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CONTROL OF A DRONE:
STUDY AND ANALYSIS OF THE ROBUSTNESS

Kadda M. Zemalache, Lotfi Beji and Hichem Maaref

Abstract:

The work describes an automatically on-line Self-Tun-
able Fuzzy Inference System (STFIS) of a new configura-
tion of mini-flying called XSF (X4 Stationnary Flyer) drone.
A Fuzzy controller based on on-line optimization of a zero
order Takagi-Sugeno fuzzy inference system (FIS) by
a back propagation like algorithm is successfully applied.
It is used to minimize a cost function that is made up of
a quadratic error term and a weight decay term that
prevents an excessive growth of parameters. Thus, we
carried out control for helical trajectories by using the
STFIS technique. This permits to prove the effectiveness of
the proposed control law. Simulation results and a compa-
rison with a Static Feedback Linearization controller (SFL)
are presented and discussed. We studied the robustness of
the two used controllers in the presence of disturbances.
We presented the case of a engine breakdown as well as
a gust of wind and taking into account white noise
disturbances.

Keywords: self-tunable fuzzy inference system, static
feedback linearization controller, tracking control, dyna-
mic systems, drone.

1. Introduction

The past few years have witnessed a rapid growth in
the use of fuzzy logic controllers for the control of
processes, which are complex and ill defined. Most fuzzy
controllers developed till now have been of the rule-
based type, where the rules in the controller attempt to
model the operator's response to particular process
situation.

Recently, the resurgence of interest in the field of
artificial neural networks has injected a new driving
force into the fuzzy literature. The back-propagation
learning rule, which drew little attention till its
applications to artificial neural networks was discovered,
is actually an universal learning paradigm for any smooth
parameterized models, including fuzzy inference
systems. As a result, a fuzzy inference system can now
not only take linguistic information from human experts,
but also adapt itself using numerical data (in-put/output
pairs) to achieve better performance. This gives fuzzy
inference systems an edge over neural networks, which
cannot take linguistic information directly.

In autonomous wheeled robot, many developed
learning techniques have arisen in order to generate or to
tune fuzzy rules. Most of them are based on the so-called
“Neuro-Fuzzy learning algorithms” as proposed by (18;
19; 21; 22; 28; 33). These methods are well for
constructing an optimal fuzzy system model which is

used to identify the corresponding practical system.

Modeling and controlling aerial vehicles (blimps, mini
rotorcraft) are the principal preoccupation of the IBISC-
group. Within this optic, which attracted the contest of
the DGA-ONERA" was the XSF project which consists of
a drone with revolving aerofoils (2), (see Fig.1 left). Itis
equipped with four rotors where two are directionals,
what we callin the following X4 Stationary Flyer (XSF).

The XSF is an engine of 68cm x 68cm of total size and
not exceed 2kg in mass. It is designed in a cross form and
made of carbon fiber. Each tip of the cross has a rotor
including an electric brushless motor, a speed controller
and a two-blade ducted propeller.The operating principle
of the XSF can be presented thus: two rotors turn clock-
wise, and the two other rotors turn counterclockwise to
maintain the total equilibrium in yaw motion. The equi-
librium of angular velocities of all rotors done, the
Unmanned Aerial Vehicle (UAV) is either in stationary
position, or moving vertically. A characteristic of the XSF
compared to the existing quadrotors, is the swiveling of
the supports of the motors 1 and 3 around the pitching
axis thanks to two small servomotors controlling the
swiveling angles &, and &,. This swiveling ensures either
the horizontal rectilinear motion or the rotational
movement around the yaw axis or a combination of these
two movements which gives the turn (see Fig. 1 right).
This permits a more stabilized horizontal flight and
a suitable cornering. Drone XSF is a flying machine of low
dimension able to carry a small payload, in particular
a camera, intended to carry out in an autonomous way
a reconnaissance mission. In addition to the military
applications, this type of machines can also interest the
civil field, in particular the search for anybody in build-
ings in flame, the environmental protection, the natural
risk management and the management of the great
infrastructures.

Fig. 1. Conceptual form of the XSF (left), Frames attached
to the XSF (right).

1. This work is supported by the mini-flyer competition program organi-
zed by the DGA (Direction Générale des Armements) and the ONERA
(Office Nationale d'Etude et de Recherche en Aérospatiale), France.



Several recent works were completed for the design
and control in pilotless aerial vehicles domain such that
Quadrotor (25; 29; 35; 36). Also, related models for
controlling the Vertical Take-Off and Landing (VTOL)
aircraft are studied by Hauser et al (14). A model for the
dynamic and configuration stabilization of quasi-
stationary flight conditions of a four rotors VTOL, based
on Newton formalism, was studied by Hamel et al (12)
where the dynamic motor effects are incorporating and
a bound of perturbing errors was obtained for the coupled
system. Castillo et al (10) performed autonomous take-
off, hovering and landing control of a four rotors by
synthesizing a controller using the Lagrangian model
based on the Lyapunov analysis.

The stabilization problem of a four rotors rotorcraft is
also studied and tested by Castillo (9) where the nested
saturation algorithm is used, the input/output lineariza-
tion procedure (14), in (8) a proportional integral deriva-
tive (PID) controller and a linear quadratic (LQ) con-
troller were implemented and proved capable of requ-
lating the system and application of the theory of flat
systems by Beji et al (4). Mistler et al (27) developed
a dynamic modelin non linear state space representation
and used an exact linearization and non-interacting con-
trol for the global system to evaluate translational mo-
tion and yaw angle outputs. Mokhtari et al (26) proposed
an attempt to apply linear H_, outer control of helicopter
quadrotor with plant uncertainty combined with a robust
feedback linearization inner controller. Hanford et al
(15), presented a simple closed loop equipped with MEMS
(Micro-Electro-Mechanical Systems) sensors and PIC
based processing unit. Waslander et al (34) maked an
emphasis on the insufficiency of classical control
methods and proposes the integral sliding mode con-
troller associated with reinforcement learning to achieve
multi agent control. Tayebi and McGilvray (31) proposed
a new quaternion-based feedback control scheme for
exponential attitude stabilization of a quadrotor. The
proposed controller is based upon the compensation of
the Coriolis and gyroscopic torques and the use of a PD’
feedback structure, where the proportional action is in
terms of vector quaternion and the two derivative actions
are in terms of airframe angular velocity and vector
quaternion velocity. Hoffman et al (16; 17), achieved the
formation control by sliding mode technique and focused
on collision and obstacle avoidance by extracting the
state variables with a Kalman filter. Mederreg et al (24)
developed a non linear controller with observers based on
the Backstepping. The robustness of this controller is
studied, performances and stability of the suggested
controller are analyzed through simulations carried out
on the model (kinematics and dynamic equations).
In (3), Benzemrane et al adressed the classical problem
of speed estimation of an Unmanned Aerial Vehicle when
the acceleration, the angles and the angular speeds are
available for measurement. A solution has been provided
for a class of systems via the tools of adaptive obser-
vation theory with promissing results. Bestaoui et al (6)
addressed the problem of characterizing maneuvers
paths on the group of rigid body motions in 3D for a qua-
drotor. The role of the trajectory generator is to generate
a feasible time trajectory for the UAV.

Flight control methods utilizing vision systems are
also studied by (32), which exploits the Moiré patterns,
and in (1), which utilizes double cameras. Hamel and
Mahony (13) proposed a vision based controller which
performs visual servo control by positioning a camera
onto a fixed target for the hovering of a quadrotor. All the
reviewed techniques require the well knowledge of the
system dynamic model and parameters. In this paper,
a STFIS control strategy is developed based on the
systems output measures is implemented. This technique
early used for autonomous wheeled robot (22), is ada-
pted and modified for the used with the XSF.

The arrangement of this paper is as follows. The
dynamic model of the XSF drone is given in the second
section. The developed ideas of control for the XSF by the
Self-Tunable Fuzzy Inference System (STFIS) controller is
presented and compared with a Static Feedback Lineari-
zation controller (SFL) to stabilize the XSF by using the
point to point steering stabilization in the third section.
Motion planning and simulation results are introduced in
the fourth section. The robustness of the proposed
controller is then evaluated in the fifth section. Finally,
conclusion and future works are given in the last section.

2. Configuration description and modeling

Unlike regular helicopters that have variable pitch
angles, an engine has fixed pitch angle rotors and the
rotor speeds are controlled to produce the desired lift
forces. Basic motions of the XSF can described using the
figure 1 (right). Vertical motion is controlled by
collectively increasing or decreasing the power for all
motors. Lateral motion, inx direction oriny direction, is
not achieved by differentially controlling the motors
generating a pitching/rolling motion of the airframe that
inclines the collective thrust (producing horizontal
forces) and leads to lateral accelerations (9; 12). But,
two engines of direction are used to permute between the
x andy motion.

The XSF is a system consisting of four individual
electrical fans attached to a rigid cross frame. We
consider a local reference airframe R, = {G, E5, E%, ES}
at G (mass center) while the inertial frame is denoted by
R, =10, E, E,, E_} such that the vertical direction E,
axis is pointing upwards. Let the vector X = (x, y, z)
denotes the G position with respect to R,,. The rotation
of the rigid body is defined by R,,, : R, — R, where
R,,., € SO (3) is an orthogonal rotation matrix which is
defined by the An Euler angles, 6 (pitch), ¢ (roll) and
vy (yaw), regrouped in m=(¢, 6, ). An Euler angle
representation given in Eq. 1 has been chosen (37).

c,C, cs, =S,
R=[sC,S-5.C,  S8,8+CC, GCS, | @)
S.C,S,+8,C,  8.5,8,-C,C, G,S,

Where for example C and S represent cos 6 and sin 0
respectively.

2.1. Motion dynamic

We consider the translation motion of R, with
respect to R,. The position of the mass center wrt R,, is
defined by OG = (xy z)’, its time derivative gives the



velocity wrt to R, such that 49C = (i 2)", while the
second time derivative permits to get the acceleration
d£¥?:(xy2nym.1(ﬁghoy

The model is a simplified one’s. The constraints as
external perturbation and the gyroscopic torques are
neglected. The aim is to control the engine vertically
along z axis and horizontally according to x and y axis.
The vehicle dynamics, represented on Fig. 1 (right), is
modeled by the system of equations 2 (2; 5; 39).

mx = chouz - SOM3
my = (SOS‘IISG> + chn>)u2 +CSu, (2)
mz = (SOSwSm - chm)”2 + COS¢M3 - mg

m is the total mass of the vehicle. The vector u, and u,
combines the principal non conservative forces applied
to the engine airframe including forces generated by the
motors and drag terms. Drag forces and gyroscopic due to
motors effects will be not considered in this work. The lift
(collective) force u, and the direction input u, are such
that

uy | = f1é1+ faea + f3és + faeq (3)

us

with f, = K, w? where K, = 10°N.s” and o, is the angular
speed resulting of motori. Let

0 0 0
€1 =| S 163 = | S, iea=es= 10| (4)
C C 1
&1 Re &3 R R

Then we deduce:
u, :flsél +fsS§3
Us :flcil +fzcg3 +f2 +f4

&, and &, are the two internal degree of freedom of rotors
1 and 3, respectively. These variables are controlled by
dc-motors and bounded -20°< &, &, <+20°.¢,and e, are
the unit vectors along E; which imply that rotors 2 and 3
areidentical of that of a classical quadrotor (37; 38).

2.2. Rotational motion

The rotational motion of the XSF will be defined wrt to
the local frame but expressed in the inertial frame.

Where the inertia elements I, I, and I are of the
inertia matrix I, expressed in G, then I, = diag (I,
I, 1)

é = ﬁ(Te + Imws¢¢9)
6= 1=tsc; (7o + 1yySsCod” + 1,y SeCs69)  (6)

=3

With the three inputs in torque
9 =1(f2 — fa)
7o =1(f1C¢, — [3C%,) (7)
Ty = 1(f1Se, — f35%,) + 524 (f1Ce,— f3Ce, + f1— f2)

where [ is the distance from G to the rotori and K,, =
9.10°N.m.s". The equality from Eq. 6 is ensured, meaning
that:

i =g (n) " [r —Tlg () 1] (8)

Witht = (t,, 7, 7, )" as an auxiliary inputs.
And

I..Csy 0 0
e =] 0 1,CCh 0 (9)
0 0 IL.

As a first step, the model given above can be input/
output linearized by the following decoupling feedback
laws

To = —IMS¢<;5€ + ImC(ﬁg
Ty = 7Iny¢ngé2 — InyQCqbé(Z; + 1,y CoCyTy  (10)
Ty = Izz’f'w
and the decoupled dynamic model of rotation can be
written as
=7 (11)
with 7 = (FaTs7y)"

Using the system of equations Eq. 2 and Eq. 11, the
dynamic of the system is defined by
mx = SwC@Ug — S@Ug
miy = (SpSy Sy + CypCy) us + CpSpus
mz = (SeSqub — C¢S¢) Uy + CgC¢U3 —1mg (12)

0

< O D
I
<

¥

The rotational part can be easily linearized with static
feedback control laws. Then, we get:

é = Ug

¢ =us (13)
= ug

with:

Ug = ﬁ(ﬂ? + Imws¢¢6)

ug = L

..V




Remark As shown in Eq. 2, the equivalent system of
control-inputs presents five inputs U = (u,, Uy, Uy, Us,
u,), while the rotor force-inputs are of six order F = (f,,
fos [ fs Eis €5)- Then the transformation U — F is not
a diffeomorphism.

3. Advanced Strategies of control

The aim in this section is to make comparison between
model based approaches and experts analysis involving
fuzzy systems. Classical model based techniques such us
the static feedback linearization and backstepping tech-
niques have been investigated and used for stabilization
with motion planning (5; 39; 23).

3.1. Static Feedback Linearization controller

3.1.1. Controlinput for z -y motions
We propose to control the y/z motion through the input
u,/u,. So, we have the following proposition.

Proposition Consider (y, 0) €| — /2, n/2[, with the
static feedback laws.
uy = mu,CyCyt —m(v, + g)S¢C;1
ug = muy(SeCq " — Cytgytge) + (15)
+m(vs + 9)(CyCyt + Sytastgs)

The dynamic of y and z are linearly decoupled and
exponentially-asymptotically stable with the appropriate
choice of the gain controller parameters. v, and v, are
detailed in the following.

We can regroup the two dynamics as:

Y 1 S@S¢S¢ + chqg CQS¢ U9 0 )
=— - (16
2] "\ 8p8,C — 0uSs CoCuf \us) \ g
For the given conditions in y and 6 the (2 X 2) matrix
in Eq. 16 is invertible. Then a nonlinear decoupling

feedback permits to write the following decoupled linear
dynamics.

§=vy (17)
Z=v,

Then we can deduce from Eq. 17 the linear controller:

v, =%, — kL3 — ) — K2 (2 — 2,)

with the k!, kZ are the coefficients of a Hurwitz polyno-
mial. Our second interest is the (x,z) dynamics which can
be also decoupled by a static feedback law.

3.1.2. Input u2 for the motion along x

The aim here is to stabilize the dynamics of x with the
control input u,. While we keep the input u, for the
altitude z stabilization.

Proposition with the new inputs

U9 Z(Sl/,cib — S@Cws(b)_l(mUqugCg + m(l/z + g)Sa)

ug =(SypCy — SgCySy) ™' (—muy(SySeCy — CySy) +

+m(v. + 9)SyCy) (19)

The dynamic of x and z are decoupled and exponen-
tially stable. v, and v, can be deduced as in Eq. 20 (5).

T =V
Z =v, (20)
Remark To switch between the two controllers Eq. 15
and Eq. 19 continuity is recommended allowing the
avoidance of the peak phenomenon. This can be asserted
if we impose some constraints to the reference
trajectories. In order to ensure this, we take u,(y = 0) =
= u,(y = m/2) = 0 with ¢ = 6 = 0. For y = 0 one uses
(15) and for ¢ = m/2 expression Eq. 19 is considered.
As soon as we get u;(y= 0) = u,(v = n/2) = mg taking
0=0=0.

3.2. Self-Tunable Fuzzy Inference System

The formal analogy between a fuzzy inference system
and a multilayer neural network associated with optimiza-
tion algorithms is used from the retro-propagation gra-
dient algorithm have winded up in what is called a STFIS
Network.

3.2.1. Presentation of STFIS
A Sugeno type fuzzy system is determined in three
stages (30):

1. Given an input x a membership degree p is obtained
from the antecedent part of rules.

2. A truth value degree o is obtained, associated to the
premises of each rule R;:
IFx,is X, AND IFx,is X, THENu ISw,.

3. An aggregation stage to take in to account all rules by
w=> ., o;w;/ Y i_, a; permit to obtain a crisp
valueu.

These operations can be traduced by the layer struc-
ture shown in Fig. 2. Each layer, connected with others by
adjustable parameters, having a specific function.

Tayer 1 Layer 2 Layer 3 Layer 4

Fig. 2. Self-Tunable Fuzz Inference System.



3.2.2. Architecture and Learning Algorithm Architecture

In this work, we propose to generate the fuzzy control
rules by an optimization method, which is done entirely
on-line. Jordan (20) proposes the distal control method,
which is used under the name of JEAN (Jordan method
Extended for Adaptive Neurocontrol). This architecture
(Fig. 3 a) needs the used of two STFIS networks:

1. Afirst networks to identify the drone (Model).
2. Asecond networks to control the drone (Controller).

For the control of the XSF, we have used the architec-
ture known as the “mini-JEAN" as illustrated in the Fig. 3
(b). This architecture not require an emulator net-work.
It uses only one network as a controller, the learning of
which is done directly by the backpropagation of the
outputerror.

()

Trajectoy
Generation

Yr
( b) Trajectoy . \g’T{s
Generation > Colroller
de
N

Fig. 3. JEAN Learning Architecture (a), Control architecture
mini-JEAN (b).

Compared to the architecture JEAN, some equivalent
performances are obtained for the mean error in genera-
lization. On the other hand, the computing time favors
clearly mini-JEAN. Optimization of adjustable parameter
is accomplished with a version of the classic gradient
retro-propagation algorithm adapted to net structure of
Fig. 3 (right). The aim is to minimise cost function £:

E=1¢ (21)

N[ —=

where € is the difference between set point and process
output. The basic equations of the algorithm are:

wik(t) = wi(t — 1) + Awi(2) (22)
n _ n n—1 n

Awpy(t) = —nojal™" + bAw(t — 1) (23)

Where:

wis(t) - i'" parameter between i of layer 7 and j* unit of
layern-1.

1 : learning gain.

¢ : training iteration.

b : moment parameter.

&7 : error term (i*" neurone of layer n).

o'~ ! routput of j* unit of layer n-1.

The quality of solution obtained using this algorithm
depends on input learning signals, algorithm control
parameters and learning duration (number of iterations).

3.2.3. Algorithm Modification Weight Regression

The procedure is entirely done on-line on the engine.
The table of rules (weights w,) can be initially empty or
filled with an a priori knowledge. The engine acquires by
its systems output measures, calculates the error to the
back-propagated, updates the triggered rules on-line. The
weights of the table of decision are then adjusted locally
and progressively. The cost function is given by:

J=E+\Y w? (24)

where E is the classic quadratic error, w are the para-
meters (weights) to optimize parameters and A is a con-
stant that controls the growth of parameters. The second
term inJis known as weight decay and used usually in the
context of classification problems. This technique has
been analyzed in the framework of learning theory and
it was shown that is a very simple manner to imple-
ment a regularization method in a neural network in order
to optimize the compromise between the learning error
and the generalization error (7; 11). Thanks to the
classic back-propagation algorithm, the parameters are
modify as:

w(t+1) =w(t) +n(Zz2) (25)

This algorithm easily includes the effect of the second
term of the cost function J and by taking f = 2An
(regression coefficient) we obtain:

w(t+1)=w(t)+ 7)(%) — Bw(t) (26)

Since a fuzzy inference system is concerned, we adapt
this formula by multiplying 8 by the firing term of the
rule, namely o/ 0. o is the truth value of the premise
part of the triggered rule.

If we limit the optimization only on the conclusions
parameters w‘fj. Then, we get

Awi;(t) = —ndta’ + bAw];(t —1) — (27)
— i (t— 1)/ Ty o

with

5=y —y/ >, ol (28)
Where:

y,: effective output value.
y: desired output.

4. Motion planning and simulation results

The XSF is tested in simulation in order to validate
some motion planning algorithm considering the pro-
posed STFIS control laws. We have considered a total
mass equal to m = 2kg. The technical characteristics of
this flying vehicle were presented in (2). We solve the
tracking control problem using the point to point
steering stabilization (see (5; 37) for more details).

A Fuzzy controller based on an on-line optimization of
a zero order Takagi-Sugeno fuzzy inference system is
successfully applied. It is used to minimize a cost func-



tion that is made up of a quadratic error term and
a weight decay term that prevents an excessive growth of
parameters of the consequent part. The main idea is to
generate the conclusion parts (so-called weight) of the
rules automatically thanks to an optimization technique.
The used method is based on a back-propagation algo-
rithm where the parameters values are free to vary during
the optimization process. Starting with a preinitialized
rules table, when XSF begins to fly, it performs the
acquisition of the distances (observations), calculates
the cost function to back-propagation, updates the trig-
gered rules in real time, begins to move and so on. The
weights wi are then adjusted locally and progressively.
The shape of the used membership functions is triangular
and fixed in order to extract and represent the knowledge
from the final results easily. To deduce the truth value,
we use the MIN operator for the composition of the input
variables. For the control of the XSF, we use the architec-
ture known as "mini-JEAN". The universes of discourse
are normalized and shared in five fuzzy subsets for all
displacement.

The linguistic labels are defined as follows: NB:
Negative Big, NS: Negative Small, Z: approximately Zero,
PS: Positive Small and PB: Positive Big. For exmaple, the
results of the simulation are reported in the table 1 forz
displacement for helical trajectory.

Table 1. Learning weights for z displacement.

de\ e NB NS z PS PB

PB 29.71 | 30.19 | 9.31 3.84 1.15

PS 29.69 | 2931 | 10.74 | 9.77 1.96

z 39.56 | 28.85 | 19.03 | 11.42 1.8

NS 38.36 | 37.80 | 24.01 8.48 9.6

NB 39.76 | 39.98 | 28.51 8.15 9.2

Table 2. Learning linguistic table.

de\e | NB | NS z PS PB

PB B B W | VW | VW

PS B B w W# | VW

NS VB | VB | M* w w

NB VB | VB B w w

The outputs linguistic labels could be interpreteted as
follows (Fig. 4): VW: [1, 4] Very Weak, W: [8, 12] Weak,
M: [19, 24] Medium, B: [28, 31] Bigand VB: [37, 40]

Very Big.

Table 3. Expertise linguistic table.

de\e | NB | NS | Z PS PB

PB B B W | VW | VW

PS B B W | VW | VW

NS VB | VB | B w w

NB VB | VB | B w w

The table 2, illustrates the linguistic translation of
the table obtained by on-line optimization for the z
displacement for helical trajectory (Table 1). By compa-
ring the table proposed by learning and by human
expertise (table 2 and table 3), we can observe that the
two sets of linguistic rules are quite close. Two cases
(noted with*) are different and they differ from only one
linguistic concept (M instead B and W instead VW). So, we
can claim that the extracted rules are quite logical and
coherent. On the other hand, the main advantage of the
described technique is the optimization of the controller
with respect to the actual characteristics of the engine.

:u(ug)

\AY w M B VB

s

1 4 8 12 19 24 28 31 37 40 U,y

Fig. 4. Representation of the linguistic translation of the
controller u, for z displacement.
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Fig. 5. Realization of a helical trajectory (a), Inputs u,
and u, for the realization of a helical (b).



According to the figure 5 which represents the reali-
zation of a helical trajectory (a) and its inputs (b) that
our controller ensures the trajectory continuation. In the
same figure, it shows the controlled positions zxy using
STFIS controller where u; and u,, denote the command
signals for z, x ory directions respectively. Note that the
inputu, = mg at the equilibrium state is verified.

5. Controllers robustness

5.1. Disturbances with actuator/sensor failures and
wind influence

The robustness of the developed controllers are eva-
luated regarding external disturbances and performance
degradations in the case of actuator/sensor failures and
wind influence. In the case of the XSF, a resistance or
a drag force is opposed to its movement in flight. The
work produced by this force involves an additional energy
consumption at the actuators levels which limits its
maneuvering capacities in flight. This force can be ex-
pressed as follow:

Fi=1C,pAV? (29)

where F, [N] is the drag force following the i axis, V,
[m/s] is the drone velocity, A [m°] is the coss-sectional
area perpendicular to the force flow and p [Kg/m’] is the
body density. The equation 29 induced a drag coefficient
C. which is a dimensionless quantity that describes
a characteristic amount of aerodynamic drag depending
on the XSF structure and which is experimently deter-
mined by windtunnel tests. This coefficient is equal to
0.5 for the x and y directions and 0.08 for the z
displacement. The surface characteristic 4 of the XSF
drone is equal to 4 = 0.031 m’ and it density is
considered equal to p = 1.22 Kg/m’.

(a)

rotor 1

rotor 2

rotor 3

rotor 4

rotor 1

rotor 2

rotor 3

rotor 4

time (s)

Fig. 6. XSF Forces in the case of motor 4 failure att=0.5's
(a)andt=4s(b).

(@)

xdirection (m)

error (m)

w2 (N)
o

(b)

u2 (N)

time (s)

Fig. 7. Wind influence with a drag force of 1.4N (a) and
2.1N (b) for thex direction.

The Fig. 6 illustrate the simulation results in the case
of actuator 4 failure after takeoff at the instant#, = 0.5 s
and t, = 4 s in the z direction. To maintain its equili-
brium, the three remain actuators share the drone load
compensation and which practically results in an equi-
table distribution of the developed forces (F, + F, + F,
= mg at steady state). The STFIS and the SFL controllers
behavesin the same way.

The Fig. 7 present the simulation results in the case of
adrag force of F,, = 1.4N and of F,, = 2.1N according to
thex displacement. The STFIS controller exhibits chatter-
ing signal problems in the transition phase while the SFL
controller presents static errors that varies proportionally
with the drag force amplitude F,. The same observations
are found according to the two directionsy and z.

5.2. White noise disturbances

The robustness study was realized in simulations
taking into account disturbances with a white noise.
We considered two cases, in the first one, the noise power
is equal to 0.5 and 2 decibel in the second case for both
SFL and STFIS controller along the z direction.

The Fig. 8 illustrates simulation results for vertical
flight with the application of a white noise at the instant
t=8sfor SFL controller.

In the same way, Fig.9 shows the same tests with
STFIS controller. It is noticed that the error is signifi-
cantly low.

To see the behavior of two controllers according to
noise measurement, the figure Fig.10, shows the allure
vertical flight for both controller. It is noticed that the
STFIS controller gives good results compared to the SFL
controller.
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6. Conclusions

In this paper, we studied a new configuration of flyer
engine called XSF. We considered in this work the stabi-
lizing/tracking control problem for the three decoupled
displacements of a XSF and we performed experiments on
helical trajectories. We have presented and implemented
an optimization technique allowing an on-line adjust-
ment of the fuzzy controller parameters. The descent
gradient algorithm, with its capacities to adapt to
unknown situations by the means of its faculties of
optimization, and the fuzzy logic, with its capacities of
empirical knowledge modelling, are combined to control
a new configuration of flyer engine. Indeed, we have
obtained an on-line optimized Takagi-Sugeno type SIF of
zero order. This method is simple, economical and safe
since it is done on a mini-flying robots. It leads to very
quick and efficient optimization technique. A compa-
rison between the STFIS set rules and that deduced by
human expertise, shows the validity of the proposed
technique. An analysis of the STFIS (which not require
the good knowledge of the model) and the SFL (requires
the well knowledge of the system model and parameters)
controllers and their robustness regarding disturbances,
shows the advantages and the disadvantages of these
two techniques and the influence of white noise distur-
bances for z direction only. Future works will essentially
investigate the real time implementation of the STFIS
and the based-model control techniques.
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