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Introduction

The primary goal of the present paper is to extend the results obtained by the last two authors on complex Monge-Ampère equations on compact Kähler manifolds in [START_REF] Guedj | The weighted Monge-Ampère energy of quasipsh functions[END_REF] to the case of arbitrary cohomology classes.

More specifically let X be a compact n-dimensional Kähler manifold and let ω be a Kähler form on X. An ω-plurisubharmonic (psh for short) function is an upper semi-continuous function ϕ such that ω + dd c ϕ is positive in the sense of currents, and [START_REF] Guedj | The weighted Monge-Ampère energy of quasipsh functions[END_REF] focused on the Monge-Ampère type equation

(ω + dd c ϕ) n = µ (0.1)
where µ is a positive measure on X of total mass µ(X) = X ω n . As is wellknown, it is not always possible to make sense of the left-hand side of (0.1), but it was observed in [START_REF] Guedj | The weighted Monge-Ampère energy of quasipsh functions[END_REF] that a construction going back to Bedford-Taylor [START_REF] Bedford | Fine topology, Šilov boundary, and (dd c ) n[END_REF] enables in this global setting to define the non-pluripolar part of the would-be positive measure (ω + dd c ϕ) n for an arbitrary ω-psh function ϕ.

In the present paper we first give a more systematic treatment of these issues. We explain how to define in a simple and canonical way the non-pluripolar product T 1 ∧ ... ∧ T p of arbitrary closed positive (1, 1)-currents T 1 , ..., T p with 1 ≤ p ≤ n. The resulting positive (p, p)-current T 1 ∧ ... ∧ T p puts no mass on pluripolar subsets. It is also shown to be closed (Theorem 1.8), generalizing a classical result of Skoda-El Mir. We relate its cohomology class to the positive intersection class

α 1 • • • • • α p ∈ H p,p (X, R)
of the cohomology classes α j := {T j } ∈ H 1,1 (X, R) in the sense of [START_REF] Boucksom | The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF][START_REF] Boucksom | Differentiability of volumes of divisors and a problem of Teissier[END_REF]. In particular we show that X T n ≤ vol(α) where the right-hand side denotes the volume of the class α := {T } [START_REF] Boucksom | On the volume of a line bundle[END_REF], which implies in particular that T n is non-trivial only if the cohomology class α is big.

An important aspect of the present approach is that the non-pluripolar Monge-Ampère measure T n is well defined for any closed positive (1, 1)-current T . In the second section we study the continuity properties of the mapping T → T n : it is continuous along decreasing sequences (of potentials) if and only if T has full Monge-Ampère mass (Theorem2.17), i.e. when X T n = vol(α).

We prove this fact defining and studying weighted energy functionals in this general context, extending the case of a Kähler class [START_REF] Guedj | The weighted Monge-Ampère energy of quasipsh functions[END_REF]. The two main new features are a generalized comparison principle (Corollary 2.3) and an asymptotic criterion to check whether a current T has full Monge-Ampère mass (Proposition 2.19).

In the third part of the paper we obtain our first main result (Theorem 3.1):

Theorem A. Let α ∈ H 1,1 (X, R) be a big class on a compact Kähler manifold X. If µ is a positive measure on X that puts no mass on pluripolar subsets and satisfies the compatibility condition µ(X) = vol(α), then there exists a unique closed positive (1, 1)-current T ∈ α such that

T n = µ.
The existence part extends the main result of [START_REF] Guedj | The weighted Monge-Ampère energy of quasipsh functions[END_REF], which corresponds exactly to the case where α is a Kähler class. In fact the proof of Theorem A consists in reducing to the Kähler case via approximate Zariski decompositions. Uniqueness is obtained by adapting the proof of S. Dinew [START_REF] Dinew | Uniqueness and stability in E (X, ω)[END_REF] (which also deals with the Kähler class case).

When the measure µ satisfies some additional regularity condition, we show how to adapt Ko lodziej's pluripotential theoretic approach to the sup-norm a priori estimates [Ko l05] to get global information on the singularities of T .

Theorem B. Assume that the measure µ in Theorem A furthermore has L 1+ε density with respect to Lebesgue measure for some ε > 0. Then the solution T ∈ α to T n = µ has minimal singularities.

Currents with minimal singularities were introduced by Demailly. When α is a Kähler class, the positive currents T ∈ α with minimal singularities are exactly those with locally bounded potentials. When α is merely big all positive currents T ∈ α will have poles in general, and the minimal singularity condition on T essentially says that T has the least possible poles among all positive currents in α. Currents with minimal singularities have in particular locally bounded potentials on the ample locus Amp (α) of α, which is roughly speaking the largest Zariski open subset where α locally looks like a Kähler class.

Regarding local regularity properties, we obtain the following result.

Theorem C. In the setting of Theorem A, assume that µ is a smooth strictly positive volume form. Assume also that α is nef. Then the solution T ∈ α to the equation T n = µ is C ∞ on Amp (α).

The expectation is of course that Theorem C holds whether or not α is nef, but we are unfortunately unable to prove this for the moment. It is perhaps worth emphasizing that currents with minimal singularities can have a non empty polar set even when α is nef and big (see Example 5.4).

In the last part of the paper we consider Monge-Ampère equations of the form

(θ + dd c ϕ) n = e ϕ dV (0.2)
where θ is a smooth representative of a big cohomology class α, ϕ is a θ-psh function and dV is a smooth positive volume form. We show that (0.2) admits a unique solution ϕ such that X e ϕ dV = vol(α). Theorem B then shows that ϕ has minimal singularities, and we obtain as a special case:

Theorem D. Let X be a smooth projective variety of general type. Then X admits a unique singular Kähler-Einstein volume form of total mass equal to vol(K X ). In other words the canonical bundle K X can be endowed with a unique non-negatively curved metric e -φ KE whose curvature current dd c φ KE satisfies (dd c φ KE ) n = e φ KE (0.3) and such that X e φ KE = vol(K X ). (0.4)

The weight φ KE furthermore has minimal singularities.

Since the canonical ring R(K X ) = ⊕ k≥0 H 0 (kK X ) is now known to be finitely generated [START_REF] Birkar | Existence of minimal models for varieties of log general type[END_REF], this result can be obtained as a consequence of [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] by passing to the canonical model of X. But one of the points of the proof presented here is to avoid the use of the difficult result of [START_REF] Birkar | Existence of minimal models for varieties of log general type[END_REF].

The existence of φ KE satisfying (0.3) and (0.4) was also recently obtained by J. Song and G. Tian in [START_REF] Song | Canonical measures and Kahler-Ricci flow[END_REF], building on a previous approach of H. Tsuji [START_REF] Tsuji | Dynamical constructions of Kähler-Einstein metrics[END_REF]. It is also shown in [START_REF] Song | Canonical measures and Kahler-Ricci flow[END_REF] that φ KE is an analytic Zariski decomposition (AZD for short) in the sense of Tsuji, which means that every pluricanonical section σ ∈ H 0 (mK X ) is L ∞ with respect to the metric induced by φ KE . The main new information we add is that φ KE actually has minimal singularities, which is strictly stronger than being an AZD for general big line bundles (cf. Proposition 6.5).

Non-pluripolar products of closed positive currents

In this section X denotes an arbitrary n-dimensional complex manifold unless otherwise specified.

1.1. Plurifine topology. The plurifine topology on X is defined as the coarsest topology with respect to which all psh functions u on all open subsets of X become continuous (cf. [START_REF] Bedford | Fine topology, Šilov boundary, and (dd c ) n[END_REF]). Note that the plurifine topology on X is always strictly finer than the ordinary one.

Since psh functions are upper semi-continuous, subsets of the form

V ∩ {u > 0}
with V ⊂ X open and u psh on V obviously form a basis for the plurifine topology, and u can furthermore be assumed to be locally bounded by maxing it with 0. When X is furthermore compact and Kähler, a bounded local psh function defined on an open subset V of X can be extended to a quasi-psh function on X (possibly after shrinking V a little bit, see [START_REF] Guedj | Intrinsic capacities on compact Kähler manifolds[END_REF]), and it follows that the plurifine topology on X can alternatively be described as the coarsest topology with respect to which all bounded and quasi-psh functions ϕ on X become continuous. It therefore admits sets of the form V ∩ {ϕ > 0} with V ⊂ X open and ϕ quasi-psh and bounded on X as a basis.

1.2. Local non-pluripolar products of currents. Let u 1 , ..., u p be psh functions on X. If the u j 's are locally bounded, then the fundamental work of Bedford-Taylor [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF] enables to define dd c u 1 ∧ ... ∧ dd c u p on X as a closed positive (p, p)-current. The wedge product only depends on the closed positive (1, 1)-currents dd c u j , and not on the specific choice of the potentials u j .

A very important property of this construction is that it is local in the plurifine topology, in the following sense. If u j , v j are locally bounded psh functions on X and u j = v j (pointwise) on a plurifine open subset O of U , then

1 O dd c u 1 ∧ ... ∧ dd c u p = 1 O dd c v 1 ∧ ... ∧ dd c v p .
This is indeed an obvious generalization of Corollary 4.3 of [START_REF] Bedford | Fine topology, Šilov boundary, and (dd c ) n[END_REF].

In the case of a possibly unbounded psh function u, Bedford-Taylor have observed (cf. p.236 of [START_REF] Bedford | Fine topology, Šilov boundary, and (dd c ) n[END_REF]) that it is always possible to define the non-pluripolar part of the would-be positive measure (dd c u) n as a Borel measure. The main issue however is that this measure is not going to be locally finite in general (see Example 1.3 below). More generally, suppose we are trying to associate to any p-tuple u 1 , ..., u p of psh functions on X a positive (a priori not necessarily closed) (p, p)-current dd c u 1 ∧ ... ∧ dd c u p putting no mass on pluripolar subsets, in such a way that the construction is local in the plurifine topology in the above sense. Then we have no choice: since u j coincides with the locally bounded psh function max(u j , -k) on the plurifine open subset

O k := j {u j > -k}, we must have 1 O k j dd c u j = 1 O k j dd c max(u j , -k), (1.1) 
Note that the right-hand side is non-decreasing in k. This equation completely determines j dd c u j since the latter is required not to put mass on the pluripolar set Xk O k = {u = -∞}.

Definition 1.1. If u 1 , ..., u p are psh functions on the complex manifold X, we shall say that the non-pluripolar product j dd c u j is well-defined on X if for each compact subset K of X we have

sup k K∩O k ω n-p ∧ j dd c max(u j , -k) < +∞ (1.2) for all k.
Here ω is an auxiliary (strictly) positive (1, 1)-form on X with respect to which masses are being measured, the condition being of course independent of ω. When (1.2) is satisfied, equation (1.1) indeed defines a positive (p, p)-current j dd c u j on X. We will show below that it is automatically closed (Theorem 1.8).

Condition (1.2) is always satisfied when p = 1, and in fact it is not difficult to show that dd c u = 1 {u>-∞} dd c u. There are however examples where non-pluripolar products are not well-defined as soon as p ≥ 2. This is most easily understood in the following situation. Definition 1.2. A psh function u on X will be said to have small unbounded locus if there exists a (locally) complete pluripolar closed subset A of X outside which u is locally bounded.

Assume that u 1 , ..., u p have small unbounded locus, and let A be closed complete pluripolar such that each u j is locally bounded outside A (recall that complete pluripolar subsets are stable under finite unions). Then j dd c u j is welldefined iff the Bedford-Taylor product j dd c u j , which is defined on the open subset X -A, has locally finite mass near each point of A. In that case j dd c u j is nothing but the trivial extension of j dd c u j to X.

Example 1.3. Consider Kiselman's example (see [START_REF] Kiselman | Sur la définition de l'opérateur de Monge-Ampère complexe[END_REF])

u(x, y) := (1 -|x| 2 )(-log |y|) 1/2
for (x, y) ∈ C 2 near 0. The function u is psh near 0, it is smooth outside the y = 0 axis, but the smooth measure (dd c u) 2 , defined outside y = 0, is not locally finite near any point of y = 0. This means that the positive Borel measure (dd c u) 2 is not locally finite.

We now collect some basic properties of non-pluripolar products.

Proposition 1.4. Let u 1 , ..., u p be psh functions on X.

• The operator (u 1 , ..., u p ) → j dd c u j is local in the plurifine topology whenever well-defined. • The current j dd c u j and the fact that it is well-defined both only depend on the currents dd c u j , not on the specific potentials u j . • Non-pluripolar products, which are obviously symmetric, are also multilinear in the following sense: if v 1 is a further psh function, then

(dd c u 1 + dd c v 1 ) ∧ j≥2 dd c u j = dd c u 1 ∧ j≥2 dd c u j + dd c v 1 ∧ j≥2 dd c u j
in the sense that the left-hand side is well-defined iff both terms in the right-hand side are, and equality holds in that case.

Proof. Let us prove the first point. If u j and v j are psh functions on X such that u j = v j on a given plurifine open subset O, then the locally bounded psh functions max(u j , -k) and max(v j , -k) also coincide on O. If we set

E k := j {u j > -k} ∩ j {v j > -k},
then we infer

1 O∩E k j dd c max(u j , -k) = 1 O∩E k j dd c max(v j , -k), hence in the limit 1 O j dd c u j = 1 O j dd c v j
as desired by Lemma 1.5 below. We now prove the second point. Let w j be pluriharmonic on X, and let K be a compact subset. We can find C > 0 such that w j ≤ C on an open neighborhood V of K. On the plurifine open subset

O k := j {u j + w j > -k} ∩ V ⊂ j {u j > -k -C} ∩ V
the following locally bounded psh functions coincide:

max(u j + w j , -k) = max(u j , -w j -k) + w j = max(u j , -k -C) + w j .
Since dd c w j = 0, it follows that

O k ω n-p ∧ j dd c max(u j + w j , -k) = O k ω n-p ∧ j dd c max(u j , -k -C) ≤ T j {u j >-k-C}∩V ω n-p ∧ j dd c max(u j , -k -C)
which is uniformly bounded in k by assumption, and the second point is proved. The proof of the last point are similarly easy but tedious, and will be left to the reader.

Lemma 1.5. Assume that the non-pluripolar product j dd c u j is well-defined. Then for every sequence of Borel subsets E k such that

E k ⊂ j {u i > -k} and X -k E k is pluripolar, we have lim k→∞ 1 E k j dd c max(u j , -k) = j dd c u j
against all bounded measurable functions.

Proof. This follows by dominated convergence from

(1 ∩ j {u j >-k} -1 E k ) j dd c max(u j , -k) ≤ (1 -1 E k ) j dd c u j .
A crucial point for what follows is that non-pluripolar products of globally defined currents are always well-defined on compact Kähler manifolds: Proposition 1.6. Let T 1 , ..., T p be closed positive (1, 1)-currents on a compact Kähler manifold X. Then their non-pluripolar product T 1 ∧ ... ∧ T p is welldefined.

Proof. Let ω be a Kähler form on X. In view of the third point of Proposition 1.4, upon adding a large multiple of ω to the T j 's we may assume that their cohomology classes are Kähler classes. We can thus find Kähler forms ω j and ω j -psh functions ϕ j such that T j = ω j + dd c ϕ j . Let U be a small open subset of X on which ω j = dd c ψ j , where ψ j ≤ 0 is a smooth psh function on U , so that T j = dd c u j on U with u j := ψ j + ϕ j . The bounded psh functions on U ψ j + max(ϕ j , -k) and max(u j , -k) coincide on the plurifine open subset {u j > -k} ⊂ {ϕ j > -k}, thus we have

T j {u j >-k} ω n-p ∧ j dd c max(u j , -k) = T j {u j >-k} ω n-p ∧ j (ω j + dd c max(ϕ j , -k)) ≤ X ω n-p ∧ j (ω j + dd c max(ϕ j , -k)).
But the latter integral is computed in cohomology, hence independent of k, and this shows that (1.2) is satisfied on U , qed.

Remark 1.7. The same property extends to the case where X is a compact complex manifold in the Fujiki class, that is bimeromorphic to a compact Kähler manifold. Indeed there exists in that case a modification µ : X ′ → X with X ′ compact Kähler. Since µ is an isomorphism outside closed analytic (hence pluripolar) subsets, it is easy to deduce that T 1 ∧ ... ∧ T p is well-defined on X from the fact that µ * T 1 ∧ ... ∧ µ * T p is well-defined on X ′ , and in fact

T 1 ∧ ... ∧ T p = µ * µ * T 1 ∧ ... ∧ µ * T p .
On the other hand it seems to be unknown whether finiteness of non-pluripolar products holds on arbitrary compact complex manifolds.

Building on the proof of the Skoda-El Mir extension theorem, we will now prove the less trivial closedness property of non-pluripolar products.

Theorem 1.8. Let T 1 , ..., T p be closed positive (1, 1)-currents on a complex manifold X whose non-pluripolar product is well-defined. Then the positive (p, p)current T 1 ∧ ... ∧ T p is closed.

Proof. The result is of course local, and we can assume that X is a small neighborhood of 0 ∈ C n . The proof will follow rather closely that of the Skoda-El Mir theorem as given p.159-161 of [DemBook].

Let u j ≤ 0 be a local potential of T j near 0 ∈ C n , and for each k consider the closed positive current of bidimension (1, 1)

Θ k := ρ ∧ j dd c max(u j , -k)
and the plurifine open subset

O k := j {u j > -k} so that 1 O k Θ k converges towards ρ ∧ T 1 ∧ ... ∧ T p by (1.1).
Here ρ is a positive (np -1, np -1)-form with constant coefficients, so that Θ k has bidimension (1, 1). It is of course enough to show that

lim k→∞ d (1 O k Θ k ) = 0
for any choice of such a form ρ.

Let also u := j u j , so that u ≤ -k outside O k , and set

w k := χ(e u/k ),
where χ(t) is a smooth convex and non-decreasing function of t ∈ R such that χ(t) = 0 for t ≤ 1/2 and χ(1) = 1. We thus see that 0 ≤ w k ≤ 1 is a nondecreasing sequence of bounded psh functions near 0 with w k = 0 outside O k and w k → 1 pointwise outside the pluripolar set {u = -∞}. Finally let 0 ≤ θ(t) ≤ 1 be a smooth non-decreasing function of t ∈ R such that θ(t) = 0 for t ≤ 1/2 and θ ≡ 1 near 1. The functions θ(w k ) are bounded, non-decreasing in k and we have

θ(w k ) ≤ 1 O k since θ(w k ) ≤ 1 vanishes outside O k . Note also that θ ′ (w k ) vanishes outside O k ,
and converges to 0 pointwise outside {u = -∞}.

Our goal is to show that

lim k→∞ d (1 O k Θ k ) = 0. But we have 0 ≤ (1 O k -θ(w k )) Θ k ≤ (1 -θ(w k )) T 1 ∧ ... ∧ T p ,
and the latter converges to 0 by dominated convergence since θ(w k ) → 1 pointwise outside the polar set of u, which is negligible for T 1 ∧...∧T p . It is thus equivalent to show that lim

k→∞ d (θ(w k )Θ k ) = 0.
Since w k is a bounded psh function, Lemma 1.9 below shows that the chain rule applies, that is

d (θ(w k )Θ k ) = θ ′ (w k )dw k ∧ Θ k .
Recall that dw k ∧ Θ k has order 0 by Bedford-Taylor, so that the right-hand side makes sense. Now let ψ be a given smooth 1-form compactly supported near 0 and let τ ≥ 0 be a smooth cut-off function with τ ≡ 1 on the support of ψ. The Cauchy-Schwarz inequality implies

θ ′ (w k )ψ ∧ dw k ∧ Θ k 2 ≤ τ dw k ∧ d c w k ∧ Θ k θ ′ (w k ) 2 ψ ∧ ψ ∧ Θ k .
But on the one hand we have

2 τ dw k ∧ d c w k ∧ Θ k ≤ τ dd c w 2 k ∧ Θ k = w 2 k dd c τ ∧ Θ k = O k w 2 k dd c τ ∧ Θ k
since w k vanishes outside O k , and the last integral is uniformly bounded since 0 ≤ w k ≤ 1 and 1 O k Θ k has uniformly bounded mass by (1.2). On the other hand we have

θ ′ (w k ) 2 Θ k = θ ′ (w k ) 2 1 O k Θ k ≤ θ ′ (w k ) 2 T 1 ∧ ... ∧ T p
since θ ′ (w k ) also vanishes outside O k , and we conclude that

lim k→∞ θ ′ (w k ) 2 ψ ∧ ψ ∧ Θ k = 0
by dominated convergence since θ ′ (w k ) → 0 pointwise ouside the polar set of u, which is negligible for T 1 ∧ ... ∧ T p . The proof is thus complete.

Lemma 1.9. Let Θ be a closed positive (p, p)-current on a complex manifold X, f be a smooth function on R and v be a bounded psh function. Then we have

d(f (v)Θ) = f ′ (v)dv ∧ Θ.
Proof. This is a local result, and we can thus assume that Θ has bidimension (1, 1) by multiplying it by constant forms as above. The result is of course true when v is smooth. As we shall see the result holds true in our case basically because v belongs to the Sobolev space L 2 1 (Θ), in the sense that dv ∧ d c v ∧ Θ is well-defined. Indeed the result is very standard when Θ = [X], and proceeds by approximation. Here we let v k be a decreasing sequence of smooth psh functions converging pointwise to v. We then have f (v k )θ → f (v)Θ by dominated convergence, thus it suffices to show that

lim k→∞ f ′ (v k )dv k ∧ Θ = f ′ (v)dv ∧ Θ.
We write

f ′ (v k )dv k ∧ Θ -f ′ (v)dv ∧ Θ = f ′ (v k ) -f ′ (v) dv k ∧ Θ + f ′ (v)(dv k -dv) ∧ Θ.
Let ψ be a test 1-form and τ ≥ 0 be a smooth cut-off function with τ ≡ 1 on the support of ψ. Cauchy-Schwarz implies

f ′ (v k ) -f ′ (v) ψ ∧ dv k ∧ Θ 2 ≤ f ′ (v k ) -f ′ (v) 2 ψ ∧ ψ ∧ Θ τ dv k ∧ d c v k ∧ Θ .
The second factor is bounded since

dv k ∧ d c v k ∧ Θ converges to dv ∧ d c v ∧ Θ by
Bedford-Taylor's result, and the first one converges to 0 by dominated convergence. We similarly have

f ′ (v)(dv k -dv) ∧ ψ ∧ Θ 2 ≤ f ′ (v) 2 ψ ∧ ψ ∧ Θ τ d(v k -v) ∧ d c (v k -v) ∧ Θ ,
where now the second first factor is bounded while the second one tends to 0 by Bedford-Taylor once again, and the proof is complete.

Remark 1.10. Injecting as above Lemma 1.9 in the proof of Skoda-El Mir's extension theorem presented in [DemBook] (p. [159][160][161] shows that Skoda-El Mir's result remains true for complete pluripolar subsets that are not necessarily closed, in the following sense: let Θ be a closed positive (p, p)-current and let A be a complete pluripolar subset of X. Then 1 X-A Θ and thus also 1 A Θ are closed.

We conclude this section with a log-concavity property of non-pluripolar products. Let T 1 , ..., T n be closed positive (1, 1)-currents with locally bounded potentials near 0 ∈ C n and let µ be a positive measure. Suppose also given non-negative measurable functions f j such that

T n j ≥ f j µ, j = 1, ...n. (1.3)
Theorem 1.3 of [START_REF] Dinew | An Inequality for Mixed Monge-Ampère measures[END_REF] then implies that

T 1 ∧ ... ∧ T n ≥ (f 1 ...f n ) 1/n µ. (1.4)
It is in fact a standard variation of the Brunn-Minkowski inequality that (1.3) implies (1.4) when the whole data is smooth, and [START_REF] Dinew | An Inequality for Mixed Monge-Ampère measures[END_REF] reduces to this case by an adequate regularization process. As an easy consequence of Dinew's result, we get the following version for non-pluripolar products.

Proposition 1.11. Let T 1 , ..., T n be closed positive (1, 1)-currents, let µ be a positive measure and assume given for each j = 1, ..., n a non-negative measurable function f j such that T n j ≥ f j µ. Then we have

T 1 ∧ ... ∧ T n ≥ (f 1 ...f n ) 1 n µ.
Here non-pluripolar products are considered as (possibly locally infinite) positive Borel measures.

Proof. Write T j = dd c u j with u j psh and consider the plurifine open subset

O k := j {u j > -k}.
Since non-pluripolar products are local in plurifine topology, we get for each j and k

(dd c max(u j , -k)) n ≥ 1 O k f j µ, hence dd c max(u 1 , -k) ∧ ... ∧ dd c max(u n , -k) ≥ 1 O k (f 1 ...f n )
1 n µ by Dinew's result, or equivalently by plurifine locality

dd c u 1 ∧ ... ∧ dd c u n ≥ 1 O k (f 1 ...f n ) 1 n µ.
Since this is valid for all k and the complement of k O k is pluripolar, the result follows.

From now on we will work in the global setting where X is a compact Kähler manifold.

1.3. Positive cohomology classes. Let X be a compact Kähler manifold and let α ∈ H 1,1 (X, R) be a real (1, 1)-cohomology class.

Recall that α is said to be pseudo-effective (psef for short) if it can be represented by a closed positive (1, 1)-current T . If θ is a given smooth representative of α, then any such current can be written as T = θ + dd c ϕ, where ϕ is thus a θpsh function by definition, and will sometimes be referred to as a global potential of T . Global potentials only depend on the choice of θ up to a smooth function on X.

On the other hand, α is nef if it lies in the closure of the Kähler cone. Such a class can thus be represented by smooth forms with arbitrarily small negative parts, and a compactness argument then shows that α contains a positive current, i.e. nef implies psef. Note however that the negative part of smooth representatives cannot be taken to be 0 in general. In fact, [START_REF] Demailly | Compact complex manifolds with numerically effective tangent bundle[END_REF] have shown that a classical construction of Serre yields an example of a smooth curve C on a projective surface whose cohomology class is nef but contains only one positive current, to wit (the integration current on) C itself.

The set of all nef classes is by definition a closed convex cone in H 1,1 (X, R), whose interior is none but the Kähler cone. The set of all psef classes also forms a closed convex cone, and its interior is by definition the set of all big cohomology classes. In other words, a class α is big iff it can be represented by a strictly positive current, i.e. a closed current T that dominates some (small enough) smooth strictly positive form on X.

1.4. Comparison of singularities. If T and T ′ are two closed positive currents on X, then T is said to be more singular than T ′ if their global potentials satisfy ϕ ≤ ϕ ′ + O(1). By the singularity type of T , we will mean its equivalence class with respect to the above notion of comparison of singularities.

A positive current T in a given psef class α is now said to have minimal singularities (inside its cohomology class) if it is less singular than any other positive current in α, and its θ-psh potentials ϕ will correspondingly be said to have minimal singularities. Such θ-psh functions with minimal singularities always exist, as was observed by Demailly. Indeed, the upper envelope V θ := sup {ϕ θ-psh, ϕ ≤ 0 on X} of all non-positive θ-psh functions obviously yields a positive current

θ + dd c V θ with minimal singularities (note that V θ is usc since V * θ is a candidate in the envelope).
We stress that currents with minimal singularities in a given class α are in general far from unique. Indeed currents with minimal singularities in a class α admitting a smooth non-negative representative θ ≥ 0 (for instance a Kähler class) are exactly those with bounded potentials.

Currents with minimal singularities are stable under pull-back:

Proposition 1.12. Let π : Y → X be a surjective morphism between compact Kähler manifolds and θ be a smooth closed (1, 1)-form on X. If ϕ is a θ-psh function with minimal singularities on X, then the π * θ-psh function ϕ • π also has minimal singularities.

Proof. Let ψ be a π * θ-psh function. For x ∈ X a regular value of π we set

τ (x) := sup π(y)=x ψ(y).
It is standard to show that τ uniquely extends to a θ-psh function on X, so that τ ≤ ϕ + O(1). But this clearly implies ψ ≤ ϕ • π + O(1) as was to be shown.

Observe that any π * θ-psh function on Y is of the form ϕ • π, where ϕ is a θ-psh function on X.

A positive current T = θ + dd c ϕ and its global potential ϕ are said to have analytic singularities if there exists c > 0 such that (locally on X),

ϕ = c 2 log j |f j | 2 + u,
where u is smooth and f 1 , ...f N are local holomorphic functions. The coherent ideal sheaf I locally generated by these functions (in fact, its integral closure) is then globally defined, and the singularity type of T is thus encoded by the data formally denoted by I c . Demailly's fundamental regularization theorem [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF] states that a given θpsh function ϕ can be approximated from above by a sequence ϕ k of (θ +ε k ω)-psh functions with analytic singularities, ω denoting some auxiliary Kähler form. In fact the singularity type of ϕ k is decribed by the k-th root of the multiplier ideal sheaf of kϕ.

This result implies in particular that a big class α always contains strictly positive currents with analytic singularities. It follows that there exists a Zariski open subset Ω of X on which global potentials of currents with minimal singularities in α are all locally bounded. The following definition is extracted from [Bou04]: Definition 1.13. If α is a big class, we define its ample locus Amp (α) as the set of points x ∈ X such that there exists a strictly positive current T ∈ α with analytic singularities and smooth around x.

The ample locus Amp (α) is a Zariski open subset by definition, and it is nonempty thanks to Demaillly's regularization result. In fact it is shown in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF] that there exists a strictly positive current T ∈ α with analytic singularities whose smooth locus is precisely Amp (α). Note that Amp (α) coincides with the complement of the so-called augmented base locus B + (α) (see [START_REF] Ein | Asymptotic invariants of base loci[END_REF]) when α = c 1 (L) is the first Chern class of a big line bundle L.

1.5. Global currents with small unbounded base locus. Let X be a compact Kähler manifold, and let T 1 , ..., T p be closed positive (1, 1)-currents on X with small unbounded locus (Definition 1.2). We can then find a closed complete pluripolar subset A such that each T j has locally bounded potentials on X -A. The content of Proposition 1.6 in that case is that the Bedford-Taylor product T 1 ∧ ... ∧ T p , which is well-defined on X -A, has finite total mass on X -A:

X-A T 1 ∧ • • • ∧ T p ∧ ω n-p < +∞,
for any Kähler form ω on X.

We now establish a somewhat technical-looking integration-by-parts theorem in this context that will be crucial in order to establish the basic properties of weighted energy functionals in Proposition 2.8.

Theorem 1.14. Let A ⊂ X be a closed complete pluripolar subset, and let Θ be a closed positive current on X of bidimension (1, 1). Let ϕ i and ψ i , i = 1, 2 be quasi-psh functions on X that are locally bounded on X -A.

If u := ϕ 1 -ϕ 2 and v := ψ 1 -ψ 2 are globally bounded on X, then X-A udd c v ∧ Θ = X-A vdd c u ∧ Θ = - X-A dv ∧ d c u ∧ Θ.
Note that the (signed) measure dd c ϕ i ∧ Θ defined on X -A has finite total mass thus so does dd c u ∧ Θ and X-A vdd c u ∧ Θ is therefore well-defined since v is bounded (and defined everywhere). The last integral is also well defined by Lemma 1.15 below and the Cauchy-Schwarz inequality.

Proof. As is well-known, if ϕ ≥ 0 is a bounded psh function, the identity

dd c ϕ 2 = 2dϕ ∧ d c ϕ + 2ϕdd c ϕ enables to define dϕ ∧ d c ϕ ∧ Θ as a positive measure, which shows that d c ϕ ∧ Θ := d c (ϕΘ)
is a current of order 0 by the Cauchy-Schwarz inequality. By linearity we can therefore make sense of vd c u ∧ Θ and du ∧ d c u ∧ Θ as currents of order 0 on X -A. By Lemma 1.15 below the positive measure du ∧ d c u ∧ Θ on X -A has finite total mass, thus so does the current of order 0 vd c u∧ Θ by Cauchy-Schwarz.

We claim that

d[vd c u ∧ Θ] = dv ∧ d c u ∧ Θ + vdd c u ∧ Θ on X -A. (1.5)
To show this, we argue locally. We can then assume that u and v are locally bounded psh functions by bilinearity. Let u k and v k be smooth psh functions decreasing towards u and v respectively. Since d c u ∧ Θ has order 0, we see that v k d c u ∧ Θ converges to vd c u ∧ Θ by monotone convergence. Since the right-hand side of the desired formula is continuous along decreasing sequences of bounded psh functions by Bedford-Taylor's theorem, we can thus assume that v is smooth and psh. Now u k Θ converges to uΘ, thus vd c u k ∧ Θ → vd c u k ∧ Θ, and we are done by another application of Bedford-Taylor's theorem to the right-hand side.

In particular (1.5) shows that d[vd c u ∧ Θ] is a current of order 0 on X -A.

Let us somewhat abusively denote by 1

X-A vd c u ∧ Θ and 1 X-A d[vd c u ∧ Θ] the trivial extensions to X. We are going to show that d[1 X-A vd c u ∧ Θ] = 1 X-A d[vd c u ∧ Θ] (1.6)
as currents on X. By Stokes' theorem we will thus have

X-A d[vd c u ∧ Θ] = 0,
and the desired formulae will follow by (1.5). The proof of (1.6) will again follow rather closely the proof of Skoda-El Mir's extension theorem as presented in [DemBook], p.159-161. Note that (1.6) is a local equality, and that it clearly holds on X -A. We will thus focus on a fixed small enough neighbourhood U of a given point 0 ∈ A. Since A is complete pluripolar around 0, we may by definition find a psh function τ on U such that {τ = -∞} = A near 0. If we pick a smooth non-decreasing convex function χ on R such that χ(t) = 0 for t ≤ 1/2 and χ(1) = 1 and finally set w k := χ(e τ /k ), then 0 ≤ w k ≤ 1 is a bounded psh function on U vanishing on A, and the sequence w k increases to 1 pointwise on U -A as k → ∞. Now choose a smooth non-decreasing function 0 ≤ θ(t) ≤ 1, t ∈ R such that θ ≡ 0 near 0 and θ ≡ 1 near 1 (we of course cannot require θ to be convex here). It then follows that θ(w k ) vanishes near A and θ(w k ) → 1 pointwise on U -A, whereas θ ′ (w k ) → 0 pointwise on U . As a consequence we get

θ(w k )vd c u ∧ Θ → 1 U -A vd c u ∧ Θ and θ(w k )d[vd c u ∧ Θ] → 1 U -A d[vd c u ∧ Θ] on U as k → ∞. Since d[θ(w k )vd c u ∧ Θ] = θ ′ (w k )vdw k ∧ d c u ∧ Θ + θ(w k )d[vd c u ∧ Θ]
by Lemma 1.9, we are thus reduced to showing that

θ ′ (w k )vdw k ∧ d c u ∧ Θ → 0 on U as k → ∞. But if ψ ≥ 0 is a given smooth function on U with compact support, Cauchy-Schwarz implies ψθ ′ (w k )vdw k ∧ d c u ∧ Θ 2 ≤ ψdw k ∧ d c w k ∧ θ ψθ ′ (w k ) 2 v 2 du ∧ d c u ∧ Θ ,
and one concludes since

2 ψdw k ∧ d c w k ∧ Θ ≤ ψdd c w 2 k ∧ Θ = w 2 k dd c ψ ∧ Θ is bounded whereas ψθ ′ (w k ) 2 v 2 du ∧ d c u ∧ Θ → 0 by dominated convergence since θ ′ (w k ) 2 → 0 pointwise.
Lemma 1.15. Let ϕ 1 and ϕ 2 be two quasi-psh functions on X that are locally bounded on an open subset U . If the difference u := ϕ 1ϕ 2 is globally bounded on X, then

U du ∧ d c u ∧ Θ < +∞.
Proof. By Demailly's approximation theorem [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF] we can find decreasing sequences of smooth functions ϕ

(k) i decreasing towards ϕ i as k → ∞ and such that dd c ϕ (k)
i ≥ -ω for some fixed large enough Kähler form ω (see also [START_REF] Locki | On regularization of plurisubharmonic functions on manifolds[END_REF]). Since u = ϕ 1ϕ 2 is bounded by assumption, it follows that

u k := ϕ (k) 1 -ϕ (k) 2
can be taken to be uniformly bounded with respect to k. We can thus assume that 0 ≤ u k ≤ C for all k.

Now the formula dd c v 2 = 2vdd c v + 2dv ∧ d c v and Bedford-Taylor's continuity theorem implies by polarization identities that

lim k dϕ (k) i ∧ d c ϕ (k) j = dϕ i ∧ d c ϕ j
weakly on U for any two i, j, hence also

du k ∧ d c u k ∧ Θ → du ∧ d c u ∧ Θ weakly on U . We thus get U du ∧ d c u ∧ Θ ≤ lim inf k X du k ∧ d c u k ∧ Θ,
and our goal is to show that the right-hand integrals are uniformly bounded. Now Stokes theorem yields

X du k ∧ d c u k ∧ Θ = - X u k dd c u k ∧ Θ = X u k dd c ϕ (k) 2 ∧ Θ - X u k dd c ϕ (k) 1 ∧ Θ.
For each i = 1, 2 we have

0 ≤ u k (ω + dd c ϕ (k) i ) ≤ C(ω + dd c ϕ (k) i ) hence 0 ≤ X u k (ω + dd c ϕ (k) i ) ∧ Θ ≤ C X ω ∧ Θ so that -C X ω ∧ Θ ≤ X u k dd c ϕ (k) i ∧ Θ ≤ C X ω ∧ Θ for all k, and the uniform boundedness of X du k ∧ d c u k ∧ Θ follows.
The following crucial result shows that non-pluripolar masses are basically nonincreasing with singularities, at least for currents with small unbounded locus.

Theorem 1.16. For j = 1, ..., p, let T j and T ′ j be two cohomologous closed positive (1, 1)-currents with small unbounded locus, and assume also that T j is less singular than T ′ j . Then the cohomology classes of their non-pluripolar products satisfy

{ T 1 ∧ ... ∧ T p } ≥ { T ′ 1 ∧ ... ∧ T ′ p } in H p,p (X, R)
, with ≥ meaning that the difference is pseudo-effective, i.e. representable by a closed positive (p, p)-current.

The statement of course makes sense for arbitrary closed positive (1, 1)-currents, and we certainly expect it to hold true in general, but we are only able for the moment to prove it in the special case of currents with small unbounded locus.

Proof. By duality, this is equivalent to showing that

X-A T 1 ∧ ... ∧ T p ∧ τ ≥ X-A T ′ 1 ∧ ... ∧ T ′ p ∧ τ
for every positive smooth dd c -closed (np, np)-form τ , where A a closed complete pluripolar set outside of which all currents T i , T ′ i have locally bounded potentials. Replacing successively T i by T ′ i , we can assume that

T i = T ′ i for i > 1. The bidimension (1, 1) current Θ := T 2 ∧ ... ∧ T p ∧ τ is dd c -closed and positive. Writing T 1 = θ + dd c ϕ and T ′ 1 = θ + dd c ϕ ′
with θ a smooth form in their common cohomology class, we are reduced to showing that

X-A dd c ϕ ∧ Θ ≥ X-A dd c ϕ ′ ∧ Θ if ϕ ≥ ϕ ′
are quasi-psh functions on X locally bounded on X -A and Θ is a dd cclosed positive bidimension (1, 1) current on X. Let ψ be a quasi-psh function such that A = {ψ = -∞}. Replacing ϕ ′ by ϕ ′ + εψ and letting ε → 0 in the end, we may further assume that ϕ ′ϕ → -∞ near A. For each k the function ψ k := max(ϕ ′ , ϕk) thus coincides with ϕk in some neighbourhood of A, so that

X-A dd c ψ k ∧ Θ = X-A dd c ϕ ∧ Θ by Stokes theorem, since (the trivial extension of) dd c (ϕ -ψ k ) ∧ Θ is the exterior derivative of a current with compact support on X -A. On the other hand lim k dd c ψ k ∧ Θ = dd c ϕ ′ ∧ Θ
weakly on X -A, and the result follows.

As a consequence we can introduce Definition 1.17. Let α 1 , ...α p ∈ H 1,1 (X, R) be big cohomology classes, and let T i,min ∈ α i be a positive current with minimal singularities. Then the cohomology class of the non-pluripolar product T 1,min ∧ • • • ∧ T p,min is independent of the choice of T i,min ∈ α i with minimal singularities. It will be denoted by

α 1 • • • α p ∈ H p,p (X, R)
and called the positive intersection of the α i . If α 1 , ..., α n are merely psef, we set

α 1 • • • α p := lim ε→0 (α 1 + εβ) • • • (α p + εβ) where β ∈ H 1,1 (X, R) is an arbitrary Kähler class.
As a special case, given a big class α the positive number vol(α) := α n is called the volume of α Some explanations are in order. The positive intersection class α 1 • • • α p is not multi-linear since T ∈ α T ′ ∈ α ′ with minimal singularities doesn't imply that the current T + T ′ has minimal singularities in the class α + α ′ . It is however homogeneous and increasing in each variable α i thanks to Theorem 1.16 when the α i 's is big (with respect to the partial order on cohomology induced by positive currents). These two properties imply in a completely formal way (cf. Proposition 2.9 in [START_REF] Boucksom | Differentiability of volumes of divisors and a problem of Teissier[END_REF]) that α 1 • ... • α p depends continuously on the p-tuple (α 1 , ..., α p ) of big classes. We can thus extend the positive intersection to psef classes α i as indicated, the existence of the limit and its independence on β being easy to check by monotonicity of positive products.

As an important special case, note that the positive product of nef classes α i coincides with their ordinary cup-product, that is

α 1 • • • α p = α 1 • • • α p .
The volume vol(α) considered here coincides (as it should!) with the one introduced in [START_REF] Boucksom | On the volume of a line bundle[END_REF]. In fact: Proposition 1.18. Let α 1 , ..., α p be big cohomology classes. Then there exists sequences T (k) j ∈ α j of strictly positive currents with analytic singularities such that lim

k→∞ { T (k) 1 ∧ • • • ∧ T (k) p } = α 1 ∧ ... ∧ α p in H p,p (X, R).
Proof. To keep notations simple we assume that α 1 = • • • = α p . Let T min ∈ α be a positive current with minimal singularities, let T + ∈ α be a given strictly positive current with analytic singularities, and let ω be a Kähler form such that T + ≥ ω. By Demailly's regularization theorem, there exists a sequence S k ∈ α of currents with analytic singularities whose global potentials decrease to that of T min and such that S k ≥ -ε k ω. Now let

T k := (1 -ε k )S k + ε k T + , so that T k ≥ ε 2
k ω is indeed strictly positive with analytic singularities. It is clear that T k converges to T min as k → ∞. By continuity of mixed Monge-Ampère operators along decreasing sequences of locally bounded psh functions, we get

T p k → T p min
weakly on X -A with A as above. We infer that

X-A T p min ∧ ω n-p ≤ lim inf k→∞ X-A T p k ∧ ω n-p .
On the other hand Theorem 1.16 yields

X-A T p min ∧ ω n-p ≥ X-A T p k ∧ ω n-p ,
since T min has minimal singularities, and together this implies The next result corresponds to Theorem 4.15 of [START_REF] Boucksom | On the volume of a line bundle[END_REF], which generalizes Fujita's approximation theorem to arbitrary (1, 1)-classes. We reprove it here for convenience of the reader.

Proposition 1.19. Let α be a big class on X. Then for each ε > 0, there exists a modification π : X ′ → X with X ′ a compact Kähler manifold, a Kähler class β on X ′ and an effective R-divisor E such that

• π * α = β + {E} and • vol(α) -ε ≤ vol(β) ≤ vol(α).
Proof. By Proposition 1.18, there exists a positive current T ∈ α with analytic singularities described by I c for some c > 0 and some coherent ideal sheaf I and a Kähler form ω such that X T n > vol(α)-ε and T ≥ ω. By Hironaka's theorem, there exists a finite sequence of blow-ups with smooth centres π : X ′ → X such that π -1 I is a principal ideal sheaf. The Siu decomposition of π * T thus writes

π * T = θ + [D]
where D is an effective R-divisor and θ ≥ 0 is a smooth form. It is also straightforward to see that X T n = X ′ θ n . The condition T ≥ ω yields θ ≥ π * ω, but this is not quite enough to conclude that the class of θ is Kähler, in which case we would be done. However since π is a finite composition of blow-ups with smooth centers, it is well-known that there exists a π-exceptional effective R-divisor F such that π * {ω} -{F } is a Kähler class (which shows by the way that X ′ is indeed Kähler). It follows that γ := {θ} -{F } is also a Kähler class. There remains to set β := (1ε){θ} + εγ and E := D + εF with ε > 0 small enough so that (1ε) vol(α) ≤ vol(β) ≤ vol(α) also holds (recall that vol is continuous on big classes).

As a final remark, if α = c 1 (L) is the first Chern class of a big line bundle L, then it follows from a theorem of Fujita that vol(α) as defined above coincides with the volume of L (see [START_REF] Boucksom | On the volume of a line bundle[END_REF]), defined by:

vol(L) = lim k→∞ n! k n dim H 0 (X, L ⊗k )
1.6. Currents with full Monge-Ampère mass. As we saw in Proposition 1.6, if T 1 , ..., T p are arbitrary closed positive (1, 1)-currents on X their non pluripolar product T 1 ∧ ... ∧ T p is always well-defined. We want to give here a more convenient description of such global non-pluripolar products.

As a first observation, note that for any Kähler form ω on X we have

T 1 ∧ ... ∧ T p = lim ε→0 j (T j + εω) ,
simply by multilinearity of non-pluripolar products.

We can thus assume that the cohomology classes α j := {T j } are big. Let then T j,min ∈ α j be a positive current with minimal singularities, and recall that T j,min has small unbounded locus by Demailly's regularization theorem since α j is big. If we pick a smooth representative θ j ∈ α j and write

T j = θ + dd c ϕ j and
T j,min = θ j + dd c ϕ j,min , then we have the following useful description of the non-pluripolar product:

T 1 ∧ ... ∧ T p = lim k→∞ 1 T j {ϕ j >ϕ min -k} j (θ j + dd c max(ϕ j , ϕ j,min -k)) , (1.7)
where the right-hand side is in fact non-decreasing, so that convergence holds against any bounded measurable function. This fact is a straightforward consequence of the local character of non-pluripolar products in the plurifine topology, which in fact yields 1 T j {ϕ j >ϕ min -k} T 1 ∧ ... ∧ T p = 1 T j {ϕ j >ϕ min -k} (θ j + dd c max(ϕ j , ϕ j,mink)) . As a consequence, Theorem 1.16 yields Proposition 1.20. If α 1 , ..., α p ∈ H 1,1 (X, R) are psef cohomology classes, then

{ T 1 ∧ ... ∧ T p } ≤ α 1 • • • α p in H p,p (X, R) for all positive currents T i ∈ α i .
Proof. We can assume that each α i is big. By duality, we have to show that

X T 1 ∧ ... ∧ T p ∧ τ ≤ α 1 • • • α p • {τ } for every positive dd c -closed positive form τ . But (1.7) shows that X T 1 ∧ ... ∧ T p ∧ τ = lim k→∞ T j {ϕ j >ϕ min -k} j (θ j + dd c max(ϕ j , ϕ j,min -k)) ∧ τ ≤ lim k→∞ X j (θ j + dd c max(ϕ j , ϕ j,min -k)) ∧ τ,
The integrals in question are equal to

α 1 • • • α p • {τ }
for all k, hence the result.

When the α i 's are big, equality holds in Proposition 1.20 when each T i ∈ α i has minimal singularities. In the general psef case, there might however not exist positive currents achieving equality. Indeed [START_REF] Demailly | Compact complex manifolds with numerically effective tangent bundle[END_REF] provides an exemple of a nef class α on a surface such that the only closed positive current in the class is the integration current T on a curve. It follows that T = 0, whereas α = α is non-zero.

Definition 1.21. A closed positive (1, 1)-current T on X with cohomology class α will be said to have full Monge-Ampère mass if

X T n = vol(α).
We will have a much closer look at such currents in the coming sections.

Proposition 1.22. If T is a closed positive (1, 1)-current on X such that T n = 0, then its cohomology class α = {T } is big. This follows immediately from Theorem 4.8 of [START_REF] Boucksom | On the volume of a line bundle[END_REF], which was itself an elaboration of the key technical result of [START_REF] Demailly | Numerical characterization of the Kähler cone of a compact Kähler manifold[END_REF].

We conjecture the following log-concavity property of total masses:

Conjecture 1.23. If T 1 , ..., T n are closed positive (1, 1)-currents on X, then X T 1 ∧ ... ∧ T n 1 n ≥ X T n 1 1 n ... X T n n 1 n .
In particular, the function T → ( X T n )

1 n is concave.

Note that the conjecture holds true for currents with analytic singularities, since passing to a log-resolution of the singularities reduces it to the Khovanski-Teissier inequalities for nef classes proved in [START_REF] Demailly | A numerical criterion for very ample line bundles[END_REF]. The conjecture would thus follow from an extension of (the proof of) Proposition 1.18 to arbitrary closed positive (1, 1)-currents T j , which however seems to be a non-trivial matter. An important special case of the conjecture will be proved in Corollary 2.15 below.

Weighted energy classes

Let X be a compact Kähler manifold, and let T be a closed positive (1, 1)current on X. We write T = θ + dd c ϕ, where θ is a smooth representative of the cohomology class α := {T } and ϕ is a θ-psh function. Recall (Definition 1.21) that T is said to have full Monge-Ampère mass if

X T n = vol(α).
Note that this is always the case when α is not big, since vol(α) = 0 in that case. Assuming from now on that α is big, our goal will be to characterize the full Monge-Ampère mass property as a finite (weighted) energy condition for ϕ (Proposition 2.11). As a consequence we will prove continuity results for nonpluripolar products.

Since we focus on ϕ rather than T , we introduce Definition 2.1. Let θ be a smooth closed (1, 1)-form on X and let ϕ be a θ-psh function.

• The non-pluripolar Monge-Ampère measure of ϕ (with respect to θ) is

MA (ϕ) := (θ + dd c ϕ) n .
• We will say that ϕ has full Monge-Ampère mass if θ + dd c ϕ has full Monge-Ampère mass, that is iff the measure MA (ϕ) satisfies

X MA (ϕ) = vol(α).
Let us stress that M A(ϕ) is well defined for any θ-psh function ϕ. Note that θ-psh functions with minimal singularities have full Monge-Ampère mass.

From now on we fix a smooth closed (1, 1)-form θ whose cohomology class α ∈ H 1,1 (X, R) is big. We also fix the choice of a θ-psh function with minimal singularities ϕ min . If ϕ is a given θ-psh function, we set

ϕ (k) := max(ϕ, ϕ min -k).
The θ-psh functions ϕ (k) have minimal singularities, and they decrease pointwise to ϕ. We will call them the "canonical" approximants of ϕ. As was explained above, for each Borel subset E of X we have

E MA (ϕ) := lim ր E∩{ϕ>ϕ min -k} MA (ϕ (k) ).
2.1. Comparison principles. We begin with the following generalized comparison principle, which will be a basic tool in what follows.

Proposition 2.2 (Generalized comparison principle). Let T j = θ j + dd c ϕ j be closed positive (1, 1)-currents with cohomology class {T j } =: α j , j = 0, ..., p. Let also S 0 = θ 0 + dd c ψ 0 be another positive current in α 0 . Then we have

{ϕ 0 <ψ 0 } S n-p 0 ∧ T 1 ∧ ... ∧ T p ≤ {ϕ 0 <ψ 0 } T n-p 0 ∧ T 1 ∧ ... ∧ T p + α n-p 0 • α 1 • • • α p - X T n-p 0 ∧ T 1 ∧ ... ∧ T p .
Proof. Since non-pluripolar products are local in plurifine topology we have The main new feature of this generalized comparison principle is the additional "error term" vol(α) -X MA (ϕ), which is non-negative by Proposition 1.20.

α n-p 0 • α 1 • ... • α p ≥ X (θ 0 + dd c max(ϕ 0 , ψ 0 -ε)) n-p ∧ T 1 ∧ ... ∧ T p ≥ {ϕ 0 <ψ 0 -ε} S n-p 0 ∧ T 1 ∧ ... ∧ T p + {ϕ 0 >ψ 0 -ε} T n-p 0 ∧ T 1 ∧ ... ∧ T p ≥ {ϕ 0 <ψ 0 -ε} S n-p 0 ∧T 1 ∧...∧T p + X T n-p 0 ∧T 1 ∧...∧T p - {ϕ 0 <ψ 0 } T n-p 0 ∧T 1 ∧...∧T p
Remark 2.4. If ϕ and ψ have small unbounded locus (and conjecturally for arbitrary θ-psh functions), the same proof plus Theorem 1.16 yield

{ϕ<ψ} MA (ψ) ≤ {ϕ<ψ} MA (ϕ)
as soon as ϕ is less singular than ψ, that is ϕ ≥ ψ + O(1). Indeed Theorem 1.16 implies

X MA (max(ϕ, ψ -ε)) = X MA (ϕ)
in that case, and the result follows from the above proof.

We deduce from the comparison principle its usual companion:

Corollary 2.5 (Domination principle). Let ψ, ϕ be θ-psh functions. If ϕ has minimal singularities and ψ ≤ ϕ holds a.e. wrt MA (ϕ), then ψ ≤ ϕ holds everywhere.

Proof. Since {θ} is big by assumption, we can choose a θ-psh function ρ such that θ + dd c ρ ≥ ω for some (small enough) Kähler form ω. It follows that MA (ρ) dominates Lebesgue measure. We may also assume that ρ ≤ ϕ since ϕ has minimal singularities. Now let ε > 0. Since ϕ has minimal singularities we have vol(α) = X MA (ϕ) and the comparison principle thus yields

ε n {ϕ<(1-ε)ψ+ερ} MA (ρ) ≤ {ϕ<(1-ε)ψ+ερ} MA ((1 -ε)ψ + ερ) ≤ {ϕ<(1-ε)ψ+ερ} MA (ϕ).
But the latter integral is zero by assumption since ρ ≤ ϕ implies

{ϕ < (1 -ε)ψ + ερ} ⊂ {ϕ < ψ}.
Since MA (ρ) dominates Lebesgue measure, we conclude that for each ε > 0 we have ϕ ≥ (1ε)ψ + ερ a.e. wrt Lebesgue measure, and the result follows.

Remark 2.6. We do not know whether the result still holds if we replace the assumption that ϕ has minimal singularities by ϕ ≥ ψ + O(1), even if we further assume that ϕ has finite Monge-Ampère energy.

2.2. Weighted energy functionals. By a weight function, we will mean a smooth increasing function χ : R → R such that χ(-∞) = -∞ and χ(t) = t for t ≥ 0.

Definition 2.7. Let χ be a weight function. We define the χ-energy of a θ-psh function with minimal singularities ϕ as

E χ (ϕ) := n j=0 X (-χ)(ϕ -ϕ min ) T j ∧ T n-j min (2.1)
with T = θ + dd c ϕ and T min = θ + dd c ϕ min .

Recall that we have fixed an arbitrary θ-psh function ϕ min with minimal singularities on X. Note that the χ-energy functional for χ(t) = t is nothing but the Aubin-Mabuchi energy functional (up to a minus sign, cf. [START_REF] Aubin | Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité[END_REF][START_REF] Mabuchi | K-energy maps integrating Futaki invariants[END_REF] and [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF] for the extension to the singular setting).

The next proposition contains important properties of the χ-energy.

Proposition 2.8. Let χ be a convex weight function. Then the following properties hold.

• For any θ-psh function ϕ such that ϕ min -O(1) ≤ ϕ ≤ ϕ min we have

1 n + 1 E χ (ϕ) ≤ X (-χ)(ϕ -ϕ min )MA (ϕ) ≤ E χ (ϕ).
• The χ-energy ϕ → E χ (ϕ) is non-increasing.

• If ϕ k decreases to ϕ with minimal singularities, then E χ (ϕ k ) → E χ (ϕ).

Proof. Let u := ϕϕ min ≤ 0. Note that χ(u) + ϕ min is also another θ-psh function with minimal singularities, since

dd c χ(u) = χ ′ (u)dd c u + χ ′′ (u)du ∧ d c u ≥ -(θ + dd c ϕ min ). (2.2)
It follows that the bounded functions u and χ(u) are both differences of quasipsh functions which are locally bounded on the complement X -A of a closed complete pluripolar subset A. We can thus apply the integration by part formula of Theorem 1.14 to get

X (-χ)(ϕ -ϕ min ) T j+1 ∧ T n-j-1 min = X-A (-χ)(u)(T min + dd c u) ∧ T j ∧ T n-j-1 min = X-A (-χ)(ϕ -ϕ min )T j ∧ T n-j min + X-A χ ′ (u)du ∧ d c u ∧ T j ∧ T n-j-1 min ≥ X (-χ)(ϕ -ϕ min ) T j ∧ T n-j
min for j = 0, ..., n -1, and the first formula follows.

In order to prove the second point, let v ≥ 0 be a bounded function such that ϕ + v is still θ-psh. We will show that the derivative at t = 0 of the function t → e(t) := E χ (ϕ + tv) is ≤ 0. Indeed integration by parts yields

-e ′ (0) = n j=0 X-A vχ ′ (u)T j ∧ T n-j min + jχ(u)dd c v ∧ T j-1 ∧ T n-j min = n j=0 X-A vχ ′ (u)T j ∧ T n-j min + jvdd c χ(u) ∧ T j-1 ∧ T n-j min ≥ n j=0 X-A vχ ′ (u)T j ∧ T n-j min + jvχ ′ (u)(T -T min ) ∧ T j-1 ∧ T n-j min = (n + 1) X-A vχ ′ (u)T n ≥ 0, by (2.2).
Finally let us prove continuity along decreasing sequences. If ϕ k decreases to ϕ, then χ(ϕ kϕ min ) + ϕ min is a sequence of θ-psh functions decreasing towards χ(ϕϕ min ) + ϕ min , thus Bedford-Taylor's theorem implies that

lim k T j k ∧ T n-j min = T j ∧ T n-j min and lim k χ(ϕ k -ϕ min )T j k ∧ T n-j min = χ(ϕ -ϕ min )T j ∧ T n-j
min weakly on X -A. But Theorem 1.16 implies that the total masses also converge, since in fact

X-A T j k ∧ T n-j min = X-A
T j ∧ T n-j min for all k, the thus trivial extensions converge on the whole of X, i.e.

lim k T j k ∧ T n-j min = T j ∧ T n-j min Since χ(ϕ k -ϕ min ) is uniformly bounded, it follows from [BT87] that lim k X χ(ϕ k -ϕ min ) T j k ∧ T n-j min = X χ(ϕ -ϕ min ) T j ∧ T n-j
min for all j, which concludes the proof.

Definition 2.9. Let χ be a convex weight function. If ϕ is an arbitrary θ-psh function, its χ-energy is defined as

E χ (ϕ) := sup ψ≥ϕ E χ (ψ) ∈] -∞, +∞]
over all ψ ≥ ϕ with minimal singularities. We say that ϕ has finite χ-energy if E χ (ϕ) < +∞.

We will see in Corollary 2.18 how to extend (2.1) to this more general picture.

Proposition 2.10. Let χ be a convex weight.

• The χ-energy functional ϕ → E χ (ϕ) is non-increasing and lower semicontinuous on θ-psh functions for the L 1 (X) topology. • ϕ → E χ (ϕ) is continuous along decreasing sequences.

• If ϕ j are θ-psh functions converging to ϕ in the L 1 (X)-topology, then sup j E χ (ϕ j ) < +∞ implies that ϕ has finite χ-energy.

Proof. The last two points are trivial consequences of the first one. Let ϕ j → ϕ be a convergent sequence of θ-psh functions, and set ϕ j := (sup k≥j ϕ k ) * , so that φj ≥ ϕ j decreases pointwise to ϕ. If ψ ≥ ϕ is a given θ-psh function with minimal singularities, then max( ϕ j , ψ) ≥ max(ϕ j , ψ) decreases to max(ϕ, ψ) = ψ, hence

E χ (ψ) = lim j E χ (max( ϕ j , ψ)) ≤ lim inf j E χ (ϕ j )
by Proposition 2.8, and the result follows by definition of E χ (ϕ).

As an important consequence, we get

E χ (ϕ) = sup k E χ (ϕ (k) )
for the "canonical" approximants ϕ (k) := max(ϕ, ϕ min -k) of ϕ. The link between weighted energies and full Monge-Ampère mass is given by the following result: Proposition 2.11. Let ϕ be a θ-psh function.

• The function ϕ has full Monge-Ampère mass iff E χ (ϕ) < +∞ for some convex weight χ • If ϕ has full Monge-Ampère mass and χ is a given convex weight, then

E χ (ϕ) < +∞ iff X (-χ)(ϕ -ϕ min )MA (ϕ) < +∞.
Proof. We can assume that ϕ ≤ ϕ min . Let ϕ (k) := max(ϕ, ϕ mink). In view of Proposition 2.8, we have to show that m k := {ϕ≤ϕ min -k} MA (ϕ (k) ) tends to 0 iff

sup k X (-χ)(ϕ (k) -ϕ min )MA (ϕ (k) ) < +∞ (2.3)
for some convex weight χ. But we have

X (-χ)(ϕ (k) -ϕ min )MA (ϕ (k) ) = |χ(-k)|m k + {ϕ>ϕ min -k} (-χ)(ϕ -ϕ min )MA (ϕ) = |χ(-k)|m k + O(1),
for some convex weights χ. Indeed we may always choose χ such that X (-χ)(ϕϕ min )MA (ϕ) < +∞, simply because MA (ϕ) puts no mass on the pluripolar set {ϕ = -∞}. It follows that (2.3) holds for some convex weight iff there exists a convex weight χ such that χ(-k) = O(m -1 k ), which is indeed the case iff m k → 0.

Let's now prove the second point. Assume that E χ (ϕ) < +∞. Since MA (ϕ) is the increasing limit in the strong Borel topology of

1 {ϕ>ϕ min -k} MA (ϕ (k) )
and since χ(ϕ (l)ϕ min ) is a bounded measurable function, we infer that

X (-χ)(ϕ (l) -ϕ min )MA (ϕ) = lim k {ϕ>ϕ min -k} (-χ)(ϕ (l) -ϕ min )MA (ϕ (k) ) ≤ lim k {ϕ>ϕ min -k} (-χ)(ϕ (k) -ϕ min )MA (ϕ (k) ) ≤ E χ (ϕ), since ϕ (k) ≤ ϕ (l)
for k ≥ l, and we infer that X (-χ)(ϕϕ min )MA (ϕ) < +∞ by monotone convergence as desired.

Conversely, if (-χ)(ϕϕ min ) ∈ L 1 (MA (ϕ)) and ϕ has full Monge-Ampère mass, then Lemma 2.12 below implies that E χ (ϕ) = sup k E χ (ϕ (k) ) < +∞.

Lemma 2.12. Let ϕ be a θ-psh function with canonical approximants ϕ (k) . Then for every weight function χ we have:

X (-χ)(ϕ (k) -ϕ min )MA (ϕ (k) ) ≤ X (-χ)(ϕ -ϕ min )MA (ϕ) +(-χ)(-k) vol(α) - X MA (ϕ) Proof. We have X (-χ)(ϕ (k) -ϕ min )MA (ϕ (k) ) = (-χ)(-k) {ϕ≤ϕ (k) } MA (ϕ (k) ) + {ϕ>ϕ min -k} χ(ϕ -ϕ min )MA (ϕ) (since 1 {ϕ>ϕ min -k} MA (ϕ (k) ) = 1 {ϕ>ϕ min -k} MA (ϕ) by plurifine locality) ≤ (-χ)(-k) {ϕ≤ϕ (k) } MA (ϕ) + (-χ)(-k) vol(α) - X MA (ϕ) + {ϕ>ϕ min -k} χ(ϕ -ϕ min )MA (ϕ)
by the generalized comparison principle, and the result follows.

Energy classes of positive currents. Since

χ is convex with 0 ≤ χ ′ ≤ 1, we have χ(t) ≤ χ(t + C) ≤ χ(t) + C
for all C > 0, and it easily follows that the condition ϕ has finite χ-energy doesn't depend on the choice of the function with minimal singularities ϕ min with respect to which E χ is defined.

Definition 2.13. Given a convex weight χ we denote by E χ (α) the set of positive currents T ∈ α with finite χ-energy, and by E(α) the set of positive currents with full Monge-Ampère mass.

Proposition 2.11 can thus be reformulated by saying that

E(α) = χ E χ (α)
where χ ranges over all convex weights.

Proposition 2.14. The energy classes satisfy the following properties:

• If T ∈ E χ (α)
, then also S ∈ E χ (α) for all positive currents S ∈ α less singular than T . • The set E(α) is an extremal face (in particular a convex subset) of the closed convex set of all positive currents in α.

Recall that an extremal face F of a convex set C is a convex subset of C such that for all x, y ∈ C, tx + (1t)y ∈ F for some 0 < t < 1 implies x, y ∈ F .

Proof. The first point follows from Proposition 2.11 above, since E χ is nonincreasing. To prove the second point, we first take care of the extremality property. Let T, T ′ ∈ α be two closed positive currents and 0 < t < 1 be such that tT +(1-t)T ′ has finite energy. We have to show that T also has finite energy (then exchange the roles of T and T ′ ). If T min ∈ α is a positive current with minimal singularities, then tT +(1-t)T min is less singular than tT +(1-t)T ′ , thus it a fortiori has finite energy, i.e. we can assume that T ′ = T min has minimal singularities. Now write T = θ + dd c ϕ, T min = θ + dd c ϕ min , and set ϕ t := tϕ + (1t)ϕ min .

The assumption is that lim k {ϕt≤ϕ min -k} MA (max(ϕ t , ϕ mink)) = 0, and we are to show that the same holds with ϕ in place of ϕ t . But note that

max(ϕ t , ϕ min -k) = max(t(ϕ -ϕ min , -k) + ϕ min = t max(ϕ, ϕ min -kt -1 ) + (1 -t)ϕ min hence {ϕt≤ϕ min -k} MA (max(ϕ t , ϕ min -k)) ≥ t n {ϕ≤ϕ min -kt -1 } MA (max(ϕ, ϕ min -kt -1 ))
and the result follows.

Convexity of E(α) now follows exactly as in the proof of Proposition 1.6 in [START_REF] Guedj | The weighted Monge-Ampère energy of quasipsh functions[END_REF].

Convexity of E(α) would also follow from Conjecture 1.23 above. Conversely the following important special case of the conjecture can be settled using convexity.

Corollary 2.15. Let α be a big class, and let T 1 , ..., T n ∈ α be positive currents with full Monge-Ampère mass. Then

X T 1 ∧ ... ∧ T n = α n .
Proof. Upon scaling α, we can assume that α n = 1. For any t = (t 1 , ..., t n ) ∈ R n

+ set P (t 1 , ..., t n ) := X (t 1 T 1 + ... + t n T n ) n ,
which defines a homogeneous polynomial of degree n by multilinearity of nonpluripolar products. Since T i ∈ E(α) for each i, convexity implies that t 1 T 1 + ... + t n T n ∈ E(α) when the t i 's lie on the simplex ∆ := {t ∈ R n + , t 1 + ... + t n = 1}. We thus see that the polynomial

P (t 1 , ..., t n ) -(t 1 + ... + t n ) n
vanishes identically on ∆. Since this polynomial is homogeneous of degree n, it therefore vanishes on R n + , and this implies that

P (t 1 , ..., t n ) = (t 1 + ... + t n ) n
for all t. Identifying the coefficients of the monomial t 1 ...t n on both sides now yields the result.

Remark 2.16. It is quite plausible that each E χ (α) is itself convex, and indeed for χ(t) = t it simply follows from the convexity of the Aubin-Mabuchi energy functional E 1 (cf. [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF] for a proof in this singular situation). The functional E χ is however not convex when χ is not affine, since E χ (ϕ+c) is rather a concave function of c ∈ R.

Continuity properties of

Monge-Ampère operators. The Monge-Ampère operator on functions of full Monge-Ampère mass satisfies the usual continuity properties along monotonic sequences:

Theorem 2.17. If ϕ is a θ-psh function with full Monge-Ampère mass and ϕ j is a sequence of θ-psh functions with full Monge-Ampère mass decreasing (resp. increasing a.e.) to ϕ, then MA (ϕ j ) → MA (ϕ) as j → ∞. If ϕ furthermore has finite χ-energy for a given convex weight χ, then

χ(ϕ j -ϕ min )MA (ϕ j ) → χ(ϕ -ϕ min )MA (ϕ) weakly as j → ∞.
Proof. Theorem 2.17 has already been proved for functions with minimal singularities during the proof of Proposition 2.8. Let us first prove the first point In the general case. Choose χ such that ϕ and ϕ 1 both have finite χ-energy, so that E χ (ϕ j ) ≤ C uniformly by monotonicity of E χ . Let h be a continuous function on X. For each k we have lim

j X h MA (ϕ (k) j ) = X h MA (ϕ (k) )
by the minimal singularities case, thus it is enough to establish that lim

k X h MA (ψ (k) ) = X h MA (ψ)
uniformly for all ψ ≥ ϕ. We have

X h MA (ψ (k) ) -MA (ψ) ≤ sup X |h| {ψ≤ϕ min -k} MA (ψ (k) ) + {ψ≤ϕ min -k} MA (ψ) since MA (ψ (k) ) = MA (ψ) on {ψ > ϕ min -k}. The first term is controlled by |χ|(-k) -1 X (-χ)(ψ (k) )MA (ψ (k) ) ≤ |χ|(-k) -1 E χ (ϕ),
hence tends to 0 uniformly with respect to ψ ≥ ϕ. On the other hand, since MA (ψ) is the monotone and thus strong limit of 1 {ψ>ϕ min -l} MA (ψ (l) ), the second term writes

{ψ≤ϕ min -k} MA (ψ) = lim l {ϕ min -l<ψ≤ϕ min -k} MA (ψ (l) )
which is similarly controlled by lim sup

l |χ|(-k) -1 E χ (ψ (l) ) ≤ |χ|(-k) -1 E χ (ϕ),
hence the result. The same reasoning shows that

χ(ϕ j -ϕ min )MA (ϕ j ) → χ(ϕ -ϕ min )MA (ϕ)
as soon as ϕ has finite χ-energy for some convex weight χ ≫ χ. But this is in fact automatic, since E χ (ϕ) < +∞ is equivalent to (-χ)(ϕϕ min ) ∈ L 1 (MA (ϕ)) by Proposition 2.11 since ϕ has full Monge-Ampère mass, and this integrability condition can always be improved to χ(ϕϕ min ) ∈ L 1 (MA (ϕ)) for χ ≫ χ by a standard measure theoretic result (see [START_REF] Guedj | The weighted Monge-Ampère energy of quasipsh functions[END_REF] for more details on such properties).

As a consequence, we get a more explicit formula for the χ-energy.

Corollary 2.18. If ϕ has full Monge-Ampère mass and χ is a given convex weight, then setting T = θ + dd c ϕ and T min = θ + dd c ϕ min we have

E χ (ϕ) = X (-χ)(ϕ -ϕ min ) n j=0
T j ∧ T n-j min in the sense that the left-hand side is finite iff the right-hand side is, and equality holds in that case.

2.5.

A useful asymptotic criterion. In the continuity theorem above, it is crucial that the fonctions dealt with have finite energy in order to ensure that no mass is lost towards the polar set in the limit process. For an arbitrary θ-psh function the condition χ(ϕϕ min ) ∈ L 1 (MA (ϕ)) alone doesn't imply that ϕ has finite energy. For instance, if ω denotes the Fubiny-Study form on P 1 , a global potential of the current T := δ 0 yields a counter-example since T = 0! This example is in fact a simple instance of the type of currents we'll have to handle in the proof of Theorem 3.1.

It is a consequence of Proposition 2.10 that any L 1 (X)-limit ϕ = lim j ϕ j of functions ϕ j with full Monge-Ampère mass and such that sup j X (-χ)(ϕ jϕ min )MA (ϕ j ) < +∞ has finite χ-energy. This still holds for sequences with asymptotically full Monge-Ampère mass as shown by our next result which yields a practical criterion to check the finite energy condition.

Proposition 2.19. Let χ be a convex weight and ϕ j → ϕ be a sequence of θ-psh functions converging in L 1 (X) to a θ-psh function ϕ. Assume that

(1) X MA (ϕ j ) → vol(α).

(2) sup j X (-χ)(ϕ jϕ min )MA (ϕ j ) < +∞.

Then ϕ has finite χ-energy.

Proof. Lemma 2.12 above yields two constants A, B > 0 such that

E χ (ϕ (k) j ) ≤ A + B(-χ)(-k) vol(α) - X MA (ϕ j ) hence E χ (ϕ (k) ) ≤ lim inf j E χ (ϕ (k) j ) ≤ A
for all k by Proposition 2.10, and the result follows.

Proposition 2.20. Let ϕ j be a sequence of arbitrary θ-psh functions uniformly bounded above, and let ϕ := (sup j ϕ j ) * . Suppose that µ is a positive measure such that MA (ϕ j ) ≥ µ for all j. If ϕ has full Monge-Ampère mass, then MA (ϕ) ≥ µ.

Proof. Set ψ j := max 1≤i≤j ϕ i , so that ψ j increases a.e. to ϕ. It is a standard matter to show that MA (ψ j ) ≥ µ using plurifine locality (cf. [GZ07], Corollary 1.10). The desired result does however not follow directly from Theorem 2.17 since ψ j doesn't a priori have full Monge-Ampère mass . But since MA (ψ j ) and MA (ψ (k) j ) coincide on {ψ j > ϕ min -k} as Borel measures, we get MA (ψ

(k) j ) ≥ 1 {ψ j >ϕ min -k} MA (ψ j ) ≥ 1 {ψ j >ϕ min -k} µ ≥ 1 {ψ 1 >ϕ min -k} µ.
For each k fixed Theorem 2.17 (in fact simply Beford-Taylor on a Zariski open subset plus constancy of total masses) yields lim j MA (ψ

(k) j ) = MA (ϕ (k) ), hence MA (ϕ (k) ) ≥ 1 {ψ 1 >ϕ min -k} µ.
Now the left hand side converges to MA (ϕ) weakly as k → ∞ since ϕ is assumed to have finite Monge-Ampère energy, whereas the right hand side tends to µ since the latter puts no mass on the pluripolar set {ψ 1 = -∞}, being dominated by non-pluripolar measures MA (ϕ j ).

Corollary 2.21. Let T j → T be a convergent sequence of positive currents in a given cohomology class α, and assume that the limit current T has full Monge-Ampère mass. Assume that a positive measure µ and non-negative functions f j are given such that T n j ≥ f j µ holds for all j. Then we have

T n ≥ (lim inf j→∞ f j )µ.
Proof. Write T j = θ + dd c ϕ j with ϕ j normalized in some fixed way and set

ϕ j := (sup k≥j ϕ k ) *
so that ϕ j decreases pointwise to ϕ with T = θ + dd c ϕ. Since ϕ has full Monge-Ampère mass, so does each ϕ j ≥ ϕ, hence MA ( ϕ j ) ≥ (inf k≥j f k )µ by Proposition 2.20. The result now follows by Theorem 2.17.

Non-pluripolar measures are Monge-Ampère

We will say for convenience that a positive measure µ is non-pluripolar if it puts no mass on pluripolar subsets. The range of the non-pluripolar Monge-Ampère operator is described by the following result: Theorem 3.1. Let X be a compact Kähler manifold and let α ∈ H 1,1 (X, R) be a big cohomology class. Then for any non-pluripolar measure µ such that µ(X) = vol(α) there exists a unique closed positive current T ∈ α such that

T n = µ.
Note that T automatically has full Monge-Ampère mass since

X T n = µ(X) = vol(α)
by assumption.

In the sequel θ denotes a smooth representative of α. We then denote as before by MA (ϕ) := (θ +dd c ϕ) n the non-pluripolar Monge-Ampère measure of a θ-psh function ϕ. We also choose once and for all a θ-psh function ϕ min with minimal singularities.

3.1. Outline of the existence proof. We first present an outline of the existence proof, and provide technical details below. By Corollary 1.19, given ε > 0 there exists a decomposition

π * α = β + {E} on a modification π : X ′ → X with β a Kähler class, E an effective R-divisor on X ′ and vol(α) -ε ≤ vol(β) ≤ vol(α)
(the whole data depends on ε). By the main result of [START_REF] Guedj | The weighted Monge-Ampère energy of quasipsh functions[END_REF] (i.e. the existence part of Theorem 3.1 for a Kähler class), there exists a positive current with finite energy S ∈ β such that

S n = cµ ′
holds on X ′ with c := vol(β)/ vol(α) ≤ 1 and µ ′ denoting the non-pluripolar measure on X ′ induced by lifting µ on the Zariski open subset where π is an isomorphism. We will first show that the pushed-forward current

π * (S + [E]) =: θ + dd c ϕ satisfies MA (ϕ) = (θ+dd c ϕ) n = cµ,
which is at least plausible since [E] vanishes outside a pluripolar subset. We would already be done at that stage were it the case that c = 1, i.e. vol(β) = vol(α), but this actually never happens unless α was a Kähler class in the first place. On the other hand we have obtained at that point a sequence of θ-psh functions ϕ j such that MA (ϕ j ) = (1ε j )µ with ε j > 0 decreasing towards 0. We will prove next that some L 1 (X)-limit ϕ ∞ of the ϕ j 's (appropriately normalized) solves MA (ϕ ∞ ) = µ, and setting T := θ + dd c ϕ ∞ then proves the theorem.

It is in fact enough to show that ϕ ∞ has full Monge-Ampère mass. Indeed Corollary 2.21 then implies that MA (ϕ ∞ ) ≥ µ, hence equality since both measures have the same mass, and we will be done. Since (-χ)(ϕ jϕ min )MA (ϕ j ) < +∞ But we will prove in Proposition 3.2 below that non-pluripolarity of µ yields a convex weight χ such that X (-χ)(ψ)dµ is uniformly bounded for all normalized θ-psh functions ψ, hence the result since MA (ϕ j ) ≤ µ for all j.

3.2. Existence proof: technical details. Using the above notations, let ω ∈ β be a Kähler form and write S = ω + dd c ψ. We first have to show that

(π * (S + [E])) n = π * S n , that is (θ + dd c ϕ) n = π * (ω + dd c ψ) n . (3.1)
At that stage everything depends on ε, which is however fixed for the moment.

Let Ω be a Zariski open subset of X such that ϕ min is locally bounded on Ω, π induces an isomorphism Ω ′ := π -1 (Ω) → Ω and every component of E is contained in the complement of Ω ′ . Since the measures involved in equation (3.1) put no mass on X -Ω, it is enough to show the result on Ω. Let thus f be a given smooth function with compact support in Ω. We then have by definition

X f (θ + dd c ϕ) n = lim k {ϕ>ϕ min -k}∩Ω f (θ + dd c max(ϕ, ϕ min -k)) n = lim k {ϕ ′ >ϕ ′ min -k}∩Ω ′ f ′ (θ ′ + dd c max(ϕ ′ , ϕ ′ min -k)) n
where primed objects have been pulled back by π. Note that ϕ ′ min is a θ ′ -psh function with minimal singularities by Proposition 1.12. Now let θ E := θ ′ω, so that

[E] = θ E + dd c ϕ E
for some θ E -psh function ϕ E . For cohomological reasons we have

θ ′ + dd c ϕ ′ = π * π * (ω + dd c ψ + [E]) = ω + dd c ψ + [E] = θ ′ + dd c (ψ + ϕ E )
since the cohomology class of the right-hand current is π * θ. We thus see that ϕ ′ = ψ + ϕ E up to an additive constant, which can be chosen to be 0, and we are reduced to showing that

I k := lim k {ψ+ϕ E >ϕ ′ min -k}∩Ω ′ f ′ (ω + θ E + dd c max(ψ + ϕ E , ϕ ′ min -k)) n coincides with lim k {ψ>-k}∩Ω ′ f ′ (ω + dd c max(ψ, -k)) n .
Now ϕ E is smooth on Ω ′ since E doesn't meet the latter set by assumption, and

ϕ ′ min -ϕ E ≥ -C on X ′ since the θ ′ -psh function ϕ ′ min has minimal singularities, hence is less singular than the θ ′ ≥ θ E -psh function ϕ E . We thus see that ϕ ′ min - ϕ E is bounded near the support of f ′ . On the other hand, θ E + dd c ϕ E = [E] vanishes on Ω ′ so that (ω + θ E + dd c max(ψ + ϕ E , ϕ ′ min -k)) n = (ω + dd c max(ψ, ϕ ′ min -ϕ E -k)) n there, hence I k = {ψ>v-k}∩Ω ′ f ′ (ω + dd c max(ψ, v -k)) n with v := ϕ ′
minϕ E bounded near the support of f ′ . We thus conclude that the latter integral equals lim

k {ψ>-k}∩Ω ′ f ′ (ω + dd c max(ψ, -k)) n
as desired, which finishes the proof of (3.1). At this point, we have thus obtained a sequence of θ-psh functions ϕ j such that MA (ϕ j ) = (1ε j )µ for some sequence ε j > 0 decreasing towards 0. If we normalize them in some way, say by sup X ϕ j = 0, we can also assume by compactness that ϕ j converges in L 1 (X) to some θ-psh function ϕ ∞ as j → ∞.

As explained above, proving that ϕ ∞ has full Monge-Ampère mass is enough to conclude MA (ϕ ∞ ) ≥ µ by Corollary 2.21, hence MA (ϕ ∞ ) = µ since both measures then have the same mass.

Since X MA (ϕ j ) → vol(α), we are reduced by Proposition 2.19 to finding a convex weight χ such that sup j X

(-χ)(ϕ j -ϕ min )MA (ϕ j ) ≤ sup j X (-χ)(ϕ j -ϕ min )dµ < +∞,
which is taken care of by the next proposition. This concludes the proof of Theorem 3.1.

Proposition 3.2. Let µ be a non-pluripolar measure and let K be a given compact set of quasi-psh functions on X. Then there exists a convex weight function χ and C > 0 such that

X (-χ)(ϕ)dµ ≤ C
for all ϕ ∈ K.

Proof. Functions in K are uniformly bounded from above by compactness, and we can thus assume that they are all non-positive. Now let ω be a given Kähler form, and let M be the (weakly) closed convex set of positive measures generated by all Monge-Ampère measures (ω + dd c ψ) n with 0 ≤ ψ ≤ 1 is ω-psh. By the Chern-Levine-Nirenberg inequality there exists a constant C > 0 such that

X (-ϕ)(ω + dd c ψ) n ≤ C
for all ϕ ∈ K and all 0 ≤ ψ ≤ 1 as above, and this remains true on M by convexity and lower semi-continuity of ν → X (-ϕ)dν (since -ϕ is lower semi-continuous -just write it as the supremum of all continuous functions below it). Now recall that pluripolar subsets A are characterized by the condition that ν(A) = 0 for all Monge-Ampère measures ν as above. By an extension of Radon-Nikodym's theorem proved in [START_REF] Rainwater | A note on the preceding paper[END_REF], there exists measures ν ∈ M and ν ′ ⊥ M such that our given measure µ writes µ = gν + ν ′ with g a non-negative element of L 1 (ν). Since µ(A) = 0 for all pluripolar subsets by assumption, we infer that ν ′ = 0, and we have thus proved that µ ≪ ν for some ν ∈ M. We now conclude the proof by the following result, certainly a standard one in the theory of Orlicz spaces. Lemma 3.3. Let µ ≪ ν be two positive measures with finite mass on a measured space X. Then there exists a concave function h : R + -→ R + and C > 0 such that

X h(f )dµ ≤ C + X f dν
for all measurable functions f ≥ 0.

Proof. Let g ≥ 0 be the function in L 1 (ν) such that dµ = gdν. By an easy measure-theoretic result that we've already used, there exists a convex increasing function

τ on R + such that τ (x) ≫ x for x → +∞ but still X τ (g)dν < +∞. Now let τ * (y) = sup x≥0 (xy -τ (x))
be the Legendre transform of τ and let h be the reciprocal function of τ * . By definition, we thus have the following generalized form of Young's inequality

h(y)x ≤ τ (x) + y. If follows that X h(f )dµ = X h(f )gdν ≤ X τ (g)dν + X f dν
which yields the desired result with C := X τ (g)dν.

Remark 3.4. When K consists of a single function, Proposition 3.2 follows from standard measure-theoretic considerations since µ{ϕ = -∞} = 0. The general case would thus follow by compactness provided that ϕ → X ϕdµ were known to be lower semi-continuous on θ-psh functions in L 1 (X) topology (it is always upper semi-continuous by Fatou's lemma). But already when n = 1 the usc condition is not automatic: it holds iff µ has continuous local potentials.

3.3. Uniqueness. In this section we show how to adapt Dinew's tricky proof of uniqueness in [START_REF] Dinew | Uniqueness and stability in E (X, ω)[END_REF] to our more general setting. As we shall see, his arguments carry over mutatis mutandis. On the other hand, we will make one of his arguments more precise, namely

X T 1 ∧ ... ∧ T n = α n
for every set of positive currents T 1 , ..., T n ∈ α with full Monge-Ampère mass, which is the content of Corollary 2.15 above. This fact is non-obvious even when α is Kähler, which is the case considered in [START_REF] Dinew | Uniqueness and stability in E (X, ω)[END_REF], and seems to have been implicitely taken for granted there. Let thus T 1 = θ + dd c ϕ 1 , T 2 = θ + dd c ϕ 2 ∈ α be two positive currents such that

T n 1 = T n 2 = µ.
As in [START_REF] Dinew | An Inequality for Mixed Monge-Ampère measures[END_REF], we first remark that the log-concavity property of non-pluripolar products (Proposition 1.11) implies that

T k 1 ∧ T n-k 2 ≥ µ hence T k 1 ∧ T n-k 2 = µ (3.2)
for k = 0, ..., n since both measures have same total mass v := vol(α).

Step 1. As in the first part of the proof of Theorem 1 in [START_REF] Dinew | Uniqueness and stability in E (X, ω)[END_REF], we are first going to show by contradiction that there exists t ∈ R such that ϕ 1 = ϕ 2 + t µ-almost everywhere.

Since µ puts no mass on pluripolar subsets, the set of t ∈ R such that µ{ϕ 1 = ϕ 2 + t} > 0 coincides with the discontinuity locus of the non-decreasing function t → µ{ϕ 1 < ϕ 2 + t} and is thus at most countable. We now assume by contradiction that µ{ϕ 1 = ϕ 2 + t} < v for all t, so that we can find t ∈ R such that 0 < µ{ϕ 1 < ϕ 2 + t} < v.

By monotone convergence, upon slightly pertubing t we can furthermore arrange that µ{ϕ 1 = ϕ 2 + t} = 0. Replacing ϕ 2 by ϕ 2 +t, we can finally assume that t = 0, so that both µ{ϕ 1 < ϕ 2 } and µ{ϕ 2 < ϕ 1 } are less than v while µ{ϕ 1 = ϕ 2 } = 0. We can thus pick ε > 0 small enough such that the mass of (1 + ε) n µ on both {ϕ 1 < ϕ 2 } and {ϕ 2 < ϕ 1 } is still less than v.

By the existence part of Theorem 3.1 (which is already proved!), we get a positive current T = θ + dd c ϕ such that

T n = 1 {ϕ 1 <ϕ 2 } (1 + ε) n µ + 1 {ϕ 1 >ϕ 2 } tµ
where t > 0 is taken so that the left-hand side has total mass v. Since ϕ min has minimal singularities, we can assume that ϕ ≤ ϕ min . Proposition 1.11 thus implies that

T ∧ T n-1 j ≥ (1 + ε)µ on {ϕ 1 < ϕ 2 }.
We now consider the subsets

O δ := {(1 -δ)ϕ 1 + δϕ min < (1 -δ)ϕ 2 + δϕ} ⊂ {ϕ 1 < ϕ 2 }.
Since both T and T j have full Monge-Ampère mass, Corollary 2.15 yields

X T min ∧ T n-1 j = α n (3.3)
and the generalized comparison principle (Proposition 2.2) thus implies

O δ ((1 -δ)T 2 + δT ) ∧ T n-1 j ≤ O δ ((1 -δ)T 1 + δT min ) ∧ T n-1 j for j = 1, 2. By (3.2) it follows that δ(1 + ε) O δ µ ≤ δ O δ T ∧ T n-1 j ≤ δ {ϕ 1 <ϕ 2 } T min ∧ T n-1 j .
Diving by δ > 0 and letting δ tend to 0, we infer

(1 + ε) {ϕ 1 <ϕ 2 } µ ≤ {ϕ 1 <ϕ 2 }
T min ∧ T n-1 j for j = 1, 2 by monotone convergence.

We can now play the same game with {ϕ 2 < ϕ 1 } (and a possibly different T ) to conclude

(1 + ε) {ϕ 2 <ϕ 1 } µ ≤ {ϕ 2 <ϕ 1 } T min ∧ T n-1 j ,
and we finally reach a contradiction by summing these two inequalities, which yields

(1 + ε)v ≤ X T min ∧ T n-1 j = α n = v by (3.3), using µ{ϕ 1 = ϕ 2 } = 0.
Step 2. At this point we have proved that ϕ 1 = ϕ 2 a.e. wrt MA (ϕ 1 ) = MA (ϕ 2 ). One might be tempted to use the domination principle to conclude that ϕ 2 ≤ ϕ 1 , hence ϕ 1 = ϕ 2 by symmetry. But Corollary 2.5 cannot be applied here since ϕ 2 doesn't have minimal singularities. The rest of the proof will circumvent this difficulty by using some additional cancellation.

By the existence part of the proof, we can choose a positive current T = θ + dd c ϕ such that T n is a smooth positive volume form. We normalize ϕ so that ϕ ≤ ϕ min .

Let O := {ϕ 1 < ϕ 2 }. We are going to show by descending induction on m that

O T k 1 ∧ T l 2 ∧ T m = 0 (3.4)
for every k, l, m such that k + l + m = n. The result holds for m = 0 by the first part of the proof, and the result for m = n will imply ϕ 2 ≤ ϕ 1 a.e. wrt Lebesgue measure and will conclude the proof by symmetry. Let thus m be given, and assume that (3.4) holds true for all k, l such that k + l + m = n. Pick k, l such that k + l + m + 1 = n and consider as usual the current with minimal singularities

T (j) 1 := θ 1 + dd c ϕ (j) 1 with ϕ (j) 1 = max(ϕ 1 , ϕ min -j). We introduce the plurifine open subsets O j,ε := {(1 - ε j )ϕ 1 + ε j ϕ (j) 1 + ε < (1 - ε j )ϕ 2 + ε j ϕ}. Note that O j,ε ⊂ O since ε j ϕ (j) 1 + ε ≥ ε j ϕ min ≥ ε j ϕ, so that both T k ∧ T l+1 2 ∧ T m and T k+1 1 ∧ T l 2 ∧
T m put no mass on O j,ε by induction.

Since T 1 , T 2 , T and T (j) 1 all have full Monge-Ampère mass, Corollary 2.15 yields

X T (j) 1 ∧ T k 1 ∧ T l 2 ∧ T m = α n .
The generalized comparison principle therefore implies

O j,ε ((1 - ε j )T 2 + ε j T ) ∧ T k 1 ∧ T l 2 ∧ T m ≤ O j,ε ((1 - ε j )T 1 + ε j T (j) 1 ) ∧ T k 1 ∧ T l 2 ∧ T m .
The leading terms on both sides vanish and we end up with

O j,ε T k 1 ∧ T l 2 ∧ T m+1 ≤ O T (j) 1 ∧ T k 1 ∧ T l 2 ∧ T m .
By Corollary 2.15 again

X T k+1 1 ∧ T l 2 ∧ T m = α n , thus lim j→∞ O T (j) 1 ∧ T k 1 ∧ T l 2 ∧ T m = O T k+1 1 ∧ T l 2 ∧ T m = 0.
On the other hand we clearly have

1 {ϕ 1 +ε<ϕ 2 } ≤ lim inf j→∞ 1 O j,ε
pointwise outside a pluripolar set, and Fatou's lemma thus yields

{ϕ 1 +ε<ϕ 2 } T k 1 ∧ T l 2 ∧ T m+1 = 0, hence also O T k 1 ∧ T l 2 ∧ T m+1 = 0
by monotone convergence. The induction is thus complete, and the proof of uniqueness is finally over.

L ∞ -a priori estimate

We now consider the case of measures with density in L 1+ε , ε > 0 with respect to Lebesgue measure. The goal of this section is to show how to adapt Ko lodziej's pluripotential theoretic approach to the L ∞ a priori estimates [Ko l98] to the present context of big cohomology classes. Fix an arbitrary (smooth positive) volume form dV on X.

Given a smooth representative θ of the big cohomology class α ∈ H 1,1 (X, R), we introduce the extremal function V θ := sup {ψ θ-psh, ψ ≤ 0} .

(4.1)

< 2 for each positive current T ∈ α, the uniform version of Skoda's integrability theorem together with the compactness of normalized θ-psh functions yields a constant C θ > 0 only depending on dV and θ such that

X exp(-ν -1 θ ψ)dV ≤ C θ
for all θ-psh functions ψ normalized by sup X ψ = 0 (see [START_REF] Zeriahi | Volume and capacity of sublevel sets of a Lelong class of psh functions[END_REF]). Applying this to ψ = V * K,θ -M θ (K) (which has the right normalization by (4.6)) we get

X exp(-ν -1 θ V * K,θ )dV ≤ C θ exp(-ν -1 θ M θ (K)).
On the other hand we have V * K,θ ≤ 0 on K a.e. with respect to Lebesgue measure, hence vol(K)

≤ C θ exp(-ν -1 θ M θ (K)). (4.8)
On the other hand Hölder's inequality yields

µ(K) ≤ f L 1+ε (dV ) vol(K) ε/1+ε . (4.9)
We may also assume that M θ (K) ≥ 1. Otherwise Lemma 4.2 implies Cap(K) = vol(α), and the result is thus clear in that case. By Lemma 4.2 (4.8) and (4.9) together we thus get

µ(K) ≤ f L 1+ε (dV ) exp - ε (1 + ε)ν θ Cap(K) vol(α) -1/n times C ε/1+ε θ
and the result follows since exp(-t -1/n ) = O(t 2 ) when t → 0 + . 4.2. Proof of Theorem 4.1. We first apply the comparison principle to get: Lemma 4.4. Let ϕ be a θ-psh function with full Monge-Ampère mass. Then for all t > 0 and 0 < δ < 1 we have

Cap{ϕ < V θ -t -δ} ≤ δ -n {ϕ<V θ -t} MA (ϕ).
Proof. Let ψ be a θ-psh function such that V θ ≤ ψ ≤ V θ + 1. We then have

{ϕ < V θ -t -δ} ⊂ {ϕ < δψ + (1 -δ)V θ -t -δ} ⊂ {ϕ < V θ -t}.
Since δ n MA (ψ) ≤ MA (δψ + (1δ)V θ ) and ϕ has finite Monge-Ampère energy, Proposition 2.2 yields

δ n {ϕ<V θ -t-δ} MA (ψ) ≤ {ϕ<δψ+(1-δ)V θ -t-δ} MA (δψ + (1 -δ)V θ ) ≤ {ϕ<δψ+(1-δ)V θ -t-δ} MA (ϕ) ≤ {ϕ<V θ -t} MA (ϕ)
and the proof is complete. Now set g(t) := (Cap{ϕ < V θ -t}) 1/n . Our goal is to show that g(M ) = 0 for some M under control. Indeed we will then have ϕ ≥ V θ -M on X \ P for some Borel subset P such that where Cap(P ) = 0. But it then follows in particular from Proposition 4.3 (applied to the Lebesgue measure itself) that P has Lebesgue measure zero hence ϕ ≥ V θ -M will hold everywhere.

Now since MA (ϕ) = µ it follows from Proposition 4.3 and Lemma 4.4 that

g(t + δ) ≤ C 1/n δ g(t)
2 for all t > 0 and 0 < δ < 1.

We can thus apply Lemma 2.3 in [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] which yields g(M ) = 0 for M := t 0 + 4C 1/n (see also [START_REF] Benelkourchi | A priori estimates for weak solutions of complex Monge-Ampère equations[END_REF]). Here t 0 > 0 has to be chosen so that

g(t 0 ) < 1 2C 1/n . Lemma 4.4 (with δ = 1) implies that g(t) n ≤ µ{ϕ < V θ -t + 1} ≤ 1 t -1 X |V θ -ϕ|f dV ≤ 1 t -1 f L 1+ε (dV ) ( ϕ L 1+1/ε (dV ) + V θ L 1+1/ε (dV ) )
by Hölder's inequality. Since ϕ and V θ both belong to the compact set of θ-psh functions normalized by sup X ϕ = 0, their L 1+1/ε (dV )-norms are bounded by a constant C 2 only depending on θ, dV and ε. It is thus enough to take

t 0 > 1 + 2 n-1 C 2 C f L 1+ε (dV ) .
Remark 4.5. We have already mentioned that vol(α) is continuous on the big cone. On the other hand it is easy to see that ν θ remains bounded as long as θ is C 2 -bounded. As a consequence if µ = f dV is fixed we see that the constant C in Proposition 4.3 can be taken uniform in a small C 2 -neighborhood of a given form θ 0 . We similarly conclude that M in Theorem 4.1 is uniform around a fixed form θ 0 , µ being fixed.

Remark 4.6. As in [Ko l98] Theorem 4.1 holds more generally when the density f belongs to some Orlicz class. Indeed it suffices to replace (4.9) by the appropriate Orlicz-type inequality in the proof of Proposition 4.3.

Regularity of solutions: the case of nef classes

Let α be a big cohomology class and let µ be a smooth positive volume form of total mass equal to vol(α). Let T ∈ α be the unique positive current such that T n = µ. By Theorem 4.1 T has minimal singularities, which implies in particular that T has locally bounded potentials on the Zariski open subset Amp (α), the ample locus of α. Note that the equation T n = µ then simply means that T n , which is well-defined on Amp (α) by Bedford-Taylor, satisfies T n = µ on this open subset.

If α is a Kähler class, then Amp (α) = X and Yau's theorem [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] implies that T is smooth. For an arbitrary big class α the expectation is that T is smooth Since V 0 is a θ 0 -psh function with minimal singularities (5.1) together with Lemma 5.2 imply that V tϕ E tends to +∞ near E for each t ≥ 0.

By Theorem 4.1 for each t ≥ 0 there exists a unique θ t -psh function ϕ t with minimal singularities such that

(θ t + dd c ϕ t ) n = e F ω n
(5.2) normalized by sup X ϕ t = 0. By Theorem 4.1 and Remark 4.5, there exists M > 0 such that ϕ t ≥ V t -M (5.3) for all t ≥ 0. We thus have ϕ 0 = ϕ ′ . The class of θ t is Kähler for t > 0 since the class of θ is nef. Since F has analytic singularities, Theorem 3 on p.374 of [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] implies that ϕ t is smooth on X ′ -E and ∆ϕ t is globally bounded on X ′ for each t > 0 (but of course no uniformity is claimed with respect to t).

Lemma 5.3. The normalized solutions ϕ t satisfy lim t→0 ϕ t = ϕ 0 .

Proof. The normalized quasi-psh functions ϕ t live in a compact subset of L 1 (X). By the uniqueness part of Theorem 3.1 it is thus enough to show that any limit ψ of a sequence ϕ k := ϕ t k with t k → 0 satisfies θ 0 + dd c ψ) n = e F ω n and sup X ψ = 0. The latter property follows from Hartog's lemma. To prove the former, we introduce ψ k := (sup j≥k ϕ j ) * so that ψ k is θ k -psh and decreases pointwise to ψ. As in Proposition 2.20 we get

(θ k + dd c ψ k ) n ≥ e F ω n
on X ′ -E and the result follows by continuity of the Monge-Ampère operator along decreasing sequences of bounded psh functions.

We are now going to prove that ∆ϕ t is uniformly bounded on compact subsets of X ′ -E, which will imply that ∆ϕ 0 is L ∞ loc on X ′ -E by Lemma 5.3. This will be accomplished by using Yau's poinwise computations [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF], p.350. In order to do so, we rely on Tsuji's trick [START_REF] Tsuji | Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type[END_REF]: we introduce

u t := ϕ t -ϕ E which is smooth on X ′ -E and satisfies (ω + dd c u t ) n = µ there, since θ ′ = ω -dd c ϕ E on X ′ -E. Note that u t is not quasi-psh on X ′ . Indeed we have u t → +∞ near E since ϕ t = V t + O(1) on X ′ .
Since ∆ϕ E is globally bounded on X ′ -E as was already noted, to bound ∆ϕ t is equivalent to bounding ∆u t .

We now basically follow the argument on p.350 of [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF]. By inequalities (2.18) and (2.20) on p.350 of [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] (which only depend on pointwise computations) we have e Aut ∆ t e -Aut (n + ∆u t )

≥ -An(n + ∆u t ) + (A + b ω )e -F n-1 (n + ∆ψ) n n-1 + ∆F -n 2 b ω for every A > 0 such that A + b ω > 1.
Here ∆ and ∆ t respectively denote the (negative) Laplacians associated with the Kähler forms ω and ω + dd c u t and b ω denotes the (pointwise) minimal holomorphic bisectional curvature of ω. Now b ω is globally bounded, F is bounded from above and ∆F is globally bounded on X ′ -E. We can thus find B, C, D > 0 (independent of t) such that e Aut ∆ t e -Aut (n + ∆u t ) ≥ -B(n

+ ∆u t ) + C(n + ∆u t ) n n-1 -D (5.4)
holds on X ′ -E. Since ∆u t = ∆ϕ t -∆ϕ E is smooth and globally bounded on X ′ -E and since u t tends to +∞ near E, we see that e -Cut (n + ∆u t ) achieves its maximum on X ′ -E at some point x t ∈ X ′ -E. Inequality (5.4) applied at x t thus yields

C(n + ∆u t ) n n-1 ≤ B(n + ∆u t ) + D at x t . Since n/n -1 > 1, we thus see that there exists C 1 (independent of t) such that (n + ∆u t )(x t ) ≤ C 1 . We thus get n + ∆u t ≤ C 1 exp C u t -inf X ′ -E u t
(5.5) by definition of x t (compare (2.24) on p.351 of [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF]). By (5.1) and ( 5.

3) we have -M ≤ V t -ϕ E -M ≤ ϕ t -ϕ E = u t ≤ (sup X V 1 ) -ϕ E
for 0 ≤ t ≤ 1 which shows that u t -inf X ′ -E u t is uniformly bounded from above on compact subsets of X ′ -E, and the proof is thus complete in view of (5.5)

It is a consequence of Demailly's regularization theorem that currents with minimal singularities T ∈ α in a nef and big class have identically zero Lelong numbers (cf. [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF]). Here is an example where such currents however have poles.

Example 5.4. Start with a famous example due to Serre: let E be the (flat, but not unitary flat) rank 2 vector bundle over the elliptic curve C := C/Z[i] associated to the representation π 1 (C) = Z[i] → SL(2, C) sending 1 to the identity and i to 1 1 0 1 . The ruled surface S := P(E) → C of hyperplanes of E has a section C ′ with flat normal bundle, which lies in the linear system |O E (1)|. The original point of this construction of Serre was that X -C ′ is Stein but not affine, and the reason for that is that C ′ is rigid in X despite having a non-negative normal bundle. In fact, Demailly-Peternell-Schneider have proved [START_REF] Demailly | Compact complex manifolds with numerically effective tangent bundle[END_REF] that C ′ is rigid in the very strong sense that the only closed positive current cohomologous to C ′ is C ′ itself. Now let X := P(V ) be the projective bundle of hyperplanes in V := E ⊕ A, where A is a given ample line bundle on C, and let L := O V (1) be the tautological bundle. The line bundle L is nef since E and A are nef, and it is also big since A is big. It is easy to show that the non-ample locus of L is exactly S = P(E) ⊂ P(V ) = X. But the restriction of L to S is O E (1), and positive currents can be restricted to any subvariety not entirely contained in their polar set. It follows that any positive current in the nef and big class α := c 1 (L) has poles along C ′ . 6. Singular Kähler-Einstein metrics 6.1. More Monge-Ampère equations. In this section we show how to use the apriori estimate of Theorem 4.1 and Schauder's fixed point theorem to solve Monge-Ampère equations with non-constant right-hand side.

We let as before dV be a smooth volume form on X.

Theorem 6.1. There exists a unique θ-psh function ϕ with full Monge-Ampère mass such that MA (ϕ) = e ϕ dV.

Furthermore ϕ has minimal singularities.

Since ϕ is bounded from above, the measure e ϕ µ has L ∞ -density with respect to Lebesgue measure, hence Theorem 4.1 implies that any θ-psh solution ϕ with full Monge-Ampère mass has minimal singularities.

We now proceed with the existence proof, and uniqueness will be taken care of by Proposition 6.3 below.

Proof. We can assume that dV has total mass 1. Let C be the compact convex subset of L 1 (X) consisting of all θ-psh functions ψ normalized by sup X ψ = 0. By compactness there exists C > 0 such that X e ψ dV is a normalizing constant making the total masses fit. Note that c ψ ≤ log vol(α) + C for all ψ ∈ C by (6.1). Theorem 4.1 therefore gives us a constant M > 0 independent of ψ ∈ C such that Φ(ψ) ≥ V θ -M.

Lemma 6.2. The mapping Φ : C → C is continuous.

Proof. Let ψ j → ψ be a convergent sequence in C. Upon extracting we can assume by compactness that ϕ j := Φ(ψ j ) → ϕ for some ϕ ∈ C, and also that ψ j → ψ almost everywhere. By definition of c ψ , this implies c ψ j → c ψ by dominated convergence. We claim that ϕ has full Monge-Ampère mass and satisfies MA (ϕ) = e ψ+c ψ dV . By uniqueness we will then get ϕ = Φ(ψ) as desired. Indeed since Φ(ψ j ) ≥ V θ -M for all j, it follows that also ϕ ≥ V θ -M , and in particular ϕ has full Monge-Ampère mass. Corollary 2.21 thus yields MA (ϕ) ≥ e ψ+c ψ µ, and equality follows as desired since the total masses are both equal to vol(α). By Schauder's fixed point theorem, Φ has a fixed point ψ ∈ C, and we then get a solution by setting ϕ := ψ + log c ψ . Proposition 6.3. If ϕ i , i = 1, 2 are two θ-psh functions with small unbounded locus such that MA (ϕ i ) = e ϕ i dV. Then ϕ 1 ≤ ϕ 2 + O(1) already implies ϕ 1 ≤ ϕ 2 .

Proof. By the refined comparison principle for functions with small unbounded locus explained in Remark 2.4, we get This implies that ϕ 2 ≥ ϕ 1 -ε almost everywhere, hence everywhere and the result follows.

As an immediate corollary to Theorem 6.1 we get: Corollary 6.4. Let X be a projective manifold of general type, that is with a big canonical bundle K X . Then there exists a unique singular non-negatively curved metric e -φ KE on K X satisfying the Kähler-Einstein equation (dd c φ KE ) n = e φ KE and such that X e φ KE = vol(X).

Furthermore φ KE has minimal singularities. 6.2. Comparison with previous results. We compare Corollary 6.4 with previous results and discuss the difficulties raised by the regularity issue on Amp (K X ). Ample case. When K X is ample we have Amp (K X ) = X and Aubin-Yau's theorem [START_REF] Aubin | Equations du type Monge-Ampère sur les variétés kählériennes compactes[END_REF][START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] can of course be reformulated by saying that φ KE constructed in Corollary 6.4 is smooth.

Nef and big case. Assume that K X is nef and big. It is then semiample by the base-point-free theorem, so that Amp (K X ) coincides with the degeneracy locus of the birational morphism X → X can := ProjR(K X ) and minimal singularities means locally bounded. Theorem 1 of [START_REF] Tsuji | Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type[END_REF] constructs a "canonical" psh weight φ on K X which is smooth outside Amp (K X ) and satisfies (dd c φ) n = e φ . Theorem 3.8 of [START_REF] Sugiyama | Einstein-Kähler metrics on minimal varieties of general type and an inequality between Chern numbers[END_REF] yields the additional information that φ has globally bounded Laplacian on X (hence in C 2-ε (X) for each ε > 0). Big case. If we are willing to use finite generation of the canonical ring R(K X ) [START_REF] Birkar | Existence of minimal models for varieties of log general type[END_REF] (see also [START_REF] Tsuji | Finite Generation of Canonical Rings[END_REF][START_REF] Siu | A General Non-Vanishing Theorem and an Analytic Proof of the Finite Generation of the Canonical Ring[END_REF] for more analytic approaches) let µ : Y → X, ν : Y → X can be a resolution of the graph of X X can . By the negativity lemma ([KMBook] Lemma 3.39) we have

µ * K X = ν * K Xcan + E
where E is an effective ν-exceptional Q-divisor. This decomposition is thus the Zariski decomposition of K X , and it follows that every positive current T in c 1 (K X ) satisfies µ * T = ν * S + [E] for a unique positive current S in c 1 (K Xcan ) (cf. for instance [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF]). It is then immediate to see that the Kähler-Einstein metric e -φ KE on K X constructed in Corollary 6.4 corresponds in this way to the the Kähler-Einstein metric on K Xcan constructed in [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF], Theorem 7.8.

Suppose now that we don't use the existence of the canonical model X can . Theorem 5.1 of [START_REF] Tsuji | Dynamical constructions of Kähler-Einstein metrics[END_REF] claims the existence of a psh weight φ on K X such that φ is smooth on a Zariski open subset U of X, (dd c φ) n = e φ holds on U and φ is an analytic Zariski decomposition (AZD). This property means that the length with respect to φ of every pluricanonical section is in L 2 on X (hence is implied by the stronger condition that such length functions are bounded).

Tsuji's argument essentially proceeds as follows. As in the proof of Theorem 3.1 above we consider approximate Zariski decompositions, that is we let π k : X k → X be an increasing sequence of modifications such that π * k K = A k + E k with A k ample, E k effective and E k+1 < E k (on X k+1 ), and such that lim k→∞ vol(A k ) = vol(K X ).

We may assume that π 0 is the identity.

For each k, we can use [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] as in the beginning of the proof of Theorem 3.1 to get a psh weight φ k on K X such that π * k dd c φ k = ω k + [E k ] for some Kähler form ω k in the class of A k and (dd c φ k ) n = e φ k holds on X -E 1 .

Tsuji shows that φ k is non-decreasing and locally uniformly bounded from above by using the comparison principle (compare Proposition 6.3). The weight φ := (sup k φ k ) * is thus psh and satisfies φ 0 ≤ φ k ≤ φ for all k. It follows by construction that the length with respect to φ of every pluricanonical section is L ∞ on X, so that φ is in particular an AZD. These arguments of Tsuji have also been expanded in Section 4.3 of [START_REF] Song | Canonical measures and Kahler-Ricci flow[END_REF].

Note that by monotone convergence we have It thus follows that X e φ = vol(K X ), so that the psh weight φ constructed in [START_REF] Tsuji | Dynamical constructions of Kähler-Einstein metrics[END_REF][START_REF] Song | Canonical measures and Kahler-Ricci flow[END_REF] coincides with φ KE of Corollary 6.4. As was already noted, it follows by construction that the length wrt φ of any section σ ∈ H 0 (kL) is bounded, which implies in particular that φ is an AZD in the sense of Tsuji.

On the other hand Corollary 6.4 says that φ KE has minimal singularities. As we explain below, the latter condition is strictly stronger than the former for a general big line bundle L (but a posteriori not for K X thanks to finite generation of the canonical ring). We now discuss Tsuji's approach to the smoothness of φ on X -E 0 , which unfortunately seems to encounter a difficulty that we were not able to fix. As in the proof of Theorem 5.1 above, set u k := φ kφ 0 , which is smooth on X -E 0 and satisfies (ω 0 + dd c u k ) n = e u k +F ω n 0 on X -E 0 with F such that e F ω n 0 = e φ 0 . Following the arguments on p.350 of [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] as we did in the proof of Theorem 5.1, Tsuji claims that ∆u k is uniformly bounded on compact subsets of X -E 0 (which would indeed imply that φ is smooth on X -E 0 ).

In order to apply the maximum principle to (5.4) one needs to choose A > 0 such that e -Au k (n + ∆u k ) is bounded on X -E 0 . But as opposed to the nef case the positive form ω 0 +dd c u k is just the push-forward of a form with bounded coefficients, so that it a priori acquires poles along X -E 0 (as was pointed out to us by Demailly) and it doesn't seem to be obvious to show that the poles in question can be controled by e Au k for some uniform A > 0. 6.3. Analytic Zariski decompositions vs. minimal singularities. Let L be a big line bundle on X. For each m we choose basis of sections σ This kind of weight was first introduced by Siu in [START_REF] Siu | Invariance of plurigenera[END_REF]. Note that we have ρ ≥ φ m + log ε m for each m, which implies that the length wrt ρ of any section σ ∈ H 0 (kL) is bounded on X.

The following observation was explained to us by J. P. Demailly.

Proposition 6.5. The psh weight ρ of Siu-type has minimal singularities iff the algebra R(L) = ⊕ k≥0 H 0 (kL) is finitely generated.

In order to appreciate this fact, it should be recalled R(L) is generally not finitely generated when L is big. In fact if L is nef and big for instance, then R(L) is finitely generated iff some multiple of L is base-point free. Classical constructions of Zariski and Cutkosky yield examples in dimension 2 (cf. [LazBook]). Note that Example 5.4 also yields in particular an example (in dimension 3).

Proof. One direction is clear. If we conversely assume that R(L) is not finitely generated, then Lemma 6.6 below implies that no φ m can have minimal singularities. Therefore given any sequence C m > 0 we can find for each m some point x m ∈ X such that φ m (x m ) ≤ ψ(x m ) -C m . (6.3) It thus follows from (6.2) and (6. 
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  lim k T p k = T p min as (p, p)-currents on X. The result follows.

  and the result follows by letting ε → 0 by monotone convergence. Corollary 2.3. For any two θ-psh functions ϕ, ψ we have {ϕ<ψ} MA (ψ) ≤ {ϕ<ψ} MA (ϕ) + vol(α) -X MA (ϕ).

  j ) = vol(α), Proposition 2.19 reduces us to finding a convex weight χ such that sup j X

X

  ψdV ≥ -C for all ψ ∈ C (cf.[START_REF] Guedj | Intrinsic capacities on compact Kähler manifolds[END_REF], Proposition 1.7). On the other hand since dV is a probability measure we get by convexity log X e ψ dV ≥ -C (6.1) for all ψ ∈ C.As noticed above, since e ψ dV has L ∞ density with respect to Lebesgue measure, it follows from Theorem 3.1 that for each ψ ∈ C there exists a unique Φ(ψ) ∈ C such that MA (Φ(ψ)) = e ψ+c ψ dV, where c ψ := log vol(α)

  {ϕ 2 <ϕ 1 -ε} MA (ϕ 1 ) ≤ {ϕ 2 <ϕ 1 -ε} MA (ϕ 2 ), that is {ϕ 2 <ϕ 1 -ε} e ϕ 1 dV ≤ {ϕ 2 <ϕ 1 -ε} e ϕ 2 dV.

X

  e φ = lim k→∞ X e φ k . Now (dd c φ k ) n = e φ k and it is easy to see that X (dd c φ k ) n = vol(A k ).

  psh weight on L. Upon scaling the sections we can arrange thatφ m ≤ φ m+1 ≤ ψ (6.2)for some weight ψ with minimal singularities on L.On the other hand let m≥1 ε m be a convergent series of positive numbers. Then one can consider the psh weightρ := log   m≥1 ε m e φm   .

  3) that e ρ(xm) ≤ (ε 1 + ... + ε m )e -Cm e ψ(xm) + δ m e ψ(xm) with δ m := l>m ε l . If we choose C m → +∞ fast enough to ensure that (ε 1 + ... + ε m )e -Cm ≤ δ m
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Note that V θ has minimal singularities. Of course we have V θ = 0 if (and only if) θ is semi-positive.

Theorem 4.1. Let µ = f dV be a positive measure with density f ∈ L 1+ε , ε > 0, such that µ(X) = vol(α). Then the unique closed positive current T ∈ α such that T n = µ has minimal singularities.

More precisely, there exists a constant M only depending on θ, dV and ε such that the unique θ-psh function ϕ such that MA (ϕ) = µ and normalized by sup

The whole section is devoted to the proof of this result. As mentioned above, we follow Kolodziej's approach [Ko l98]. After introducing the appropriate Monge-Ampère (pre)capacity Cap, we will estimate the capacity decay of sublevel sets {ϕ < V θ -t} as t → +∞ in order to show that actually Cap{ϕ < V θ -M } = 0 for some M > 0 under control as above, which will prove the theorem.

4.1. The Monge-Ampère capacity. We define the Monge-Ampère capacity Cap as the upper envelope of the family of all Monge-Ampère measures MA (ψ) with ψ θ-psh such that

By definition we have Cap(B) ≤ Cap(X) = vol(α).

If K is a compact subset of X, we define its extremal function by V K,θ := sup {ψ θ-psh, ψ ≤ 0 on K} .

Note that

by definition. Standard arguments show that the usc regularization V * K,θ of V K,θ is either θ-psh with minimal singularities when K is non-pluripolar, or V * K,θ ≡ +∞ when K is pluripolar. It is also a standard matter to show that MA (V * K,θ ) is concentrated on K using local solutions to the homogeneous Monge-Ampère equation on small balls in the complement of K (cf. [START_REF] Guedj | Intrinsic capacities on compact Kähler manifolds[END_REF], Theorem 4.2). It follows from the definition of V K,θ that the following maximum principle holds:

for any θ-psh function ϕ.

Finally we introduce the Alexander-Taylor capacity of K in the following guise:

so that M θ (K) = +∞ iff K is pluripolar. We then have the following comparison theorem.

Lemma 4.2. For every non-pluripolar compact subset K of X, we have

Proof. The left-hand inequality is trivial. In order to prove the right-hand inequality we consider two cases.

and the desired inequality holds in that case.

On the other hand if M := M θ (K) ≥ 1 we have

) and it follows by definition of the capacity again that

and the result follows.

Using this fact, we will now prove as in [Ko l98] that any measure with L 1+εdensity is nicely dominated by the capacity.

Proposition 4.3. Let µ = f dV be a positive measure with L 1+ε density with respect to Lebesgue measure, with ε > 0. Then there exists a constant C only depending on θ and µ such that

for all Borel subsets B of X. In fact we can take

for a constant A only depending on θ and dV .

Proof. By inner regularity of µ it is enough to consider the case where B = K is compact. We can also assume that K is non-pluripolar since µ(K) = 0 otherwise and the inequality is then trivial. Now set

the supremum ranging over all positive currents T ∈ α and all x ∈ X and ν(T, x) denoting the Lelong number of T at x. Since all Lelong numbers of ν -1 θ T are on Amp (α). By Evans-Trudinger's general regularity theory for fully non-linear elliptic equations [START_REF] Evans | Classical solutions of fully nonlinear, convex, second-order elliptic equations[END_REF][START_REF] Trudinger | Regularity of solutions of fully nonlinear elliptic equations[END_REF] it is enough to show that T has L ∞ loc coefficients on Amp (α), or equivalently that the trace measure of T has L ∞ loc -density with respect to Lebesgue measure (cf.the discussion in [B lo99]). We are unfortunately unable to prove this is general, but we can handle the following special case. The arguments are similar to those used by Sugiyama in [START_REF] Sugiyama | Einstein-Kähler metrics on minimal varieties of general type and an inequality between Chern numbers[END_REF].

Theorem 5.1. Let α be a nef and big class. Let µ be a smooth positive volume of total mass equal to vol(α) = α n . Then the positive current T ∈ α such that T n = µ is smooth on Amp (α).

Proof. Write T = θ + dd c ϕ with sup X ϕ = 0. The θ-psh function ϕ is locally bounded on Ω := Amp (α) and satisfies

on Ω ′ := π -1 Ω. Note also that ϕ ′ is a θ ′ -psh function with minimal singularities by Proposition 1.12. Now Amp (α) is covered by Zariski open subsets of the form Xπ(E) where π is as above, E is an effective R-divisor on X ′ and θ ′ is cohomologous to ω + [E] for some Kähler form ω on X ′ . We thus fix such a data, and our goal is to show that ∆ϕ ′ belongs to L ∞ loc on X ′ -E (the Laplacian being computed with respect to ω). We can find a quasi-psh function ϕ E on X ′ such that

[E] = θ ′ω + dd c ϕ E , so that ϕ E is smooth on X ′ -E and satisfies θ ′ = ωdd c ϕ E there. Since ϕ E is in particular θ-psh and ϕ ′ has minimal singularities, we have ϕ E ≤ ϕ ′ + O(1).

Upon replacing E by (1 + ε)E with 0 < ε ≪ 1 in the above construction and shifting ϕ E by a constant we can in fact assume that

for some ε > 0.

On the other hand let's write

The function e F is smooth but vanishes on the critical locus of π. Indeed F is quasi-psh (in particular bounded from above) and dd c F is equal to the integration current on the relative canonical divisor of π modulo a smooth form. In particular the Laplacian ∆F (again with respect to ω) is globally bounded on X ′ -E.

For each t ≥ 0 we consider the smooth (1, 1)-form

Note that a θ t -psh function a fortiori is θ s -psh for s ≥ t since ω ≥ 0. We set V t := V θt where the latter is the extremal θ t -psh function defined by (4.1). The proof of the following lemma is straightforward.

Lemma 5.2. The quasi-psh functions V t decrease pointwise to V 0 as t → 0.

then we get (ρψ)(x m ) ≤ log(2δ m ) for all m, which shows that we cannot have ρ = ψ + O(1).

The following fact is completely standard modulo the language used. Lemma 6.6. R(L) is finitely generated iff there exists m such that for each l ≥ m we have φ l = φ m + O(1).

Proof. Let π : X m → X be an increasing sequence of log-resolutions of the base scheme of |m!L|, so that π * m!L = M m + F m . The assumption amounts to saying that F l coincides with the pull-back of F m to X l , which is in turn equivalent to saying that every section of H 0 (X m , l!π * L) vanishes along F m . But this implies that the canonical inclusion H 0 (kM m ) → H 0 (kπ * m!L) is an isomorphism for each k, and the result follows since R(L) is finitely generated iff R(aL) is finitely generated for some integer a.