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Using an explicit representation in terms of the logit map we show, in a unilateral framework, that the time average of the replicator dynamics is a perturbed solution of the best reply dynamics.

1. Presentation. The two prime examples of deterministic evolutionary game dynamics are the replicator dynamics (RD) and the best response dynamics (BRD).

In the framework of a symmetric two person game with K × K payoff matrix A played within a single population, the replicator equation is given by

ẋk t = x k t e k Ax t -x t Ax t , k ∈ K (RD) (1) 
where K is the set of pure strategies, ∆ = ∆(K) is the set of mixed strategies (the simplex on K), e k is the k th unit vector in ∆, x t ∈ ∆ is the composition of the population at time t with x k t denoting the frequency of strategy k. It was introduced by Taylor and Jonker [START_REF] Taylor | Evolutionarily stable strategies and game dynamics[END_REF] as the basic selection dynamics for the evolutionary games of Maynard Smith [START_REF] Smith | Evolution and the theory of games[END_REF], see Hofbauer and Sigmund [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF] for a summary. The interpretation is that in an infinite population of replicating players, the per capita growth rate of the frequencies of pure strategies is linearly related to their payoffs.

In the same framework, the best reply dynamics is defined by the differential inclusion on ∆ żt ∈ BR(z t ) -z t , t ≥ 0 (BRD)

It was introduced by Gilboa and Matsui [START_REF] Gilboa | Social stability and equilibrium[END_REF] and studied further by Hofbauer [START_REF] Hofbauer | Stability for the best response dynamics[END_REF], Hofbauer and Sigmund [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF], and Cressman [START_REF] Cressman | Evolutionary dynamics and extensive form games[END_REF]. Here BR(z) ⊂ ∆ denotes the set of all pure and mixed best replies to the strategy profile z ∈ ∆. The interpretation is that in an infinite population of players, in each small time interval, a small fraction of players revises their strategies and changes to a best reply against the present population distribution. It is the prototype of a population model of rational (but myopic) behaviour.

(BRD) is closely related to the fictitious play process introduced by Brown [START_REF] Brown | Iterative solution of games by fictitious play, Activity Analysis of Production and Allocation[END_REF], which models repeated decision making by a single decision maker in each role of the game. Consider a bimatrix game played repeatedly and let (x n , y n ) denote the strategies at step n. The (discrete-time) fictitious play process satisfies for all n > 0,

x n+1 ∈ BR 1 (Y n ), y n+1 ∈ BR 2 (X n ) where X n = 1 n n s=1 x s , Y n = 1 n n s=1 y s ,
and BR i is the set of best replies for player i. In a continuous time setting, letting (x t , y t ) denote the strategies at time t, the process satisfies for all t > 0, x t ∈ BR 1 (Y t ), y t ∈ BR 2 (X t ) where X t = 

where

BR(Z t ) = BR 1 (Y t ) × BR 2 (X t )
. This is equivalent to (BRD) via the change in time Z e s = z s .

Despite the different interpretations of (RD) and (BRD) and the different dynamic characters, there are amazing similarities in the long run behaviour of these two dynamics. This has been summarized in the following heuristic principle, see Gaunersdorfer and Hofbauer [START_REF] Gaunersdorfer | Fictitious play, Shapley polygons, and the replicator equation[END_REF] and Hofbauer [START_REF] Hofbauer | Stability for the best response dynamics[END_REF]:

For many games, the long run behaviour (t → ∞) of the time averages X t = 1 t t 0 x s ds of the trajectories x t of the replicator equation is the same as for the BR trajectories.

In this paper we will provide a rigorous statement that largely explains this heuristics. We show that for any interior solution of (RD), for every t > 0, the solution x t at time t is an approximate best reply against its time-average X t , and the approximation gets better as t → ∞. This implies that X t is a perturbed solution of (BRD) and hence the limit set of X t has the same properties as a limit set of a true orbit of (BRD), i.e. it is invariant and internally chain transitive under (BRD); these terms will be explained in section 5. The main tool to prove this result is the logit map, which is a canonical smoothing of the best response correspondence. We show that x t equals the logit approximation at X t with error rate 1 t .

2. Unilateral processes. We are interested in consequences for games but it is instructive to consider the point of view of one player, without hypotheses on the behaviour of the others. This gives rise to the unilateral process, defined below. There are two interpretations : the first one is that a single decision maker repeatedly chooses a mixed strategy, receives a corresponding stream of payoffs, and adapts his behaviour accordingly, without necessarily knowing whether he is facing Nature or other decision makers. Alternatively, we may think of a game played between several populations (one per role in the game) and consider the evolution of behaviour in one population according to a given dynamics without hypotheses on the evolution of other populations; in particular, without assuming that the other populations evolve according to the same dynamics.

In both cases, the player -or the population of players -is facing a (measurable) outcome process U = {U t , t ≥ 0}, with values in the cube C = [-c, c] K ⊂ R K where K is his finite set of actions and c is some positive constant. The outcome U t is a vector ; its component U k t is the payoff received at time t if k is the action played at that time. The constant c is a bound on the payoffs. The cumulative vector valued outcome up to stage t is S t = t 0 U s ds and its time average is denoted by Ūt = 1 t S t . br denotes the (payoff based) best reply correspondence from C to the simplex ∆ on K, defined by

br(U ) = {x ∈ ∆; x, U = max y∈∆ y, U }
The U-fictitious play process (FPP) is defined on ∆ by the differential inclusion

Ẋt ∈ 1 t [br( Ūt ) -X t ] (F P P ) (4) 
The U-replicator process (RP) is specified by the following equation on ∆:

ẋk t = x k t [U k t -x t , U t ], k ∈ K (RP ). (5) 
Explicitly, in the framework of an N -player game with finite strategy sets K i for each player i ∈ N and payoff for player i defined by a function G i from i∈N K i to R one has, considering player 1,

U k t = G 1 (k, x -1 t ), where x t = (x 1 t , x -1 t ) ∈ i∈N ∆ i , with ∆ i = ∆(K i
) denoting the simplex on K i . This describes the vector valued payoff process that player 1 is facing. If all players follow a (payoff based) fictitious play dynamics, each time average strategy satisfies (4). For N = 2 this is (CFP). If all players follow the replicator process then (5) yields the N -player replicator equation on i∈N ∆ i ,

ẋik t = x ik t [G i (k, x -i t ) -G i (x t )] k ∈ K i , i ∈ N. (6) 
Finally, in the framework of a symmetric two person game with payoff matrix A played within a single population, U t = Ax t , U k t = e k Ax t and ( 5) yields (RD).

3. Logit rule and perturbed best reply. Define the Logit map L from R K to ∆ by

L k (V ) = exp V k j exp V j . (7) 
Given η > 0, let [br] η be the correspondence from C to ∆ with graph being the η-neighborhood for the uniform norm of the graph of br.

The L map and the br correspondence are related as follows:

Proposition 3.1 For any U ∈ C and ε > 0

L(U/ε) ∈ [br] η(ε) (U )
with η(ε) → 0 as ε → 0.

Proof. Given η > 0, define the correspondence D η from C to ∆ by

D η (U ) = {x ∈ ∆; (U k + η < max j∈K U j ⇒ x k ≤ η), ∀k ∈ K}. and note that D η ⊂ [br] η . Let ε(η) satify exp(-η/ε(η)) = η.
By definition of L, one has for all (j, k)

L k (U/ε) = exp((U k -U j )/ε) 1 + ℓ =j exp((U ℓ -U j )/ε) and it follows that ε ≤ ε(η) implies L(U/ε) ∈ D η (U ).
Finally define η(ε) to be the inverse function of ε to get the result.

Remarks. L is also given by 

L(V ) = argmax x∈∆ { x, V - k x k log x k },
(U ) = argmax x∈∆ { x, U -ε k x k log x k } one has L(U/ε) = br ε (U )
and proposition 3.1 follows also from Berge's maximum theorem (Berge [3,p. 116]). The map br ε is the logit ε-approximation of the br correspondence.

4. Explicit representation of the replicator process.

4.1 CEW. The following procedure has been introduced in discrete time in the framework of on-line algorithms under the name "multiplicative weight algorithm" (Freund and Schapire [START_REF] Freund | Adaptive game playing using multiplicative weights[END_REF], Littlestone and Warmuth [START_REF] Littlestone | The weighted majority algorithm[END_REF]). We use here the name (CEW) (continuous exponential weight) for the process defined, given U, by

x t = L( t 0 U s ds) (CEW ) (8) 
4.2 Properties of CEW . The main property of (CEW) that will be used is that it provides an explicit solution of (RD). In fact applying the Logit map to the cumulative outcome stream t 0 U s ds generates a replicator process for the current outcome stream U t . Proposition 4.1 (CEW ) satisfies (RP ).

Proof. Taking the derivative of log x k t leads to ẋk

t x k t = U k t - j U j t exp t 0 U j v dv m exp t 0 U m v dv which is ẋk t = x k t [U k t -x t , U t ]
hence gives the previous (RP) equation [START_REF] Cressman | Evolutionary dynamics and extensive form games[END_REF].

Note that (CEW) specifies the solution starting from the barycenter of ∆. The link with the best reply correspondence is the following.

Proposition 4.2 CEW satisfies x t ∈ [br] δ(t) ( Ūt )
with δ(t) → 0 as t → ∞.

Proof. Write

x t = L( t 0 U s ds) = L(t Ūt ) ∈ [br] η(1/t) ( Ūt )
by Proposition 3.1, with U = Ūt and ε = 1/t. Let δ(t) = η(1/t).

4.3 Time average. We describe here the consequences for the time average behavior process. Define

X t = 1 t t 0 x s ds Proposition 4.3 If x t is (CEW) then X t satisfies Ẋt ∈ 1 t ([br] δ(t) ( Ūt ) -X t )
with δ(t) → 0 as t → ∞.

Proof. Since Ẋt = 1 t (x t -X t )
the result follows from Proposition 4.2.

4.4 Initial conditions. The solution of (RP ) starting from x 0 ∈ int ∆ is given by

x t = L(U 0 + t 0 U s ds) with U k 0 = log x k 0 . The average process satisfies Ẋt ∈ 1 t ([br] δ(t) (U 0 /t + Ūt ) -X t ). (9) 
which can be written as

Ẋt ∈ 1 t ([br] α(t) ( Ūt ) -X t ). ( 10 
)
with α(t) → 0 as t → ∞.

Consequences for games. Consider a 2 person (bimatrix) game (A, B).

If the game is symmetric this gives rise to the single population replicator dynamics (RD) and best reply dynamics (BRD) as defined in section 1. Otherwise, we consider the two population replicator dynamics

ẋk t = x k t e k Ay t -x t Ay t , k ∈ K 1 (11) 
ẏk t = y k t x t Be k -x t By t , k ∈ K 2 and the (BRD) dynamics corresponding to [START_REF]Stochastic approximations and differential inclusions[END_REF]. Let M be the state space (a simplex ∆ or a product of simplices ∆ 1 × ∆ 2 ). We now use the previous results with the U process being defined by U t = Ay t for player 1, hence Ūt = AY t . Note that 1 br(AY ) = BR 1 (Y ). Proposition 5.1 The limit set of every replicator time average process X t starting from an initial point x 0 ∈ int M is a closed subset of M which is invariant and internally chain transitive (ICT) under (BRD).

Here the limit set of a process X t is the set of all accumulation points of X t as t → ∞. A set A is invariant under a (set-valued) flow Φ t generated by a differential inclusion such as (BRD), if for every x ∈ A there exists a solution x, defined for all t ∈ R, with x(0) = x and x(t) ∈ A for all t ∈ R. For compact sets A this is equivalent to A ⊂ Φ t (A) for all t ∈ R, see Benaïm et al. [START_REF] Benaïm | Stochastic approximations and differential Inclusions[END_REF]Lemma 3.3]. A set A is internally chain transitive (ICT) if any two points x, y ∈ A can be connected by finitely many arbitrarily long pieces of orbits lying completely within A with arbitrarily small jumps between them. For the precise definition see Benaïm et Proof of Proposition 5.1. Equation [START_REF] Gilboa | Social stability and equilibrium[END_REF] implies that X t satisfies a perturbed version of (CFP) hence X e t is a perturbed solution to the differential inclusion (BRD), according to Definition II of Benaïm et al. [START_REF] Benaïm | Stochastic approximations and differential Inclusions[END_REF]. Now apply Theorem 3.6 of that paper.

A consequence of Proposition 5.1 is the following. Proposition 5.2 Let A be the global attractor (i.e., the maximal invariant set) of (BRD). Then the limit set of every replicator time average process X t starting from an initial point x 0 ∈ int M is a subset of A.

We now discuss some consequences and special cases.

1) If the time average of an interior orbit of the replicator dynamics converges then the limit is a Nash equilibrium.

Indeed, by Proposition 5.1 the limit is a singleton invariant set of (BRD), and hence a Nash equilibrium. In particular, the time average of a periodic orbit in int M is an interior Nash equilibrium. (This statement is wrong for 3 person games, see Plank [START_REF] Plank | Some qualitative differences between the replicator dynamics of two player and n player games[END_REF] for a counterexample.) As another consequence one obtains: If an interior orbit of the replicator dynamics converges then the limit is a Nash equilibrium. (For a direct proof which works also for N -person games, see Hofbauer and Sigmund [16, Theorem 7.2.1].)

2) For 2 person zero-sum games, the global attractor of (BRD) equals the (convex) set of Nash equilibria (this is a strengthened version of Brown and Robinson's convergence result for fictitious play (Robinson [22]), due to Hofbauer and Sorin [START_REF] Hofbauer | Best response dynamics for continuous zero-sum games[END_REF]). Therefore, by Proposition 5.2 the time averages of (RD) converge to the set of Nash equilibria as well. For a direct proof (in the special case when an interior equilibrium exists) see Hofbauer and Sigmund [16,11.2.6]. Note that orbits of (RD) in general do not converge, but oscillate around the set of Nash equilibria, as in the matching pennies game.

3) In potential games the only ICT sets of (BRD) are (connected subsets of) components of Nash equilibria, see Benaïm et al. [START_REF] Benaïm | Stochastic approximations and differential Inclusions[END_REF]Theorem 5.5]. Hence, by Proposition 5.1 time averages of (RD) converge to such components. In fact, orbits of (RD) themselves converge, since the common payoff function is an increasing Ljapunov function, see Hofbauer and Sigmund [16, Theorem 11.2.2]. 4) For games with a strictly dominated strategy, the global attractor of (BRD) is contained in a face of M with no weight on this strategy. Hence time averages of (RD) converge to this face, i.e., the strictly dominated strategy is eliminated on the average. In fact, the frequency of a strictly dominated strategy under (RD) vanishes, see Hofbauer and Sigmund [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF]Theorem 8.3.2].

5) Consider now the rock-paper-scissors game with payoff matrix

A =   0 -b 2 a 3 a 1 0 -b 3 -b 1 a 2 0   , a i , b i > 0
in a single population setting. There are two cases, see Gaunersdorfer and Hofbauer [START_REF] Gaunersdorfer | Fictitious play, Shapley polygons, and the replicator equation[END_REF]. If a 1 a 2 a 3 ≥ b 1 b 2 b 3 then the NE x is the global attractor of (BRD). Hence, Proposition 5.2 implies that the time averages of (RD) converge to x as well. Note that in case of equality, a 1 a 2 a 3 = b 1 b 2 b 3 the orbits of (RD) oscillate around x and hence do not converge, only their time averages do. If a 1 a 2 a 3 < b 1 b 2 b 3 then there are two ICT sets under (BRD), x and the Shapley triangle, see Gaunersdorfer and Hofbauer [START_REF] Gaunersdorfer | Fictitious play, Shapley polygons, and the replicator equation[END_REF]. Then Proposition 5.1 implies that time averages of (RD) converge to one of these, whereas the limit set of all non-constant orbits of (RD) is the boundary of M . However, our results do not show that for most orbits, the time average converges to the Shapley triangle. This still requires a more direct argument, as in Gaunersdorfer and Hofbauer [START_REF] Gaunersdorfer | Fictitious play, Shapley polygons, and the replicator equation[END_REF].

6) If

x ∈ int M is the global attractor of (BRD), then time averages of (RD) converge to x. In the literature on (RD) the following sufficient condition for the convergence of its time averages is known: If the (RD) is permanent, i.e., all interior orbits have their ω-limit set contained in a compact set in int M , then the time averages of (RD) converge to the unique interior equilibrium x. (See Hofbauer and Sigmund [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF]Theorem 13.5.1].) It is tempting to conjecture that, for generic payoff matrices A, permanence of (RD) is equivalent to the global attractor of (BRD) being equal to the unique interior equilibrium.

6. External consistency. Another property related to the average outcome process and (CEW) is external consistency (sometimes called "no regret").

6.1 Definition. A procedure satisfies external consistency if for each process U with values in R K , it produces a process {x t } ∈ ∆, such that for all

k t 0 [U k s -x s , U s ]ds ≤ C t = o(t)
This property says that the (expected) average payoff induced by {x t } along the play is asymptotically not less than the payoff obtained by any fixed choice k ∈ K, see Fudenberg and Levine [START_REF] Fudenberg | Consistency and cautious fictitious play[END_REF].

6.2 CEW. We recall this result from Sorin [START_REF] Sorin | Exponential weight algorithm in continuous time[END_REF], where the aim is to compare discrete and continuous time procedures. Proposition 6.1 (CEW) satisfies external consistency.

Proof. Define

W t = k∈K exp S k t . Then Ẇt = k exp(S k t )U k t = k W t x k t U k t = x t , U t W t . Hence W t = W 0 exp( t 0
x s , U s ds).

Thus, W t ≥ exp(S k t ) for every k, implies:

t 0 x s , U s ds ≥ t 0 U k s ds -log W 0 .
6.3 RP. In fact a direct and simpler equivalent proof is available, see Hofbauer [START_REF]Time averages of the replicator dynamics and correlated equilibria[END_REF]. Proposition 6.2 (RP ) satisfies external consistency.

Proof. By integrating equation ( 5), one obtains, on the support of x 0 :

t 0 [U k s -x s , U s ]ds = t 0 ẋk s x k s ds = log( x k t x k 0 ) ≤ -log x k 0 .
Remark. This proof shows in fact more: for any accumulation point x of x t , one component xk will be positive hence the corresponding asymptotic average difference in payoffs will be 0. In fact if

x k tn → xk then 1 t n tn 0 [U k s -x s , U s ]ds → 0 as t n → +∞.
Back to a game framework this implies that if player 1 follows (RP) then the set of accumulation points of the empirical correlated distribution process will belong to her reduced Hannan set, see Fudenberg and Levine [START_REF] Fudenberg | Consistency and cautious fictitious play[END_REF], Hannan [START_REF] Hannan | Approximation to Bayes risk in repeated play, Contributions to the Theory of Games[END_REF], Hart [START_REF] Hart | Adaptive heuristics[END_REF]: H1 = {θ ∈ ∆(S); G 1 (k, θ -1 ) ≤ G 1 (θ), ∀k ∈ S 1 , with equality for at least one component}.

6.4 Internal consistency. A procedure satisfies internal consistency (or "conditional no regret") if for each process U with values in R K , it produces a process {x t } ∈ ∆, such that for all k and all j

t 0 x j s [U k s -U j s ]ds ≤ C ′ t = o(t)
In a discrete-time context, this property says that the average payoff on periods where j was played is asymptotically not less than the payoff that would have been received on these periods by any fixed choice k ∈ K (Foster and Vohra [START_REF] Foster | Regret in the on-line decision problem[END_REF]). In a game context, if all players use a procedure satisfying internal consistency, then the set of accumulation points of the empirical correlated distribution process will belong to the set of correlated equilibria (Hart and Mas-Colell [START_REF] Hart | A simple adaptive procedure leading to correlated equilibrium[END_REF]).

The example due to Viossat [START_REF] Viossat | The replicator dynamics does not lead to correlated equilibria[END_REF] of a game where the limit set for the replicator dynamics is disjoint from the unique correlated equilibrium shows that (RP) does not satisfy internal consistency.

Comments.

We can now compare several processes in the spirit of (payoff based) fictitious play. The original fictitious play process (I) is defined by

x t ∈ br( Ūt )
The corresponding time average satisfies (CF P ). With a smooth best reply process (see Hopkins [START_REF] Hopkins | Two competing models of how people learn in games[END_REF]) one has (II)

x t = br ε ( Ūt ) and the corresponding time average satisfies a smooth fictitious play process. Finally the replicator process (III) satisfies x t = br 1/t ( Ūt ) and the time average follows a time dependent perturbation of the fictitious play process. In (I), the process {x t } follows exactly the best reply correspondence, but does not have good unilateral properties. On the other hand for (II), {x t } satisfies a weak form of external consistency, with an error term α(ε) vanishing with ε (Fudenberg and Levine [START_REF] Fudenberg | Consistency and cautious fictitious play[END_REF], Benaïm et al. [START_REF]Stochastic approximations and differential inclusions[END_REF]). In contrast, (III) satisfies exact external consistency due to a both smooth and vanishing approximation of br.

  al. [1, section 3.3].

The following result is not true for general N person games, with N ≥ 3, due to the nonlinearity of their payoff functions. However, Proposition 5.1 still holds for N person games with linear incentives.
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