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We establish inequalities for the eigenvalues of Schrödinger operators on compact submanifolds (possibly with nonempty boundary) of Euclidean spaces, of spheres, and of real, complex and quaternionic projective spaces, which are related to inequalities for the Laplacian on Euclidean domains due to Payne, Pólya, and Weinberger and to Yang, but which depend in an explicit way on the mean curvature. In later sections, we prove similar results for Schrödinger operators on homogeneous Riemannian spaces and, more generally, on any Riemannian manifold that admits an eigenmap into a sphere, as well as for the Kohn Laplacian on subdomains of the Heisenberg group.

Among the consequences of this analysis are an extension of Reilly's inequality, bounding any eigenvalue of the Laplacian in terms of the mean curvature, and spectral criteria for the immersibility of manifolds in homogeneous spaces.

Introduction

Universal eigenvalue inequalities date from the work of Payne, Pólya, and Weinberger in the 1950's [START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF], who considered the Dirichlet problem for the Laplacian on a Euclidean domain. In this and similar cases, the term "universal" applies to expressions involving only the eigenvalues of a class of operators, without reference to the details of any specific operator in the class. Since that time the essentially purely algebraic arguments that lead to universal inequalities have been adapted in various ways for eigenvalues of differential operators on manifolds e.g., see [START_REF] Ashbaugh | A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n[END_REF][START_REF] Cheng | Estimates on eigenvalues of Laplacian[END_REF][START_REF] Cheng | Inequalities for eigenvalues of Laplacian on domains and complex hypersurfaces in complex projective spaces[END_REF][START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF][START_REF] Harrell | Commutator bounds for eigenvalues with applications to spectral geometry[END_REF][START_REF] Leung | On the consecutive eigenvalues of the Laplacian of a compact minimal submanifold in a sphere[END_REF][START_REF] Li | Eigenvalue estimates on homogeneous manifolds[END_REF][START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of eigenvalues of nonelliptic operators[END_REF][START_REF] Tai | Minimal imbedding of compact symmetric spaces of rank one[END_REF][START_REF] Yang | Eigenvalues of the Laplacian of a compact Riemann surfaces and minimal submanifolds[END_REF]). For a review of universal eigenvalue inequalities, we refer to [START_REF] Ashbaugh | Universal eigenvalue bounds of Payne-Pólya[END_REF][START_REF] Ashbaugh | A unified approach to universal inequalities for eigenvalues of elliptic operators[END_REF].) In particular, Ashbaugh and Benguria discussed universal inequalities for Laplacians on subdomains of hemispheres in [START_REF] Ashbaugh | A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n[END_REF], and Cheng and Yang have treated the case of Laplacians on minimal submanifolds of spheres [START_REF] Cheng | Estimates on eigenvalues of Laplacian[END_REF].

When either the geometry is more complicated or a potential energy is introduced, analogous inequalities must contain appropriate modifications. Our point of departure is a recent article [START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF], in which the eigenvalues of Schrödinger operators on hypersurfaces were studied and some trace identities and sharp inequalities were presented, containing the mean curvature explicitly. The goal of the present article is to further study the relation between the spectra of Laplacians or Schrödinger operators and the local differential geometry of submanifolds of arbitrary codimension. The approach is based on an algebraic technique which allows us to unify and extend many results in the literature (see [START_REF] Ashbaugh | Universal eigenvalue bounds of Payne-Pólya[END_REF][START_REF] Ashbaugh | A unified approach to universal inequalities for eigenvalues of elliptic operators[END_REF][START_REF] Ashbaugh | On Yang-type bounds for eigenvalues with applications to physical and geometric problems[END_REF][START_REF] Ashbaugh | On Harrell-Stubbe type inequalities for the discrete spectrum of aself-adjoint operator[END_REF][START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF][START_REF] Harrell | Commutator bounds for eigenvalues with applications to spectral geometry[END_REF][START_REF] Leung | On the consecutive eigenvalues of the Laplacian of a compact minimal submanifold in a sphere[END_REF][START_REF] Li | Eigenvalue estimates on homogeneous manifolds[END_REF][START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of eigenvalues of nonelliptic operators[END_REF][START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF][START_REF] Yang | An estimate of the difference between consecutive eigenvalues[END_REF][START_REF] Yang | Eigenvalues of the Laplacian of a compact Riemann surfaces and minimal submanifolds[END_REF] and Remarks 3.1, 4.1 5.1). There is an extension of the results of [START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF] to the case of submanifolds of codimension greater than one, and because of the appearance of the mean curvature, we are able to generalize Reilly's inequality [START_REF] Reilly | On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space[END_REF][START_REF] Soufi | Immersions minimales, première valeur propre du Laplacien et volume conforme[END_REF][START_REF] Soufi | Une inégalité du type "Reilly" pour les sous-variétés de l'espace hyperbolique[END_REF][START_REF] Soufi | Second eigenvalue of Schr?dinger operators and mean curvature[END_REF] by bounding each eigenvalue of the Laplacian in terms of the mean curvature. In addition we derive the modifications necessary when the domain is contained in a submanifold of spheres, projective spaces, and certain other types of spaces. Finally, we are able to obtain some universal inequalities in the rather different context of the Kohn Laplacian on subdomains of the Heisenberg group.

Let us point out the following phenomenon which appears as a particular case of our results in Section 2 : For any compact submanifold M of a Euclidean space, the eigenvalues of the operator

-∆ + |h| 2 4 ,
where h is the mean curvature vector field of M, satisfy exactly the same universal inequalities of PPW, HP and Yang type, as those satisfied by the eigenvalues of the Dirichlet Laplacian of a Euclidean domain. This result is to be compared with the fact that when we consider the Laplace operator -∆ all alone (that is without the geometric potential term), then any finite sequence of positive numbers can be realized as the beginning of the spectrum of -∆ on a compact submanifold of a Euclidean space with given topology (indeed, this is a direct consequence of the well-known construction of Colin de Verdière [START_REF] De Verdière | Construction de laplaciens dont une partie finie du spectre est donnée[END_REF] and the famous Nash-Moser isometric embedding theorem). This means that there exist no universal inequalities for the eigenvalues of the Laplace operator on compact submanifolds. Roughly speaking, one can say that, while the spectral behavior of the Laplace operator on compact submanifolds is "unforseable", the spectral behavior of the operator -∆ + |h| 2 4 is as rigid as the Dirichlet Laplacian on Euclidean domains.

The existence of universal eigenvalue inequalities appears at first to run counter to the well-known construction of Colin de Verdière [START_REF] De Verdière | Construction de laplaciens dont une partie finie du spectre est donnée[END_REF], allowing one to specify an arbitrary finite number of eigenvalues of a Laplacian or a Schrödinger operator if one is free to choose the metric or the potential energy on a manifold. From that point of view, universal eigenvalue inequalities like the ones in this article either imply bounds on the potential energy in relation to the mean curvature, or else necessary conditions for the embeddability of the Colin de Verdière examples as submanifolds of Euclidean or other symmetric spaces.

Let M n be a compact Riemannian manifold of dimension n, possibly with nonempty boundary ∂M, and let ∆ be the Laplace-Beltrami operator on M. In the case where ∂M = ∅, Dirichlet boundary conditions apply (in the weak sense [START_REF] Davies | Spectral Theory and Differential Operators[END_REF]). For any bounded real-valued potential q on M, the Schrödinger operator H = -∆ + q has compact resolvent (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]Theorem IV.3.17] and observe that a bounded q is relatively compact with respect to ∆). The spectrum of H consists of a nondecreasing, unbounded sequence of eigenvalues with finite multiplicities [START_REF] Chavel | Eigenvalues in Riemannian Geometry[END_REF][START_REF] Davies | Spectral Theory and Differential Operators[END_REF]:

Spec(-∆ + q) = {λ 1 < λ 2 ≤ λ 3 ≤ • • • ≤ λ i ≤ • • • }.
Notice that when ∂M = ∅ and q = 0, the zero eigenvalue is indexed by 1, that is, λ 1 = 0. The L 2 -normalized eigenfunctions will be denoted {u i }, so that Hu i = λ i u i .

To avoid technicalities, we suppose throughout that q is bounded, and that the mean curvature of the submanifolds under consideration is defined everywhere and bounded. Extensions to a wider class of potentials and geometries allowing singularities would not be difficult.

Submanifolds of R m

In this section M is either a closed Riemannian manifold or a bounded domain in a Riemannian manifold that can be immersed as a submanifold of dimension n of R m . The main theorem directly extends a result of [START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF], in which part (I) descends ultimately from a result of H. C. Yang for Euclidean domains [START_REF] Yang | An estimate of the difference between consecutive eigenvalues[END_REF][START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF][START_REF] Ashbaugh | A unified approach to universal inequalities for eigenvalues of elliptic operators[END_REF][START_REF] Ashbaugh | On Yang-type bounds for eigenvalues with applications to physical and geometric problems[END_REF]: Theorem 2.1 Let X : M -→ R m be an isometric immersion. We denote by h the mean curvature vector field of X (i.e the trace of its second fundamental form). For any bounded potential q on M, the spectrum of H = -∆ + q (with Dirichlet boundary conditions if ∂M = ∅) must satisfy, ∀k ≥ 1,

(I) n k i=1 (λ k+1 -λ i ) 2 ≤ 4 k i=1 (λ k+1 -λ i ) (λ i + δ i ) (II) 1 + 2 n 1 k k i=1 λ i + 2 n 1 k k i=1 δ i -D nk ≤ λ k+1 ≤ 1 + 2 n 1 k k i=1 λ i + 2 n 1 k k i=1 δ i + D nk ,
where u i are the L 2 -normalized eigenfunctions, δ i := M |h| 2 4q u 2 i , and

(III) D nk := 1 + 2 n 1 k k 1 λ i + 2 n 1 k k i=1 δ i 2 -1 + 4 n 1 k k 1 λ 2 i - 4 n 1 k k i=1 λ i δ i ≥ 0.
Theorem 2.1 can be simplified to eliminate all dependence on u i with elementary estimates such as

inf |h| 2 4 -q ≤ δ i ≤ sup |h| 2 4 -q . ( 2.1) 
Thus:

Corollary 2.1 Under the circumstances of Theorem 2.1, ∀k ≥ 1,

(I a) n k i=1 (λ k+1 -λ i ) 2 ≤ 4 k i=1 (λ k+1 -λ i ) (λ i + δ) (II a) λ k+1 ≤ 1 + 4 n 1 k k i=1 λ i + 4δ n .
where δ := sup |h| 2 4q .

Corollary 2.1, proved below, can be restated as a criterion for the immersibility of a manifold in R m :

Corollary 2.2 Suppose that {λ i } are the eigenvalues of the Laplace-Beltrami operator on an abstract compact Riemannian manifold M of dimension n. If M is isometrically immersed in R m , then the mean curvature satisfies

h 2 ∞ ≥ nλ k+1 - (n + 4) k k i=1 λ i (2.2)
for each k.

Corollary 2.2 is representative of a large family of necessary conditions for immersibility in terms of the eigenvalues of Laplace-Beltrami and Schrödinger operators on M, which will not be presented in detail in this article. (See [START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF] for various sum rules on which such constraints can be based.)

Proof of Theorem 2.1. For a smooth function G on M, we will denote by G the multiplication operator naturally associated with G. To prove Theorem 2.1 we first need the following lemma involving the commutator of H and G, [H, G] := HG -GH.

Lemma 2.1 For any smooth G and any positive integer k one has

k i=1 (λ k+1 -λ i ) 2 [H, G]u i , Gu i L 2 ≤ k i=1 (λ k+1 -λ i ) [H, G]u i 2 L 2 (2.3)
This lemma dates from [START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF]Theorem 5], and in this form appears in [START_REF] Ashbaugh | A unified approach to universal inequalities for eigenvalues of elliptic operators[END_REF]Theorem 2.1]. Variants can be found in [START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF]Corollary 4.3] and [START_REF] Levitin | Commutators, spectral trace identities and universal estimates for eigenvalues[END_REF]Corollary 2.8]. Now, let X 1 , . . . , X m be the components of the immersion X. A straightforward calculation gives

[H, X α ]u i = [-∆, X α ]u i = (-∆X α )u i -2∇X α • ∇u i .

It follows by integrating by parts

that [H, X α ]u i , X α u i L 2 = M |∇X α | 2 u 2 i . Thus α [H, X α ]u i , X α u i L 2 = α M |∇X α | 2 u 2 i = n M u 2 i = n.
On the other hand, we have

[H, X α ]u i 2 L 2 = M ((-∆X α )u i -2∇X α • ∇u i )) 2 .
Since X is an isometric immersion, it follows that h = (∆X 1 , . . . , ∆X m ),

α (∇X α • ∇u i ) 2 = |∇u i | 2 and α (-∆X α )u i ∇X α •∇u i = h•∇u 2 i = 0. Using all these facts, we get α [H, X α ]u i 2 L 2 = M |h| 2 u 2 i + 4 M |∇u i | 2 , (2.4) 
as in [START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF]. Then

M |∇u i | 2 = M u i (-∆ + q)u i - M qu 2 i = λ i - M qu 2 i .
Using Lemma 2.1 we obtain

n k i=1 (λ k+1 -λ i ) 2 ≤ k i=1 (λ k+1 -λ i ) M (|h| 2 -4q)u 2 i + 4λ i
which proves assertion (I) of Theorem 2.1.

From assertion (I) we get a quadratic inequality in the variable λ k+1 :

kλ 2 k+1 -λ k+1 2 + 4 n k i=1 λ i + 4 n k i=1 δ i + 1 + 4 n k i=1 λ 2 i + 4 n k i=1 λ i δ i ≤ 0 (2.5)
The roots of this quadratic polynomial are the bounds in (II). The existence and reality of λ k+1 imply statement (III). 2

Proof of Corollary 2.1. To derive (II a) from Theorem 2.1(II), it is simply necessary to replace δ i by δ, and to note that the quantity D nk is bounded above by

1 + 2 n 1 k k i=1 λ i + 2δ n 2 -1 + 4 n 1 k k i=1 λ 2 i - 4δ n 1 k k i=1 λ i , which, since k i=1 λ i ≤ k k i=1 λ 2 i , implies that D nk ≤ 2 n 1 k k i=1 λ i 2 + 2δ n 2 + 8δ n 2 1 k k i=1 λ i = 2 n 1 k k i=1 λ i + δ 2n 2 ,
with which the upper bound in (II) reduces to the right member of (II a). 2

We observe next that Theorem 2.1 enables us to recover Reilly's inequality for λ 2 of the Laplace-Beltrami operator on closed submanifolds [START_REF] Soufi | Une inégalité du type "Reilly" pour les sous-variétés de l'espace hyperbolique[END_REF][START_REF] Reilly | On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space[END_REF]. Indeed, applying (I) with k = 1, λ 1 = 0 and u 1 = V -1 2 , where V is the volume of M, we get

λ 2 ≤ 4 n δ 1 = 1 nV M |h| 2 ≤ 1 n h 2 ∞ .
Moreover, Theorem 2.1 allows extensions of Reilly's inequality to higher order eigenvalues. For example, the following corollary can be derived easily from Corollary 2.1(II a) by induction on k.

Corollary 2.3 Under the circumstances of Theorem 2.1, ∀k ≥ 2,

λ k ≤ 4 n + 1 k-1 λ 1 + C R (n, k) h 2 ∞ , where C R (n, k) = 1 4 ( 4 n + 1) k-1 -1 .
In particular, when M is closed and q = 0,

λ k ≤ C R (n, k) h 2 ∞ . (2.6)
The explicit value for the generalized Reilly constant C R (n, k) given in this corollary is likely far from optimal. We regard the sharp value of C R (n, k) as an interesting open problem. In the case of a minimally embedded submanifold of a sphere, Cheng and Yang state a bound on λ k ([8], eq. (1.23)) that scales like k 2 n as in the Weyl law. We conjecture that C R (n, k) is sharply bounded by a constant times k 2 n when q = 0 and that when q = 0, C R (n, k) is correspondingly bounded by a semiclassical expression, as is the case for Schrödinger operators on flat spaces. (See, for instance, [START_REF] Thirring | Quantum Mechanics of Atoms and Molecules, A Course in Mathematical Physics[END_REF], section 3.5 and [START_REF]Inequalities, Selecta of Elliott H. Lieb[END_REF], part III.)

In [START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF] it was argued that simplifications and optimal inequalities are obtained in some circumstances where M is a hypersurface and the potential q depends quadratically on curvature, a circumstance that arises naturally in the physics of thin structures ( [START_REF] Exner | Electrons in semiconductor microstructures: a challenge to operator theorists[END_REF][START_REF] Exner | Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature[END_REF] and references therein). In this spirit we close the section with some remarks for Schrödinger operators H g := -∆ + g|h| 2 , for a real parameter g. As was already observed in [START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF], in view of (2.1), simplifications occur when g = 1 4 , rendering the quantities δ and δ j given above zero.

Corollary 2.4 Assume M is closed, |h| is bounded, and H is of the form H g , where g is an arbitrary real number. The inequalities (I), (II), and (III), in Theorem 2.1 are saturated (i.e., equalities) for all k if M is a sphere.

Proof. We begin with the case of the Laplacian, g = 0, for which the eigenvalues of the standard sphere S n are known [START_REF] Müller | Spherical Harmonics[END_REF] to be {ℓ(ℓ + n -1)}, ℓ = 0, 1, . . . , with multiplicities 1 for ℓ = 0; n + 1 for ℓ = 1; and . For this corollary it suffices to consider only the values of k at gaps such that λ k+1 > λ k , because for any k such that λ k+1 = λ k , the two sides of Inequalities (I) are the same as for the next lower value k -such that λ k -< λ k -+1 = λ k ; the additional contributions are all equal to 0.

µ n,ℓ := n+ℓ n -n+ℓ-2 n = (n(n+1)...(n+ℓ-2))(n+2ℓ-1) ℓ! thereafter. Thus λ 1 = 0, λ 2 = • • • = λ n+2 = n,
For the sphere, δ j = n 2 4 , and an exact calculation shows, remarkably, that 

(m-ℓ+1)(n+m+ℓ)(2ℓ+n-1)(4ℓ(ℓ-1)-n 2 (m-ℓ)-n(m 2 +m-ℓ(ℓ+3))(n+ℓ-2)!) ℓ! ,
which evaluates identically to 0. (Algebra was performed with the aid of Mathematica TM .) This establishes equality in (I), and consequently (II) and (III) for this case. If M = S n , |h| 2 = n 2 is a constant, and if gn 2 is added to -∆, then each eigenvalue is shifted by the same amount and the left side of (I) is unchanged, as is the first factor in the sum on the right. As for the other factor, it becomes λ i +δ j = ℓ(ℓ+n-1)+gn 2 + n 2 4 -gn 2 and is likewise unchanged. It follows that the case of equality for H g on the standard sphere persists for all g. 2

3 Submanifolds of spheres and projective spaces Theorem 2.1, together with the standard embeddings of sphere and projective spaces by means of the first eigenfunctions of their Laplacians, enables us to obtain results for immersed submanifolds of the latter. In what follows, F will denote the field R of real numbers, the field C of complex numbers, or the field Q of quaternions. The m-dimensional projective space over F will be denoted by FP m ; we endow it with its standard Riemannian metric so that the sectional curvature is either constant and equal to 1 (F = R) or pinched between 1 and 4 (F = C or Q). For convenience, we introduce the integers

d(F) = dim R F =      1 if F = R 2 if F = C 4 if F = Q. and c(n) = n 2 , if M = S m 2n(n + d(F)), if M = FP m . (3.1)
Theorem 3.1 Let M be S m or FP m and let X : M -→ M be an isometric immersion of mean curvature h. For any bounded potential q on M, the spectrum of H = -∆ g + q (with Dirichlet boundary conditions if ∂M = ∅) must satisfy, ∀k ∈ N, k ≥ 1,

(I) n k 1 (λ k+1 -λ i ) 2 ≤ 4 k i=1 (λ k+1 -λ i ) λ i + δi , where δi := 1 4 M (|h| 2 + c(n) -4q)u 2 i , (II) λ k+1 ≤ 1 + 2 n 1 k k i=1 λ i + 2 n 1 k k i=1 δi + Dnk
where

Dnk := 1 + 2 n 1 k k 1 λ i + 2 n 1 k k i=1 δi 2 -1 + 4 n 1 k k 1 λ 2 i - 4 n 1 k k i=1 λ i δi ≥ 0,
A lower bound is also possible along the lines of Theorem 2.1. As in the previous section, the following simplifications follow easily:

Corollary 3.1 With the notation of Theorem 3.1 one has, ∀k ≥ 1,

λ k+1 ≤ 1 + 4 n 1 k k i=1 λ i + 4 n δ,
where δ :

= 1 4 sup (|h| 2 + c(n) -4q).
Moreover, as in the discussion for Corollary 2.4, when M is a submanifold of a sphere or projective space, a simplification occurs in Theorem 3.1 and Corollary 3.1 when q(x) = 1 4 (|h| 2 + c(n)), in that the curvature and potential do not appear explicitly at all. Remark 3.1 Theorems 2.1 and 3.1 and Corollaries 2.1 and 3.1 unify and extend many results in the literature (see [START_REF] Ashbaugh | Universal eigenvalue bounds of Payne-Pólya[END_REF][START_REF] Ashbaugh | A unified approach to universal inequalities for eigenvalues of elliptic operators[END_REF][START_REF] Ashbaugh | On Yang-type bounds for eigenvalues with applications to physical and geometric problems[END_REF][START_REF] Ashbaugh | On Harrell-Stubbe type inequalities for the discrete spectrum of aself-adjoint operator[END_REF][START_REF] Harrell | Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators[END_REF][START_REF] Harrell | Commutator bounds for eigenvalues with applications to spectral geometry[END_REF][START_REF] Leung | On the consecutive eigenvalues of the Laplacian of a compact minimal submanifold in a sphere[END_REF][START_REF] Li | Eigenvalue estimates on homogeneous manifolds[END_REF][START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of eigenvalues of nonelliptic operators[END_REF][START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF][START_REF] Yang | An estimate of the difference between consecutive eigenvalues[END_REF][START_REF] Yang | Eigenvalues of the Laplacian of a compact Riemann surfaces and minimal submanifolds[END_REF] and the references therein). In particular, the recent results of Cheng and Yang [START_REF] Cheng | Estimates on eigenvalues of Laplacian[END_REF] and [START_REF] Cheng | Inequalities for eigenvalues of Laplacian on domains and complex hypersurfaces in complex projective spaces[END_REF] concerning the eigenvalues of the Laplacian on -a domain or a minimal submanifold of S m -a domain or a complex hypersurface of CP m respectively, appear as particular cases of Theorem 3.1. Recall that a complex submanifold of CP m is automatically minimal (that is, h = 0).

Proof of Theorem 3.1. We will treat separately the cases M = S m and M = FP m . Immersed submanifolds of a sphere: Let M = S m and denote by i the standard embedding of S m into R m+1 . We have

|h(i • X)| 2 = |h(X)| 2 + n 2 .
Applying Theorem 2.1 to the isometric immersion i • X : (M, g) → R m+1 , we obtain the result.

Immersed submanifolds of a projective space:

First, we need to recall some facts about the first standard embeddings of projective spaces into Euclidean spaces (see for instance [START_REF] Chen | On the first eigenvalue of Laplacian of compact minimal submanifolds of rank one symmetric spaces[END_REF][START_REF] Sakamoto | Planar geodesic immersions[END_REF][START_REF] Tai | Minimal imbedding of compact symmetric spaces of rank one[END_REF] for details). Let M m+1 (F) be the space of (m + 1) × (m + 1) matrices over F and set H m+1 (F) = {A ∈ M m+1 (F) | A * := t Ā = A} the subspace of Hermitian matrices. We endow M m+1 (F) with the inner product given by

A, B = 1 2 tr(A B * ).
For A, B ∈ H m+1 (F), one simply has A, B = 1 2 tr(A B). The first standard embedding ϕ : FP m → H m+1 (F) is defined as the one induced via the canonical fibration S (m+1)d-1 → FP m (d := d(F)), from the natural immersion ψ :

S (m+1)d-1 ⊂ F m+1 -→ H m+1 (F) given by ψ(z) =     |z 0 | 2 z 0 z1 • • • z 0 zm z 1 z0 |z 1 | 2 • • • z 1 zm • • • • • • • • • • • • z m z0 z m z1 • • • |z m | 2     .
The embedding ϕ is isometric and the components of ϕ -1 m+1 I are eigenfunctions associated with the first eigenvalue of the Laplacian of FP m (see, for instance, [START_REF] Tai | Minimal imbedding of compact symmetric spaces of rank one[END_REF] for details). Hence, ϕ(FP m ) is a minimal submanifold of the hypersphere S m/2(m + 1) of H m+1 (F) centered at 1 m+1 I.

Lemma 3.1 Let X : M → FP m be an isometric immersion and let h and h ′ be the mean curvature vector fields of the immersions X and ϕ • X respectively. Then we have

|h ′ | 2 = |h| 2 + 4n(n + 2) 3 + 2 3 i =j K(e i , e j )
where K is the sectional curvature of FP m and (e i ) i≤n is a local orthonormal frame tangent to X(M).

We refer to [START_REF] Chen | On the first eigenvalue of Laplacian of compact minimal submanifolds of rank one symmetric spaces[END_REF][START_REF] Sakamoto | Planar geodesic immersions[END_REF], or [START_REF] Tai | Minimal imbedding of compact symmetric spaces of rank one[END_REF] for a proof of this lemma. Now, from the expression of the sectional curvature of FP m , ∀i = j we get

• K(e i , e j ) = 1 if F = R. • K(e i , e j ) = 1+3 (e i • Je j ) 2 , where J is the almost complex struc- ture of CP m , if F = C. • K(e i , e j ) = 1+ 3 r=1 3 (e i • J r e j ) 2 , where (J 1 , J 2 , J 3 ) is the almost quaternionic structure of QP m , if F = Q.
Thus in the case of RP m , we obtain |h ′ | 2 = |h| 2 + 2n(n + 1). For CP m , we get

|h ′ | 2 = |h| 2 + 2n(n + 1) + 2 i,j (e i • Je j ) 2 = |h| 2 + 2n(n + 1) + 2 J T 2 ≤ |h| 2 + 2n(n + 2), (3.2)
where J T is the tangential part of the almost complex structure J of CP m . Indeed, we clearly have J T 2 ≤ n, where the equality holds if and only if X(M) is a complex submanifold of CP m . For the case of QP m , we obtain similarly (3.3) where (J T r ) 1≤r≤3 are the tangential components of the almost quaternionic structure of QP m . The equality in (3.3) holds if and only if n ≡ 0 (mod 4) and X(M) is an invariant submanifold of QP m .

|h ′ | 2 = |h| 2 + 2n(n + 1) + 2 i,j 3 r=1 (e i • J r e j ) 2 = |h| 2 + 2n(n + 1) + 2 3 r=1 J T r 2 ≤ |h| 2 + 2n(n + 4),
To finish the proof of Theorem 3.1, it suffices to apply Theorem 2.1 to the isometric immersion ϕ•X of M in the Euclidean space H m+1 (F) using the inequalities (3.2) and (3. 

(n) = 2n(n + 2 -1 n ), -X(M) is totally real (that is J T = 0), then c(n) can be replaced by c ′ (n) = 2n(n + 1).
Indeed, under each one of these assumptions, the estimate of J T 2 by n (see the inequality (3.2) above) can be improved by elementary calculations.

Manifolds admitting spherical eigenmaps

Let (M, g) be a compact Riemannian manifold. A map

ϕ = (ϕ 1 . . . , ϕ m+1 ) : (M, g) -→ S m
is termed an eigenmap if its components ϕ 1 . . . , ϕ m+1 are all eigenfunctions associated with the same eigenvalue λ of the Laplacian of (M, g).

Equivalently, an eigenmap is a harmonic map with constant energy density ( α |∇ϕ α | 2 = λ) from (M, g) into a sphere. In particular, any minimal and homothetic immersion of (M, g) into a sphere is an eigenmap. Moreover, a compact homogeneous Riemannian manifold without boundary admits eigenmaps for all the positive eigenvalues of its Laplacian (see for instance [START_REF] Li | Eigenvalue estimates on homogeneous manifolds[END_REF]). We still denote by {u i } a complete L 2 -orthonormal basis of eigenfunctions of H associated to {λ i }.

Theorem 4.1 Let λ be an eigenvalue of the Laplacian of (M, g) and assume that (M, g) admits an eigenmap associated with the eigenvalue λ. Then, for any bounded potential q on M, the spectrum of H = -∆ g + q (with Dirichlet boundary conditions if ∂M = ∅) must satisfy, ∀k ∈ N, k ≥ 1,

(I) k 1 (λ k+1 -λ i ) 2 ≤ k i=1 (λ k+1 -λ i ) λ + 4 λ i - M qu 2 i . (II) λ k+1 ≤ (1 + 2 n ) 1 k k i=1 λ i + (λ -4 inf q) 2n + Dnk 2nk .
where 

Dnk = 2(n + 2) k 1 λ i + k(λ -inf q) 2 -4nk (n + 4) k 1 λ 2 i + (λ -inf q)A
G = ϕ α , α = 1, 2, . . . , m + 1, to obtain α k i=1 (λ k -λ i ) 2 [H, ϕ α ]u i , ϕ α u i L 2 ≤ α k i=1 (λ k -λ i ) [H, ϕ α ]u i 2 L 2 . A direct computation gives [H, ϕ α ]u i = λϕ α u i -2∇ϕ α • ∇u i and [H, ϕ α ]u i , ϕ α u i L 2 = λ M ϕ 2 α u 2 i - 1 2 M ∇ϕ 2 α • ∇u 2 i .
Summing up, we obtain

α [H, ϕ α ]u i , ϕ α u i L 2 = λ, since α ϕ 2 α is constant. Since α |∇ϕ α | 2 = λ and M |∇u i | 2 = λ i - M qu 2 i , the same kind of calculation yields α [H, ϕ α ]u i 2 L 2 = λ 2 + 4 α M (∇ϕ α • ∇u i ) 2 ≤ λ 2 + 4 M α |∇ϕ α | 2 |∇u i | 2 = λ λ + 4 λ i - M qu 2 i .
In conclusion, we have

λ k 1 (λ k+1 -λ i ) 2 ≤ k i=1 (λ k+1 -λ i ) λ 2 + 4λ λ i - M qu 2 i ,
which gives the first assertion of Theorem 4.1. We derive the second assertion as in the proof of Theorem 2.1. 2

Applications to the Kohn Laplacian on the Heisenberg group

Let us recall that the 2n + 1-dimensional Heisenberg group H n is the space R 2n+1 equipped with the non-commutative group law

(x, y, t)(x ′ , y ′ , t ′ ) = x + x ′ , y + y ′ , t + t ′ + 1 2 ( x ′ , y R n -x, y ′ R n ),
where x, x ′ , y, y ′ ∈ R n , t and t ′ ∈ R. Its Lie algebra H n has as a basis the vector fields

T = ∂ ∂t , X i = ∂ ∂x i + y i 2 ∂ ∂t , Y i = ∂ ∂y i - x i 2 ∂ ∂t ; i ≤ n .
We observe that the only non-trivial commutators are [X i , Y j ] = -T δ ij , i, j = 1, • • • , n. Let ∆ H n denote the real Kohn Laplacian (or the sublaplacian associated with the basis

{X 1 , • • • , X n , Y 1 , • • • , Y n }): ∆ H n = n i=1 X 2 i + Y 2 i = ∆ R 2n xy + 1 4 (|x| 2 + |y| 2 ) ∂ 2 ∂t 2 + ∂ ∂t n i=1 y i ∂ ∂x i -x i ∂ ∂y i .
We shall be concerned with the following eigenvalue problem :

-∆ H n u = λu in Ω u = 0 on ∂Ω. (5.1)
where Ω is a bounded domain of the Heisenberg group H n with smooth boundary. It is known that the Dirichlet problem (5.1) has a discrete spectrum. The Kohn Laplacian dates from [START_REF] Kohn | Boundaries of complex manifolds[END_REF], and the problem (5.1) has been studied, e.g., in [START_REF] Jerison | The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I[END_REF][START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of eigenvalues of nonelliptic operators[END_REF]. We denote its eigenvalues by

0 < λ 1 ≤ λ 2 ≤ • • • ≤ λ k • • • → +∞,
and orthonormalize its eigenfunctions u 1 , u 2 , • • • ∈ S 1,2 0 (Ω) so that, ∀i, j ≥ 1,

u i , u j L 2 = Ω u i u j dx dy dt = δ ij .
Here, S 1,2 (Ω) denotes the Hilbert space of the functions u ∈ L 2 (Ω) such that X i (u), Y i (u) ∈ L 2 (Ω), and S 1,2 0 denotes the closure of C ∞ 0 (Ω) with respect to the Sobolev norm Now, using the skew-symmetry of X α (resp. Y α ), we have

Ω X α (u i ) x α u i = - Ω u i X α (x α u i ) = - Ω u 2 i - Ω X α (u i )x α u i
and the same identity holds with y α and Y α . Therefore,

-2 Ω X α (u i )x α u i = -2 Ω Y α (u i )y α u i = Ω u 2 i = 1.
We put these identities in (5.2) and obtain the first assertion of Theorem 5.1. The second assertion follows as in the proof of Theorem 2.1. 2

  etc., with gaps separating eigenvalues λ k and λ k+1 when k = m ℓ=0 µ n,ℓ = n+2m n n+m-1 m

  on the right and multiply the result by (n -1)!. After substitution and simplification, the expression reduces to m ℓ=1

3 ). 2 Remark 3 . 2

 3232 It is worth noticing that in some special geometrical situations, the constant c(n) in the inequalities of Theorem 3.1 and Corollary 3.1 can be replaced by a sharper one. For instance, when M = CP m and -M is odd-dimensional, then one can replace c(n) by c ′

Corollary 4 . 1 Remark 4 . 1

 4141 Let (M, g) be a compact homogeneous Riemannian manifold without boundary. The inequalities of Theorem 4.1 hold, λ being here the first positive eigenvalue of the Laplacian of (M, g). Theorem 4.1 and Corollary 4.1 are to be compared to results of[START_REF] Cheng | Estimates on eigenvalues of Laplacian[END_REF][START_REF] Harrell | Commutator bounds for eigenvalues with applications to spectral geometry[END_REF][START_REF] Li | Eigenvalue estimates on homogeneous manifolds[END_REF].Proof of Theorem 4.1. Let ϕ = (ϕ 1 . . . , ϕ m+1 ) : (M, g) → S m be a λ-eigenmap. As in the proof of Theorem 2.1, we use Lemma 2.1 with

(Theorem 5 . 1 1 (Remark 5 . 1 2 L 2 + [L, y α ]u i 2 L 2 2 L 2 2 L 2 = 4 Ω

 51151222222224 |∇ H n u| 2 + |u| 2 )dx dy dt, with ∇ H n u = (X 1 (u), • • • , X n (u), Y 1 (u), • • • , Y n (u)).We shall prove a result similar to Theorem 2.1 for the problem (5.1): For any k ≥ Using the Cauchy-Schwarz inequality ( k i=1 λ i ) 2 ≤ k k i=1 λ 2 i , we deduce from Theorem 5.1 (II) that result of Niu and Zhang[START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of eigenvalues of nonelliptic operators[END_REF].Proof. The key observation here is that Lemma 2.1 remains valid forH = L = -∆ H n and G = x α or G = y α . Thus we have λ i ) 2 ( [L, x α ]u i , x α u i L 2 + [L, y α ]u i , y α u i L 2 )λ i )( [L, x α ]u i x α ] u i = -2X α (u i ) and [L, y α ] u i = -2Y α (u i ). Thus, n α=1 [L, x α ]u i + [L, y α ]u i |∇ H n u i | 2 = 4λ i .
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