ∞,

where the aj’s are atoms of order N , associated to the balls Bj. Here N is an
integer chosen so that N > Np := 2n(1

p
− 1) − 1.

The (quasi) norm on HΦ(Sn) is defined by

(9) ‖f‖HΦ = inf

{
∑

j

σ(Bj)Φ(‖aj‖2σ(Bj)
− 1

2 ) : f =
∑

j

aj

}
.

It is also sub-additive. In particular, with the distance between f and g given by
‖f − g‖HΦ, HΦ(Sn) is a complete metric space. It is easily seen that the series in
(8) converges in metric. Remark that convergence in HΦ(Sn) implies convergence
in the sense of distribution.

We will see that the Szegö kernel projects onto the space HΦ(Bn).

Remark 1.6. The condition on N guarantees that the Szegö projection of the
atom a (or its maximal function) is well defined and has LΦ norm uniformly

bounded in terms of Φ(‖a‖2σ(B)−
1

2 )σ(B). It follows from the theorems below
that the space HΦ(Sn) does not depend on N > Np.

Moreover, we have the following atomic decomposition.

Theorem 1.7. Let N ∈ N be larger than Np. Given any f ∈ HΦ(Bn) there exist
atoms aj of order N such that

∑∞
j=0 aj ∈ HΦ(Sn) and

f = PS

( ∞∑

j=0

aj

)
=

∞∑

j=0

PS(aj).
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Moreover
∞∑

j=0

σ(Bj)Φ(‖aj‖2σ(Bj)
− 1

2 ) ≈ ‖f‖HΦ(Bn).

As in the atomic decomposition of Hardy spaces of R
n, the order of moment

conditions of the atoms can be chosen arbitrarily large. Having optimal values has
no importance later on, which allows to adapt easily proofs to a class of domains
including convex domains of finite type and strictly pseudo-convex domains, for
which the optimal values of Np are different. The fact that atoms may satisfy
moment conditions up to an arbitrary large order will play a crucial role for the
factorization.

Szegö projections of atoms are best described in terms of molecules, which we
introduce now.

Definition 1.8. A holomorphic function A ∈ H2(Bn) is called a molecule of
order L, associated to the ball B := B(z0, r0) ⊂ Sn, if it satisfies

(10) ‖A‖mol(B,L) :=


sup

r<1

∫

Sn

(
1 +

d(z0, ξ)
L+n

rL+n
0

)
|A(rξ)|2

dσ(ξ)

σ(B)




1/2

< ∞.

Proposition 1.9. For an atom a of order N associated to the ball B ⊂ Sn, its
Szegö projection PS(a) is a molecule associated to B of any order L < N + 1. It
satisfies

‖A‖mol(B,L) <
∼ ‖a‖2σ(B)−

1

2 .

Proposition 1.10. Any molecule A of order L so that L > Lp := 2n(1/p − 1)
belongs to HΦ(Bn) with

‖A‖HΦ <
∼ Φ(‖A‖mol(B,L))σ(B).

The atomic decomposition and the previous propositions have as corollaries
the molecular decomposition of functions in HΦ(Bn), the continuity of the Szegö
projection, and the identification of the dual space. Let us begin with molecular
decomposition.

Theorem 1.11. For any f ∈ HΦ(Bn), there exists molecules Aj of order L,
L > Lp, associated to the balls Bj, so that f may be written as

f =
∑

j

Aj

with ‖f‖HΦ(Bn) ≈
∑

j Φ(‖Aj‖mol(Bj ,L))σ(Bj).

The continuity of the Szegö projection is also a direct consequence of the atomic
decomposition and the fact that an atom is projected into a molecule.
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Theorem 1.12. The Szegö projection extends into a continuous operator,

PS : HΦ(Sn) → HΦ(Bn).

Before giving the duality statement, let us first define the generalized BMO(̺)-
spaces as follows. We assume that ̺ is a continuous increasing function from [0, 1]
onto [0, 1], which is of upper type α, that is,

(11) ̺(st) ≤ sα̺(t)

for s > 1, with st ≤ 1. We then define

BMO(̺) =



f ∈ L2(Sn) ; sup

B
inf

P∈PN (B)

1

̺(σ(B))σ(B)

∫

B

|f − P |2dσ < ∞



 .

Here, for B a ball of center ζB, assumed to be of radius r < δ, we note PN (B) :=
PN (ζB). The integer N is taken large enough, say N > 2nα − 1. Before going
on, let us make some remarks.

Remark 1.13. Instead of the infimum on P ∈ PN (B), we can take the function
ENf , with EN the orthogonal projection (in L2(B)) onto PN(B).

Remark 1.14. The definition does not depend on N > 2nα − 1. We will not
prove this and refer to [BPS2] for a proof for α < 1/2. It is a consequence of
duality and atomic decomposition.

Remark 1.15. One may prove that, as in the Euclidean case (see [J]) when ̺ is
of upper type less than 1/2n and satisfies the Dini condition

1∫

r

̺(s)

s2
ds <

∼ ̺(r),

then BMO(̺) coincides with the Lipschitz space Λ(̺), defined as the space of
bounded functions such that

|f(z) − f(ζ)| ≤ ̺(d(z, ζ)n).

Spaces BMO(̺) have been introduced by Janson [J] in Rn, and proved to be
the dual spaces of maximal Hardy-Orlicz spaces related to the growth function

Φ when ̺(t) = ̺Φ(t) :=
1

tΦ−1(1/t)
. With our definition of HΦ(Sn) in terms

of atoms, this duality is straightforward, as remarked by Viviani ( [V]). For
holomorphic Hardy-Orlicz spaces, we have also

Theorem 1.16. The dual space of HΦ(Bn) is the space BMOA(̺), defined by

BMOA(̺) =



f ∈ H2(Bn); sup

B
inf

P∈PN (B)

1

̺(σ(B))σ(B)

∫

B

|f − P |2dσ < ∞




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where ̺(t) = ̺Φ(t) :=
1

tΦ−1(1/t)
. The duality is given by the limit as r < 1 tends

to 1 of scalar products on spheres of radius r.

In other terms, BMOA(̺) is the space of holomorphic functions of the Hardy
space H2(Bn) whose boundary values belong to BMO(̺).

1.4. Products of functions and Hankel operators. We now have all pre-
requisites to study the product of a function h ∈ HΦ(Bn) with a function in
b ∈ BMOA(Bn). Remark that, using (6), we already know that the product is
well defined as the product of a function of Hp(Bn) and a function of Hs(Bn) for
all 1 < s < ∞. So it is a function of Hq(Bn) for q < p. We want to replace this
first inclusion by a sharp statement.

Proposition 1.17. The product maps continuously HΦ(Bn) × BMOA(Bn) into

HΨ(Bn), where Ψ(t) = Φ

(
t

log(e + t)

)
.

Proof. We know that Ψ is also a growth function by Remark 1.2. We prove more:
using John Nirenberg Inequality, we know that a function b in BMO is also in
the exponential class. More precisely, we only use the fact that b(r·) is uniformly
in the exponential class, and prove that, for such a function b and for a function
h ∈ HΦ(Bn), the product b × h is continuously embedded in HΨ(Bn). We start
from the following elementary inequality, see [BIJZ]. For any u, v > 0,

uv

log(e + uv)
≤ u + ev − 1.

It follows that
Ψ(uv) <

∼ Φ(u + ev − 1) <
∼ Φ(u) + ev − 1.

When u and v are replaced by measurable positive functions on the measure space
(X, dµ), we have, by homogeneity of the Luxembourg norms, the inequality

‖fg‖lux
LΨ

<
∼ ‖f‖lux

LΦ‖g‖lux
expL.

We refer to [VT] for more general Hölder inequality on Orlicz spaces.
Let us come back to Hardy spaces. Applying this inequality on each sphere of

radius less than 1, we conclude that

(12) ‖fg‖lux
HΨ

<
∼ ‖f‖lux

HΦ‖g‖lux
exp L

<
∼ ‖f‖lux

HΦ‖g‖BMOA.

�

We are going to prove converse statements.

Theorem 1.18. Let A be a molecule associated to the ball B. Then A may be
written as fg, where f is a molecule and g is in BMOA(Bn). Moreover, f and g
may be chosen such that

‖g‖BMOA(Bn) <
∼ 1, ‖f‖mol(B,L′) <

∼
‖A‖mol(B,L)

log(e + σ(B)−1)
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when L′ < L. In particular, if Ψ(‖A‖mol(B,L))σ(B) ≤ 1, then

Φ(‖f‖mol(B,L′)) <
∼ Ψ(‖A‖mol(B,L)).

Theorem 1.19. Given any f ∈ HΨ(Bn) there exist fj ∈ HΦ(Bn), gj ∈ BMOA(Bn),
j ∈ N, with the norm of gj bounded by 1, such that

f =

∞∑

j=0

fjgj.

Moreover, we can take for fj a molecule and, for ‖f‖HΨ ≤ 1, we have the equiv-
alence

‖f‖HΨ ≈
∑

j

Φ(‖fj‖mol(Bj ,L))σ(Bj).

In particular,
∞∑

j=0

‖fj‖HΦ‖gj‖BMOA <
∼ ‖f‖HΨ .

As a corollary, we obtain the following characterization of bounded Hankel
operators. Recall that, for b ∈ H2(Bn), the (small) Hankel operator hb of symbol
b is given, for functions f ∈ H2(Bn), by hb(f) = PS(bf ).

Corollary 1.20. Any Hankel operator hb extends into a continuous operator from
HΦ(Bn) to H1(Bn) if and only if b ∈ (HΨ(Bn))′ = BMOA(̺Ψ).

The proof is elementary once we know the previous statements. We give it
here.

Proof. Let hb be a Hankel operator of symbol b. Let us first assume that b belongs
to BMOA(̺Ψ). Then, for any g in BMOA, we have

|〈hb(f), g〉| = |〈PS(bf), g〉| = |〈b, fg〉|

<
∼ ‖b‖BMOA(̺Ψ)‖fg‖lux

HΨ
<
∼ ‖b‖BMOA(̺Ψ)‖f‖

lux
HΦ‖g‖BMOA.

It follows that hb is bounded from HΦ(Bn) to H1(Bn), which we wanted to prove.
Conversely, assume now that hb is bounded from HΦ(Bn) to H1(Bn) and prove

that b belongs to the dual of HΨ(Bn). It is sufficient to prove that there exists
some constant C such that

|〈b, f〉| ≤ C

when f belongs to a dense subset of functions in HΨ(Bn), with ‖f‖HΨ <
∼ 1. Be-

cause of Theorem 1.19, it is sufficient to test on such functions f , which may be
written as a finite sum of products fjgj . More precisely,

|〈b, f〉| = |〈b,
∑

fjgj| ≤
∑

j

|〈PS(bfj), gj〉|

=
∑

j

|〈hb(fj), gj〉| ≤ |||hb|||
∑

j

‖fj‖
lux
HΦ‖gj‖BMOA ≤ C.
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It ends the proof. �

All these results may be extended to the more general setting of strictly pseu-
doconvex domains or of convex domains of finite type in Cn. We give a sketch of
the proofs in section 6.

2. Maximal characterizations of Hardy-Orlicz spaces

Let us prove the equivalent characterization of HΦ spaces, given in Theorem
1.3. In order to adapt the proofs given for usual Hardy spaces, we need the
following lemma. Here MHL denotes the Hardy-Littlewood maximal operator
related to the distance on the unit sphere. In fact, the statement is valid in the
general context of spaces of homogeneous type. In particular we will also use it
for the maximal operator on the sphere related to the Euclidean distance.

Lemma 2.1. Let Φ be a growth function of order p and β < p. There exists a
constant C > 0 so that, for any measurable function f ,

∫

Sn

Φ
(
MHL(|f |β)

1

β

)
dσ ≤ C

∫

Sn

Φ(|f |)dσ.

Proof. Let us note g := |f |β. We only use the fact that

tσ
(
MHL(g) ≥ t

)
<
∼

∫

{g≥t/2}

gdσ,

which is a consequence of the weak (1,1) boundedness of MHL.

Denote by Ψ the function defined by Ψ(t) := Φ(t
1

β ), which is of lower type
p/β > 1. In particular,

(13)

s∫

0

Ψ(t)

t2
dt = s−1

1∫

0

Ψ(st)

t2
dt <

∼
Ψ(s)

s

since
∫ 1

0
tp/β−2dt is finite. It follows, cutting the integral into intervals (2k, 2k+1),

that

(14)
∑

k; s>2k

2−kΨ(2k) <
∼

Ψ(s)

s
.

Now, we have to estimate
∫

Sn

Ψ(MHL(g))dσ ≤
∑

k

Ψ(2k)σ
(
MHL(g) ≥ 2k−1

)

<
∼

∑

k

2−kΨ(2k)

∫

{g≥2k−2}

gdσ.
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Exchanging the integral and the sum and using (14), we obtain that the left
hand side is bounded by C

∫
Sn Ψ(g)dσ, which we wanted to prove. �

Proof of Theorem 1.3. We proceed in two steps, as it is classical. Let us note

M0(f)(ζ) = sup
0<r<1

|f(rζ)|

the radial maximal function. We first prove that

(15) ‖Φ(M0(f))‖L1(Sn) ≤ C‖f‖HΦ(Bn).

Let β < p, Ψ and g = |f |β be as before. The function g is sub-harmonic, and
satisfies the condition

sup
0<r<1

∫

Sn

Ψ(g(rζ))dσ(ζ) < ∞.

We claim that there exists some constant C, independent of g, such that

(16)

∫

Sn

Ψ( sup
0<r<1

g(rζ))dσ(ζ) ≤ C sup
0<r<1

∫

Sn

Ψ(g(rζ)dσ(ζ),

which will immediately imply (15). The proof of (16) follows the same lines as
in the unit disc. Assume first that g extends into a continuous function on the
closed ball and call g̃ the function on the unit sphere that coincides with this
extension. With this assumption, the right hand side is the integral of Ψ(g̃).
Then it follows from the maximum principle that g ≤ G, where G is the Poisson
integral of g̃. Moreover, we know that sup0<r<1 g(rζ) is bounded by the Hardy
Littlewood maximal function (for the Euclidean metrics on the unit sphere) of g̃.
We conclude for the inequality (16) by using the previous lemma, or its proof, in
the context of this maximal function. To conclude for general g, it is sufficient to
see that Inequality (15) is valid for g once it is valid for all g(r·), with 0 < r < 1.

Let f̃ be the a. e. boundary values of f , which we know to exist since f belongs
to Hp(Bn) by (6). Remark that once we have done this first step, we also know,

using Fatou’s lemma, that ‖Φ(|f̃ |)‖L1(Sn) ≤ ‖f‖HΦ .

Next, we recall that (see for instance [G], or [St2] for the Euclidean case) that
we have the inequality

(17) Mα(f)β ≤ CαM
HL
(
M0(f)β

)
.

We then use Lemma 2.1 to conclude for the proof of Therorem 1.3.
�

We need stronger characterizations of HΦ(Bn) for the atomic decomposition.
First, remark that when looking at the proof of (17), one observes that the
constant Cα has a polynomial behavior when α tends to ∞. In the Euclidean
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case, details are given in [St2]. This means in particular, using the fact that Φ is
doubling, that for some large N0 and all α > 0, we have the inequality

(18) ‖Φ(Mα(f))‖L1(Sn) ≤ C(1 + α)N0‖f‖HΦ(Bn).

Let us consider now the tangential variant of admissible maximal operators,
defined by

(19) NM(f)(ζ) = sup
rw∈Bn

(
1 − r

(1 − r) + d(ζ, w)

)M

|f(rw)|.

Here d(ζ, w) denotes the pseudo-distance on Sn, given as before by d(ζ, w) :=
|1 − 〈ζ, w〉|. We claim that the following identity holds.

(20) ‖Φ(NM (f))‖L1(Sn) ≤ C‖f‖HΦ(Bn).

Using the definition, we have

NMf(ζ) = sup
k∈N

sup
rw∈A

2k (ζ)

(
1 − r

(1 − r) + d(ζ, w)

)M

|f(rw)|

<
∼ sup

k∈N

2−kMM2kf(ζ).

It then follows that

‖Φ(NM(f))‖L1(Sn) ≤
∑

k∈N

‖Φ(2−kMM2kf)‖L1(Sn) ≤
∑

k∈N

2−kMp‖Φ(M2kf)‖L1(Sn).

For Mp > N0 we can conclude after having used (18).
Le us now introduce the grand maximal function. Firstly, we define the set of

smooth bump functions at ζ , which we note KN
α (ζ), as the set of smooth functions

ϕ supported in B(ζ0, r0) for some ζ0 ∈ Aα(ζ) and normalized in the following way.
In the neighborhood of ζ0, when we use special coordinates related to ζ0, the unit
sphere coincides with the graph ℜw1 = h(ℑw1, w

′), with w′ = (w2, · · · , wn) and
h a smooth function. We note wj = xj + yj, and consider all derivatives D(k,l)ϕ,
where D(k,l) consists in k derivatives in x′ or y′, and l derivatives in y1. We assume
that bump functions ϕ ∈ KN

α (ζ) satisfy the inequality
∑

k+l≤N,

‖D(k,l)ϕ‖L∞(B(ζ0,r0))r
k/2+l
0 ≤ σ(B)−1.

The grand maximal function is defined as

(21) Kα,N (f)(ζ) = sup
ϕ∈KN

α (ζ)

∣∣ lim
r→1

∫

Sn

f(rζ)ϕ(ζ)dσ(ζ)|.

The fact that the limit exists for f ∈ HΦ(Bn) ⊂ Hp(Bn) is due to the fact that
holomorphic functions in Hardy spaces have boundary values as distributions.

We use the following inequality (see [GP], and [St2] for the Euclidean case).
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Lemma 2.2. With the definitions above, there exist c = c(Bn) and Ñ = Ñ(α, N)
such that

Kα,Nf(ζ) <
∼ Mcα(f)(ζ) + NÑ(f)(ζ).

We now turn to the atomic decomposition. We first prove in the next section
that holomorphic extensions of functions in HΦ(Sn) are functions of the Hardy-
Orlicz space.

3. Atoms and molecules 1.12

We first consider the Szegö projection of atoms and prove the following lemma.

Lemma 3.1. Let a be an atom of order N associated to the ball B = B(ζ0, r0),
and let A = PS(a). Then A satisfies the following estimates.

(22) sup
0<r<1

∫

B(ζ0,2r0)

Φ(|A(rw)|)
dσ(w)

σ(B)
<
∼ Φ(‖a‖2σ(B)−

1

2 ),

(23) |A(rζ)| <
∼

(
r0

d(ζ, ζ0)

)n+ N+1

2

‖a‖2σ(B)−
1

2 for d(ζ, ζ0) ≥ 2r0.

Proof. Let us prove (22). We assumed that Φ is concave. In particular, if dµ is
a probability measure and f a positive function on the measure space (X, dµ),
then we have Jensen Inequality

∫

X

Φ(f)dµ ≤ Φ



∫

X

fdµ


 ≤ Φ

(
‖f‖L2(X,dµ)

)
.(24)

If we use it for the measure dσ on B(z0, 2r0) after normalization, we find that

(25) sup
0<r<1

∫

B(ζ0,2r0)

Φ(|A(rw)|)
dσ(w)

σ(B)
<
∼ Φ

(
‖A‖H2

(σ(B))1/2

)
.

Since the Szegö projection is bounded in L2, we have the inequality

‖A‖H2 ≤ ‖a‖L2

and conclude for (22).

The inequality (23) is classical and used for classical Hardy spaces. It is a
consequence of the estimates of the Szëgo kernel, which are explicit for the unit
ball. Without loss of generality we can assume that ζ0 = (1, 0, · · · , 0), so that the
coordinates related to ζ0 may be taken as the ordinary ones. Otherwise we use the
action of the unitary group. In the neighborhood of ζ0, the unit sphere coincides
with the graph ℜw1 = h(ℑw1, w

′), with w′ = (w2, · · · , wn). We recall that
S(ζ, w) = cn(1−ζ.w̄)−n. In the following estimates, we are interested in estimates
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on D
(k,l)
w S(rζ, (h(t1, s

′ + it′) + it1, w
′)), where D(k,l) consists in k derivatives in s′

or t′, and l derivatives in t1. It follows from elementary computations that

|D(k,l)
w S(rζ, (h(t1, s

′ + it′) + it1, w
′))| ≤ C(|ζ ′|k + |w′|k)|1 − ζ.w̄|−(n+k+l).

In particular, for d(w, ζ0) < r0 and ζ /∈ B(ζ0, 2r0), we know that |1 − ζ.w| ≃

|1 − ζ.ζ0| >
∼ r0. In particular, we have |w′| <

∼ |1 − ζ.ζ0|
1

2 , and the same for |ζ ′|.
So, the following holds

(26) |D(k,l)
w S(rζ, (h(t1, s

′ + it′) + it1, w
′))| ≤ C|1 − ζ.ζ0|

−(n+ k
2
+l)

We use the vanishing moment condition, in the computation of

PSa(rζ) =

∫
S(rζ, w)a(w)dσ(w),

to replace S(rζ, ·) by S(rζ, ·) − P , where P is its Taylor polynomial at order N .
By Taylor’s formula, the rest may be bounded by the sum, for k + l = N + 1, of

the quantities |t1|l|w′|k|1− z.ζ0|
−(n+ k

2
+l). Using the fact that |t1|l|w′|k <

∼ r
k
2
+l

0 , we
have

|S(rζ, w)− P (w)| ≤ C
r

N+1

2

0

d(z, ζ0)
n+ N+1

2

.

This gives the result, using the fact that σ(B) <
∼ rn

0 . �

Proof of Proposition 1.9. The fact that PSa is a molecule is classical. We give the
proof for completeness. Coming back to the definition of ‖PS(a)‖2

mol(B,L) given

in (10), we cut the integral involved into two pieces. We already know that the
integral on B(ζ0, 2r0) satisfies the right estimate. So is sufficient to show that

∫

Sn\B(ζ0,2r0)

(
d(ξ, ζ0)

r0

)L+n

sup
r

|PSa(rξ)|2
dσ(ξ)

σ(B)
<
∼ ‖a‖2

2.

Using (23), it is a consequence of the estimate

(27)

∫

Sn\B(ζ0,2r0)

(
r0

d(ξ, ζ0)

)M
dσ(ξ)

σ(B)
≤ C

for some constant C that does not depend on ζ0 and r0, when M > n (see for
instance [R]).

�

Proof of Proposition 1.10. Let A be a molecule of order L associated to B :=
B(z, r). We want to prove that A belongs to HΦ(Bn) for L large enough, with
the estimate

‖A‖HΦ <
∼ Φ(‖A‖mol(B,L))σ(B).
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Let us note Bk := B(z, 2kr). It is sufficient to prove that, for g a positive function
on the unit sphere,

∫

Sn

Φ(g)
dσ

σ(B)
<
∼ Φ






∫

Sn

(
d(z, ξ)

r

)L+n

g(ξ)2dσ(ξ)

σ(B)




1/2

 .

Cutting the integral into pieces, it is sufficient to prove that

∫

B

Φ(g)
dσ

σ(B)
<
∼ Φ






∫

B

g(ξ)2dσ(ξ)

σ(B)




1/2

 ,

which is a direct consequence of Jensen Inequality (24) as before, and, for k ≥ 1,

∫

Bk\Bk−1

Φ(g)
dσ

σ(B)
<
∼ 2−kεΦ





2k(L+n)

∫

Bk\Bk−1

g(ξ)2dσ(ξ)

σ(B)




1/2



for some ε > 0. To prove this last inequality, we use again Jensen Inequality (24)
for the measure dσ on Bk\Bk−1, divided by its total mass σ(Bk\Bk−1) ≈ 2knσ(B).
This gives

∫

Bk\Bk−1

Φ(g)
dσ

σ(B)
<
∼ 2knΦ





2−kn

∫

Bk\Bk−1

g(ξ)2dσ(ξ)

σ(B)




1/2

 .

We conclude by using the fact that Φ is of lower type p, which allows to write
that 2knΦ(t) <

∼ Φ(2kn/pt). It is sufficient to choose L > n(2/p − 2). �

4. Proof of the atomic decomposition Theorem 1.7

Let f be a fixed function in HΦ. As noticed before, f admits boundary values
defined a.e. on Sn, that we still denote by f .

We fix also N an integer larger than Np.
Let k0 be the least integer such that

(28) ‖Φ(Kα,M(f) + Mα(f))‖L1(Sn) ≤ 2k0.

For a positive integer k, we define

(29) Ok = {z ∈ S
n : Kα,Mf(z) + Mα(f)(z) > 2k0+k}.

For each k, we then fix a Whitney covering {Bk
i } of Ok. As it is usual, one can

associate to f an atomic decomposition (see [GL] for a proof for Hardy spaces in
the unit ball, we refer also to [GP] for a proof in the general context considered
in the last paragraph).
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Namely, there exist a function h0 and atoms bk
i corresponding to the Whitney

covering {Bk
i } so that the following equality holds in the distribution sense and

almost everywhere.

(30) f = h0 +

∞∑

k=0

∞∑

i=0

bk
i .

Here, h0 is a so called ”junk atom” bounded by c2k0 while the bk
i ’s are atoms

supported in the Bk
i ’s, bounded by c2k+k0, with moment conditions of order N .

Since ‖bk
i ‖2σ(Bk

i )−
1

2 ≤ ‖bk
i ‖∞, it is sufficient to prove that
∑

i,k

σ(Bk
i )Φ(‖bk

i ‖∞) < ∞.

We have
∞∑

k=0

∞∑

i=0

σ(Bk
i )Φ(‖bk

i ‖∞) ≤
∞∑

k=0

Φ(2k+k0)σ(Ok)

≤ c

∞∫

1

Φ(t)

t
σ
(
{ζ ∈ S

n : KM
α f(ζ) + Mα(f)(ζ) ≥ t}

)
dt

<
∼ c

∞∫

1

Φ′(t)σ
(
{ζ ∈ S

n : KM
α f(ζ) + Mα(f)(ζ) ≥ t}

)
dt

≤ ‖Φ(KM
α f)‖L1(Sn) + ‖Φ(Mα(f))‖L1(Sn)

≤ c‖f‖HΦ .

�

As we pointed out before, the atomic decomposition allows to obtain a lot of
result such as the molecular decomposition that we are going to consider now.

5. Factorization Theorem and Hankel operators

Let us prove now the factorization theorem 1.18. Let A be a molecule associated
to the ball B = B(ζ0, r), with r < 1. We write A = fg, with

g(z) := log

(
4

1 − 〈z, ζ〉

)
,

where ζ := (1−r)ζ0. The constant 4 has been chosen in such a way that g, which
is holomorphic on Bn, does not vanish. We first remark that we have the required
inequality for f , that is,

(31) ‖f‖mol(B,L′) <
∼

‖A‖mol(B,L)

log(e + σ(B)−1)
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for L′ < L. Indeed, this is a direct consequence of the two inequalities

|g(z)| >
∼ log(4/r) ≃ log(e + σ(B)−1) z ∈ B(ζ0, 2r),

|g(z)| >
∼ log(e + σ(B)−1)

(
r

d(ζ0, z)

)ε

z /∈ B(ζ0, 2r)

for ε > 0. We have used the fact that, for u > 1 and v > e, one has the inequality

log(uv) ≤ 2uε log v.

We now prove that g belongs uniformly to BMOA(Bn) or, equivalently, that

(1 − |z|2)|∇g|2 ≃ (1−|z|2)
|1−〈z,ζ〉|2

is a Carleson measure with uniform bound. Let Bρ =

B(x0, ρ) be a ball on the boundary of Bn and T (Bρ) be the tent over this ball.
We have to prove that

∫

T (Bρ)

(1 − |z|2)

|1 − 〈z, ζ〉|2
dV (z) <

∼ σ(Bρ)

with constants that are independent of Bρ, r and ζ0, or, which is equivalent,
ρ∫

0

∫

Bρ

t

(d(w, ζ0) + t)2
dt dσ(w) <

∼ σ(Bρ).

If d(x0, ζ0) ≥ 2ρ then, for w ∈ Bρ, we have d(w, ζ0) ≥ ρ and the denominator is
bounded below by ρ, which allows to conclude. When d(x0, ζ0) ≤ 2ρ, then Bρ is

included in B̃ρ := B(ζ0, 3ρ) which has a measure comparable to Bρ. Integrating
first in t, we have to prove that

∫

fBρ

log

(
ρ

d(ζ0, w)

)
dσ(w) <

∼ σ(B̃ρ).

To prove this last inequality, we cut the ball B̃ρ in dyadic shells. We conclude by
using the inequality ∑

j>0

jσ(B(ζ0, 2
−jρ)) <

∼ σ(Bρ),

which is a consequence of the fact that

σ(B(z, 2−jρ)) <
∼ 2−jnσ(B(z, ρ)).

We have recalled this classical inequality in (4).
Assume now that Ψ(‖A‖mol(B,L))σ(B) ≤ 1. We use the fact that log t ≃ log Ψ(t)

to get
‖A‖mol(B,L) <

∼ log(e + σ(B)−1)

and (31) to conclude that

Φ(‖f‖mol(B,L′)) <
∼ Ψ(‖A‖mol(B,L)).
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The weak factorization, that is, Theorem 1.19, follows directly from Theorem
1.11 (molecular decomposition) and Theorem 1.18 (factorization of molecules),
with the bound below for the quasi-norm of f in the Hardy-Orlicz space. The
bound above uses the direct inequality for molecules, that is Proposition 1.10,
and for products, that is (12).

We will give some complements to the characterization of symbols of bounded
Hankel operators. If expH denotes the class of holomorphic functions f such
that f(r·) is uniformly in the exponential class exp L, then Proposition 1.17 is
still valid with BMOA replaced by expH. Let us remark that the space expH is
the dual space of PS(L log L), that is, the space of functions that may be written
as PSg, with g ∈ L log L, equipped with the norm

‖h‖PS(L log L) := inf{‖g‖L log L ; h = PSg}.

Then, looking at the proof of Corollary 1.20, we see that we have as well the
following improvement, since PS(L log L) is contained in H1.

Proposition 5.1. If b belongs to BMOA(̺Ψ), then hb extends into a continuous
operator from HΦ(Bn) to PS(L log L).

This has been proven by different methods in [BM].
The same reasoning allows to characterize as well the Hankel operators which

map HΦ(Bn) to H1
weak.

Proposition 5.2. hb extends into a continuous operator from HΦ(Bn) to H1
weak

if and only if b belongs to BMOA(̺Φ).

The necessity of the condition follows from the fact that

|〈b, f〉| = |

∫

Sn

bf̄dσ| ≤ ‖hb‖‖f‖HΦ
,

so that b defines a continuous linear form on the space HΦ. To prove the suf-
ficiency, it is sufficient to prove that hb maps HΦ(Bn) to PS(L1) when b is in
BMOA(̺Φ). But the dual of PS(L1) identifies with H∞. So, using duality, it is
sufficient to prove that multiplication by an element of the dual, that is, H∞,
maps HΦ into itself. This is straightforward.

6. Extension of the results in a general setting

We are now going to give the main points which allow to extend our results
in a larger class of domain including strictly pseudoconvex domains and convex
domains of finite type. Let Ω be a smooth bounded domain in C

n. Define the
Hardy-Orlicz spaces as the space of holomorphic functions f so that

sup
0<ε<ε0

∫

δ(w)=ε

Φ(|f |)(w) dσε(w) < ∞
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where Φ is as before of lower type p, δ(w) is the distance from w to ∂Ω and dσε

the Euclidean measure on the level set δ(w) = ε. Recall that the usual Hardy
space of holomorphic functions Hp(Ω) on Ω corresponds to the case Φ(t) = tp.

6.1. Geometry of H-domains.

Definition 6.1. We say that Ω is an H-domain if it is a smoothly bounded
pseudoconvex domain of finite type and if, moreover, for each ζ ∈ ∂Ω there exist
a neighborhood Vζ and a biholomorphic map Φζ defined on Vζ such that Φζ(Ω∩Vζ)
is geometrically convex.

We recall that a point ζ ∈ ∂Ω is said to be of finite type if the (normalized) order
of contact with ∂Ω of complex varieties at ζ is finite. By [BS] and our assumption
it suffices to consider the order of contact of ∂Ω at ζ with 1-dimensional complex
manifolds, see[BS] and references therein. The domain Ω is said to be of finite
type if every point on ∂Ω is of finite type.We denote by MΩ the maximum of
the types of points on ∂Ω. Notice that the class of H-domains contains both the
convex domains of finite type and the strictly pseudoconvex domains.

We describe the geometry of an H-domain Ω.This is done locally, using a
partition of unity. Moreover, in a neighborhood of a point ζ ∈ ∂Ω, using local
coordinates and the assumption, we may in fact assume that Ω is geometrically
convex. Thus, we do not lose generality if we assume that it is globally convex.
Then, there exist an ε0 > 0 and a defining function ̺ for Ω such that for −ε0 < ε <
ε0 the sets Ωε := {z ∈ Cn : ̺(z) < ε} are all convex. Moreover, denote by U = Uε0

the tubular neighborhood of ∂Ω given by {z ∈ C
n : −ε0 < ̺(z) < ε0}. By taking

ε0 > 0 sufficiently small, we may assume that on U the normal projection π of
U onto ∂Ω is uniquely defined. Let z ∈ U and let v be a unit vector in Cn. We
denote by τ(z, v, r) the distance from z to the surface {z′ : ̺(z′) = ̺(z)+r} along
the complex line determined by v. One of the basic relations among the quantities
defined above is the following.There exists a constant C depending only on the
geometry of the domain such that given z ∈ U , any unit vector v ∈ Cn that is
orthogonal to the level set of the function ̺ and r ≤ r0 and η < 1 we have

(32) C−1η1/2τ(z, v, r) ≤ τ(z, v, ηr) ≤ Cη1/MΩτ(z, v, r).

We next define the r-extremal orthonormal basis {v(1), . . . , v(n)} at z, which gen-
eralize the choices that we have done for the unit ball. The first vector is given
by the direction transversal direction to the level set of ̺ containing z, pointing
outward. In the complex directions orthogonal to v(1) we choose v(2) in such a
way that τ(z, v(2), r) is maximum. We repeat the same procedure to determine
the remaining elements of the basis. We set

τj(z, r) = τ(z, v(j), r).

By definition, τ1(z, r) ≃ r. The polydisc Q(z, r) is now given as

Q(z, r) = {w : |wk| ≤ τk(z, r), k = 1, . . . , n}.
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Here (w1, . . . , wn) are the coordinates determined by r-extremal orthonormal ba-
sis {v(1), . . . , v(n)} at z. Notice that these coordinates (w1, . . . , wn) = (wz,r

1 , . . . , wz,r
n )

depend on z and on r. They are called special coordinates at the point z and at

scale r. The quasi-distance is defined by setting

(33) db(z, w) = inf{r : w ∈ Q(z, r)}.

Notice that by the above properties the sets Q(z, r) are in fact equivalent to
the balls in the quasi-distance db. We also consider balls on the boundary ∂Ω
defined in terms of db. For ζ ∈ ∂Ω and r > 0 we set

B(ζ, r) = {z ∈ ∂Ω : db(z, ζ) < r}.

These balls are equivalent to the sets Q(ζ, r) ∩ ∂Ω. Moreover, we define the
function d on Ω × Ω by setting

(34) d(z, w) = δ(z) + δ(w) + db

(
π(z), π(w)

)
,

where π is the normal projection of a point z onto the boundary. We now set

τ(z, r) = (τ1(z, r) · · · , τn(z, r)).

Then, for α a multiindex, we note

τα(z, r) =
n∏

j=1

τ
αj

j (z, r).

When Ω is strictly pseudoconvex, we have simply τα(z, r) ≃ r
|α|+α1

2 . Let σ denotes

the surface measure on ∂Ω. Then, one has

σ
(
B(w, r)

)
≃ τ (1,2,··· ,2)(w, r).

Moreover, the property (4) is replaced by the double inequality

(35) λnσ(ζ0, r) <
∼ σ(B(ζ0, λr)) <

∼ λ1+(2n−2)/MΩσ(B(ζ0, λr)),

As we said before, all these definitions are local, and may be given in the context
of H-domains.

As in the case of the unit ball, if wj are the coordinates of w − z in the basis
{v(1), . . . , v(n)} and if wj = sj + itj , then sj for j ≥ 2 and tj for j ≥ 1 define
2n − 1 local coordinates of ∂Ω in a neighborhood of z. We will still speak of
special coordinates at the point z and the scale r.

In the neighborhood of z ∈ ∂Ω, the hypersurface ∂Ω coincides with the graph
ℜw1 = h(ℑw1, w

′), with w′ = (w2, · · · , wn). As in the case of the unit ball, we

are interested in estimates on D
(α,β)
w S( (h(t1, s

′ + it′) + it1, w
′)), where α is an

n− 1-index of derivation in the variable s′, while β is an n-index of derivation in
t. The equivalent of (26) is given by the estimates of McNeal and Stein [McS1]
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and [McS2], see also [BPS1], Lemma 4.7 for an analogous context. For d(w, z) < r
and ζ /∈ B(z, Cr), we have

(36) |D(α,β)
w S(ζ, (h(t1, s

′+it′)+it1, w
′))| <

∼ τ−(1+β1,2+α2+β2,··· ,2+αn+βn)(z, d(w, z)).

As in [BPS1], we will also use the existence of a support function given by
Diederich and Fornaess [DFo].

Theorem 6.2. Let Ω be a smoothly bounded pseudoconvex H-domain of finite
type in Cn. Then there exist a neighborhood U of the boundary ∂Ω and a function
H ∈ C∞(Cn × U) such that the following conditions hold:

(i) H(·, w) is holomorphic on Ω for all ζ ∈ U ;
(ii) there exists a constant c1 > 1 such that

1

c1

d(z, w) ≤ |H(z, w)| ≤ c1d(z, w).

With all these definitions, we claim the following.
Statement of results for H-domains. The analogues of Theorems 1.3 to

Corollary 1.20 are valid for the H-domain Ω with the following modifications:

Np := (1
p
−1)(MΩ +2n−2)−1 in Definition 1.5; in Proposition 1.9, the condition

is L < 2N+2
MΩ

, while in Proposition 1.10, we have Lp := (2/p − 2)
(
1 + 2n−2

MΩ

)
.

Finally, for the definition of BMO(̺), we have to take N + 1 > α(MΩ + 2n − 2).
Let us sketch the modifications to be done. Atoms adapted to a ball B :=

B(ζ0, r0) are defined as before, using special coordinates at ζ0 and at scale r0 to
define the vanishing moment conditions. Remark that the coordinates depend on
r0, but the space PN(ζ0) does not.

Then, in Lemma 3.1, the second estimate has to be replaced by

(37) |A(ζ)| <
∼

(
r0

d(ζ, ζ0)

)N+1

MΩ ‖a‖2σ(B)
1

2

σ(ζ0, d(ζ, ζ0))
for d(ζ, ζ0) ≥ Cr0.

The proof is the same, using the estimates (36) in place of (26).

Next, molecules are defined as follows.

Definition 6.3. A holomorphic function A ∈ H2(Ω) is called a molecule of order
L, associated to the ball B := B(z0, r0) ⊂ ∂Ω, if it satisfies

(38) sup
ε<ε0

∫

∂Ω

(
1 +

d(z0, ξ)
L

rL
0

×
σ(B(z0, d(z0, ξ)))

σ(B(z0, r0))

)
|A(ξ − εν(ξ))|2

dσ(ξ)

σ(B)
< ∞,

with ν the outward normal vector. In this case, the left hand side is ‖A‖2
mol(B,L).

It follows from (37), cutting the integral into dyadic balls, that the projection of
an atom related to the ball B := B(z0, r0) ⊂ ∂Ω is a molecule of order L < 2N+2

MΩ
.
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Finally, to see that a molecule of order L is in the Hardy space HΦ, we prove
that, with Bk := B(z0, 2

kr0),

∫

Bk\Bk−1

Φ(g)
dσ

σ(B)
<
∼ 2−kεΦ





2kLσ(Bk)

σ(B)

∫

Bk\Bk−1

g(ξ)2dσ(ξ)

σ(B)




1/2



for some ε > 0. To prove this last inequality, we use again Jensen Inequality (24)
for the measure dσ on Bk, divided by its total mass σ(Bk). This gives

∫

Bk\Bk−1

Φ(g)
dσ

σ(B)
<
∼

σ(Bk)

σ(B)
Φ







∫

Bk\Bk−1

g(ξ)2 dσ(ξ)

σ(Bk)




1/2

 .

We conclude by using the fact that Φ is of lower type p, which allows to write
that

σ(Bk)

σ(B)
Φ(t) <

∼ Φ

((
σ(Bk)

σ(B)

) 1

p

t

)
.

Using (35), one finds that it is sufficient to choose L > Lp := 2(1/p−1)
(
1 + 2n−2

MΩ

)
.

Up to now, we have given the modifications for having the atomic decompo-
sition, the continuity of the Szegö projection, the duality. It remains to see the
modifications in the proof of the factorization theorem. As at the beginning of
Section 5, we factorize each molecule A associated to a ball B := B(ζ0, r) as
B = fg, with B a molecule and g a BMOA-function.

For this factorization, we use the support function given in Theorem 6.2. We
set H0 = H(·, ζ̃0), where ζ̃0 = ζ0 − rν(ζ0). We choose g = log(cH−1

0 ) with c so
that g does not vanish in Ω.

We have as before the inequality

(39) ‖f‖mol(B,L′) <
∼

‖A‖mol(B,L)

log(e + σ(B)−1)

for L′ < L. Just use (ii) in Theorem 6.2.
We now prove that log(cH−1

0 ) belongs to BMOA with bounds independent of
ζ0 and r. The proof follows the same line as the one in the unit ball, using that
|H0| and |∇H0 are uniformly bounded in Ω.

This finishes the proof of the factorization theorem.
�
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