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A priori L
∞-estimates for degenerate complex

Monge-Ampère equations

P. Eyssidieux, V. Guedj and A. Zeriahi

February 11, 2009

Abstract : We study families of complex Monge-Ampère equations, fo-
cusing on the case where the cohomology classes degenerate to a non big
class. We establish uniform a priori L∞-estimates for the normalized solu-
tions, generalizing the recent work of S. Kolodziej and G. Tian. This has
interesting consequences in the study of the Kähler-Ricci flow.

1 Introduction

Let π : X −→ Y be a non degenerate holomorphic mapping between com-
pact Kähler manifolds such that n := dimCX ≥ m := dimCY . Let ωX , ωY

Kähler forms on X and Y respectively. Let F : X −→ R
+ be a non negative

function such that F ∈ Lp(X) for some p > 1.
Set ωt := π∗(ωY ) + tωX , t > 0. We consider the following family of

complex Monge-Ampère equations

(⋆)t

{

(ωt + ddcϕt)
n = ctt

n−mFωn
X

maxX ϕt = 0 = 0

where ϕt is ωt−plurisubharmonic on X and ct > 0 is a constant given by

ctt
n−m

∫

X
Fωn

X =

∫

X
ωn

t .

It follows from the seminal work of S.T. Yau [Y] and S. Kolodziej [K 1],
[K 2] that the equation (⋆)t admits a unique continuous solution. (Observe
that for t ∈]0, 1], ωt is a Kähler form).

Our aim here is to understand what happens when t→ 0+, motivated by
recent geometrical developpments [ST], [KT]. When n = m, the cohomology
class ω0 is big and semi-ample and this problem has been adressed by several
authors recently (see [CN], [EGZ], [TZ], [To]).
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We focus here on the case m < n. This situation is motivated by the
study of the Kähler-Ricci flow on manifolds X of intermediate Kodaira di-
mension 1 ≤ kod(X) ≤ n− 1. When n = 2 this has been studied by J.Song
and G.Tian [ST].

In a very recent and interesting paper [KT], S. Kolodziej and G. Tian
were able to show, under a technical geometric assumption on the fibration
π, that the solutions (ϕt) are uniformly bounded on X when tց 0+.

The purpose of this note is to (re)prove this result without any technical
assumption and with a different method: we actually follow the strategy
introduced by S. Kolodziej in [K] and further developped in [EGZ], [BGZ].

THEOREM. There exists a uniform constant M = M(π, ‖F‖p) > 0 such

that the solutions to the Monge-Ampère equations (⋆)t satisfy

‖ϕt‖L∞(X) ≤ M, ∀t ∈]0, 1].

It follows from our result that Theorems 1 and 2 in [KT] hold without
any technical assumption on the fibration (see condition 0.2 in [KT]).

This result has been announced by J-P. Demailly and N. Pali [DP].

2 Proof of the theorem

2.1 Preliminary remarks

Uniform control of ct. Observe that ωk
0 = 0 for m < k ≤ n, hence for all

t ∈]0, 1],

ωn
t =

m
∑

k=1

(

n

k

)

tn−kω0
k ∧ ωX

n−k.

Note that ]0, 1] ∋ t 7−→ tm−nωn
t is increasing (hence decreases as t ց 0+)

and satisfies for t ∈]0, 1]

(1)

(

n

m

)

ωm
0 ∧ ωn−m

X
∫

X ωm
0 ∧ ωn−m

X

≤
ωn

t

tn−m
∫

X ωm
0 ∧ ωn−m

X

≤
ωn

1
∫

X ωm
0 ∧ ωn−m

X

.

In particular t 7−→ ct is increasing in t ∈]0, 1] and

0 <

(

n

m

)

∫

X ωm
0 ∧ ωn−m

X
∫

X Fωn
X

=: c0 ≤ ct ≤ c1.

Uniform control of densities. Let Jπ denote the (modulus square) of the
Jacobian of the mapping π, defined through

ωm
0 ∧ ωn−m

X = Jπω
n
X .
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Let us rewrite the equation (⋆)t as follows

(ωt + ddcϕt)
n = ftω

n
t ,

where for t ∈]0, 1]

0 ≤ ft := ctt
n−mF

ωn
X

ωn
t

≤ c1
F

Jπ
.

Observe that
∫

X
ftω

n
t = ctt

n−m

∫

X
Fωn

t =

∫

X
ωn

t =: V olωt
(X),

hence (ft) is uniformly bounded in L1(ωt/Vt), Vt := V olωt
(X). We actually

need a slightly stronger information.

Lemma 2.1 There exists p′ > 1 and a constant C = C(π, ‖F‖Lp(X)) > 0
such that for all t ∈]0, 1]

∫

X
fp′

t ω
n
t ≤ C V olωt

(X).

Proof of the lemma. Set Vt := V olωt
=

∫

X ωn
t and observe that

0 ≤ ft
ωn

t

Vt
≤ c1F

ωn
X

∫

X ωm
0 ∧ ωn−m

X

= C2Fω
n
X ,

where C2 := c1
∫

X Jπω
n
X .

This shows that the densities ft are uniformly in L1 w.r.t. the normalized
volume fomrs ωn

t /Vt.
Since Jπ is locally given as the square of the modulus of a holomorphic

function which does not vanish identically, there exists α ∈]0, 1[ such that
J−α

π ∈ L1(X). Fix β ∈]0, α[ satisfying the condition β/p + β/α = 1. It
follows from Hölder’s inequality that

∫

X
fβ

t ω
n
X ≤

(

∫

X
F pωn

X

)β/p(
∫

X
J−α

π ωn
X

)β/α
.

Setting ε := β/q and using Hölder’s inequality again , we obtain

∫

X
f1+ε

t

ωn
t

Vt
≤ C2

∫

X
f ε

t Fω
n
X .

Now applying again Hölder inequality we get

∫

X
f1+ε

t

ωn
t

Vt
≤ C2

(

∫

X
fβ

t ωX

)1/q
‖F‖Lp(X).
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Therefore denoting by p′ := 1 + ε, we have the following uniform estimate

∫

X
fp′

t

ωn
t

Vt
≤ C(π, ‖F‖Lp(X)),∀t ∈]0, 1],

where

C(π, ‖F‖Lp(X)) := C2

(

∫

X
J−α

π ωn
X

)β/αq
‖F‖

1+β/q
Lp(X).

◮

2.2 Uniform domination by capacity

We now show that the measure µt := ftω
n
t /V olωt

are uniformly strongly
dominated by the normalized capacity Capωt

/V olωt
(X). It actually follows

from a carefull reading of the no parameter proof given in [EGZ], [BGZ].

Lemma 2.2 There exists a constant C0 = C0(π, ‖F‖Lp(ωn
X

)) > 0 such that

for any compact set K ⊂ X and t ∈]0, 1],

µt(K) ≤ Cn
0

(

Capωt
(K)

V olωt
(X)

)2

.

Proof: Fix a compact set K ⊂ X. Set Vt := V olωt
(X). Hölder’s inequality

yields

µt(K) ≤

(
∫

X
fp′

t

ωn
t

Vt

)1/p′ (∫

K

ωn
t

Vt

)1/q′

.

It remains to dominate uniformly the normalized volume forms ωn
t /Vt by

the normalized capacities Capωt
/Vt. Fix σ > 0 and observe that for any

t ∈]0, 1],
∫

K

ωn
t

Vt
≤

∫

X
e−σ(VK,ωt

−maxX VK,ωt
)ω

n
t

Vt
Tωt

(K)σ,

where
VK,ωt

:= sup{ψ ∈ PSH(X,ωt);ψ ≤ 0, on K}

is the ωt−extremal function of K and Tωt
(K) := exp(− supX VK,ωt

) is the
associated ωt−capacity of K (see [GZ 1] for their properties).

Observe that ωn
t /Vt ≤ c1ω

n
1 and ωt ≤ ω1, hence the family of functions

VK,ωt
−maxX VK,ωt

is a normalized family of ω1−psh functions. Thus there
exists σ > 0 which depends only on (X,ω1) and a constant B = B(σ,X, ω1)
such that ([Z])

∫

X
e−σ(VK,ωt

−maxX VK,ωt
)ω

n
t

Vt
≤ B,∀t ∈]0, 1].
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The Alexander-Taylor comparison theorem (see Theorem 7.1 in [GZ 1]) now
yields for a constant C3 = C3(π, ‖F‖Lp(X))

µt(K) ≤ C3 exp

[

−σ

(

Vt

Capωt
(K)

)1/n
]

,∀t ∈]0, 1].

We infer that there is a constant C4 = C4(π, ‖F‖Lp(X)) such that

(2) µt(K) ≤ C4

(

Capωt
(K)

Vt

)2

,∀t ∈]0, 1].

2.3 Uniform normalization

The comparison principle (see [K] ,[EGZ]) yields for any s > 0 and τ ∈ [0, 1]

τn Capωt
({ϕt ≤ −s− τ})

Vt
≤

∫

{ϕt≤−s}

(ωt + ddcϕt)
n

Vt
.

It is now an exercise to derive from this inequality an a priori L∞−estimate,

‖ϕt‖L∞(X) ≤ C5 + s0(ωt),

where s0(ωt) (see [EGZ],[BGZ]) is the smallest number s > 0 satisfying the
condition enCn

0 Capωt
({ψ ≤ −s})/Vt ≤ 1 for all ψ ∈ PSH(X,ωt) such that

supX ψ = 0. Recall from ([GZ 1], Prop. 3.6) that

Capωt
({ψ ≤ −s− τ})

Vt
≤

1

s

(
∫

X
(−ψ)

ωn
t

Vt
+ n

)

.

Since
ωn

t

Vt
≤ C1ω

n
1 , it follows that

Capωt
({ψ ≤ −s− τ})

Vt
≤

1

s

(

C1

∫

X
(−ψ)ωn

1 + n

)

.

Since ψ is ω1−psh and normalized, we know that there is a constant A =
A(X,ω1) > 0 such that C1

∫

X(−ψ)ωn
1 ≤ A for any such ψ. Therefore

s0(ωt) ≤ s0 := enCn
0 (A+n) for any t ∈]0, 1]. Finally we obtain the required

uniform estimate for all t ∈]0, 1].

References

[BT1] E. BEDFORD & B. A. TAYLOR: The Dirichlet problem for a
complex Monge-Ampère equation. Invent. Math. 37 (1976), no. 1,
1–44.

5



[BGZ] S.BENELKOURCHI & V.GUEDJ & A.ZERIAHI: A priori esti-
mates for weak solutions of complex Monge-Ampère equations.
Ann. Sc. N. Sup. Pisa, to appear.

[CN] P. CASCINI & G. LA NAVE: Kähler-Ricci Flow and the
Minimal Model Program for Projective Varieties. Preprint,
arXiv:math/06.03.064.

[DP] J-P. DEMAILLY & N.PALI: Degenerate complex Monge-
Ampère equations over compact Kähler manifolds. Preprint,
arXiv:math/0710.5109.

[EGZ] P.EYSSIDIEUX & V.GUEDJ & A.ZERIAHI: Singular Kähler-
Einstein metrics. Preprint arXiv:math/06.03.431.

[GZ 1] V.GUEDJ & A.ZERIAHI: Intrinsic capacities on compact Kähler
manifolds, J. Geom. Anal. 15-4 (2005), 607-639.

[GZ 2] V.GUEDJ & A.ZERIAHI: The weighted Monge-Ampère energy
of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007),
442-482.

[K] S.KOLODZIEJ: The complex Monge-Ampre equation. Acta Math.
180 (1998), no. 1, 69–117.

[KT] S. KOLODZIEJ & G.TIAN: A uniform L∞−estimate for complex
Monge-Ampère equations. Preprint arXiv:math/07.10.1144.

[ST] J. SONG & G.TIAN: The Kähler-Ricci flow on surfaces of positive
Kodaira dimension,. Preprint, arXiv:math/06.02.150.

[KT] G. TIAN & Z.ZHANG: On the Kähler-Ricci flow on projective
manifolds of general type, Chinese Ann. Math. B 27 (2) (2006),
179-192.

[To] V. TOSATTI: Limits of Calabi-Yau metrics when the Kähler class
degenerates. Preprint arXiv:math/07.10.4579.

[Y] S.T.YAU: On the Ricci curvature of a compact Kähler manifold
and the complex Monge-Ampère equation. I. Comm. Pure Appl.
Math. 31 (1978), no. 3, 339–411.

[Z] A.ZERIAHI: Volume and capacity of sublevel sets of a Lelong class
of plurisubharmonic functions. Indiana Univ. Math. J. 50 (2001),
no. 1, 671-703.

6


