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PERMANENT MAGNET WHOSE POLARIZATION IS
BOTH UNIFORM AND TANGENTIAL

R. Ravaud, G. Lemarquand, V. Lemarquand
and C. Depollier

Laboratoire d’Acoustique de l’Universite du Maine, UMR CNRS 6613
Avenue Olivier Messiaen, 72085 Le Mans, France

Abstract—This paper presents the exact 3D calculation of the
magnetic field produced by a tile permanent magnet whose polarization
is both tangential and uniform. Such a calculation is useful for
optimizing magnetic couplings or for calculating the magnetic field
produced by alternate magnet structures. For example, our 3D
expressions can be used for calculating the magnetic field produced by
a Halbach structure. All our expressions are determined by using the
coulombian model. This exact analytical approach has always proved
its accuracy and its usefulness. As a consequence, the tile permanent
magnet considered is represented by using the fictitious magnetic pole
densities that are located on the faces of the magnet. In addition,
no simplifying assumptions are taken into account for calculating the
three magnetic field components. Moreover, it is emphasized that the
magnetic field expressions are fully three-dimensional. Consequently,
the expressions obtained are valid inside and outside of the tile
permanent magnet, whatever its dimensions. Such an approach allows
us to realize easily parametric studies.

1. INTRODUCTION

The three-dimensional analytical calculation of the magnetic field
produced by permanent magnets is very useful for optimizing alternate
magnet structures or magnetic couplings. A previous paper written
by the authors gave the expressions of the magnetic field created by
a tile permanent magnet radially magnetized [1]. We use the same
approach in this paper for calculating the magnetic field produced by
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a tile permanent magnet whose polarization is both tangential and
uniform. To our knowledge, this calculation has never been carried out
by other authors. However, the analytical method for obtaining the
magnetic field expressions has been used by other authors interested
in the analytical expressions of the magnetic field produced by arc-
shaped permanent magnets [2–7]. The first studies dealing with the
three-dimensional calculation of magnetic fields created by arc-shaped
permanent magnets used semi-analytical expressions that were based
on one, two or three numerical integrations. However, these approaches
are more accurate than finite-element methods [8–10]. Other papers
have proved the usefulness of three-dimensional analytical approaches
[12–15]. We can say that it is always more interesting to have an
exact analytical expression rather than a numerical calculation for
calculating the magnetic field produced by a permanent magnet [16–
18]. Authors generally use the Green’s function or the Coulombian
model for determining the magnetic field created by a tile permanent
magnet [19–21]. However, they often neglect the curvature of the
magnets in order to simplify the expressions [22, 33]. In addition,
no authors have determined the exact expressions of the magnetic
field produced by a tile permanent magnet whose polarization is both
uniform and tangential. However, such tile permanent magnets are
commonly used in Halbach structures [34] (Fig. 1), in alternate magnet
structures (Fig. 2) or in magnetic couplings in which the calculation
of the torque between two rotors are required. This paper gives the
three components of the magnetic field produced by a tile permanent
magnet whose polarization is both uniform and tangential. Our exact
approach is based on the Coulombian model. The interest of using
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Figure 1. Representation of a Halbach structure: an assembly of tile
permanent magnets whose polarizations are radial and tangential.
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Figure 2. Representation of an alternate magnet structure: an
assembly of tile permanent magnets whose polarizations are both
uniform and tangential.

analytical approaches is mainly due to their accuracy, their very low
computational cost and their easiness. Indeed, such approaches allow
us to realize easily parametric studies. In addition, it is noted that
no simplifying assumptions are done for these calculations. This is an
important point because even if 2D models can be used for calculating
the magnetic field created by such structures, some effects cannot
be predicted by these models and the accuracy of the results can
be questionable. However, the 2D approaches are fully analytical
and their computational cost is thus very low. Furthermore, it
is emphasized that the magnetic field expressions are fully three-
dimensional. Consequently, the expressions obtained are valid inside
and outside of the tile permanent magnet, whatever its dimensions.
The effects of all the magnetic pole contributions are discussed. We
can say that such structures are interesting because they offer new
prospects in the production of magnetic field. All the expressions
determined in this paper are available online [35].

2. NOTATION AND GEOMETRY

The geometry considered and the related parameters are shown in
Fig. 3. The tile inner radius is r1, the tile outer radius is r2, its
angular width is θ2 − θ1 and its height is z2 − z1. The magnetic
polarization of the tile is both tangential and uniform. This means
that the magnetization direction is the same in the whole tile and is the
tangent to the tile arc in its middle. Such a polarization is voluntarily
chosen because such a tile permanent magnet can be used for enhancing
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Figure 3. Representation of the geometry considered. The tile inner
radius is r1, the tile outer radius is r2, its angular width is θ2 − θ1, its
magnetic polarization is �J .

the magnetic field inside an ironless motor using arc-shaped permanent
magnets. Indeed, the assembly of several tile permanent magnets with
several magnetizations allow us to obtain great magnetic fields.

Several approaches are generally used for determining the
magnetic field components created by tile permanent magnets
(Colombian Model, Green’s functions, two-dimensional approach,
finite-element method). The Colombian model is used in this paper.
The main reason lies in the fact that analytical expressions determined
with this model allow us to realize easily parametric studies. Therefore,
we must take into account the magnetic pole surface densities
located on all the faces of the tile permanent magnet. It is noted
that no magnetic pole volume densities appear in this configuration
because the polarization is uniform. However, as this polarization is
rather non-conventional, we present in the next section a method to
determine precisely where the magnetic fictitious pole appear on the
tile permanent magnet faces.

3. STUDY OF THE REPARTITION OF THE SURFACE
MAGNETIC POLE DENSITIES

3.1. Obtaining the Magnetic Pole Surface Densities

According to the Colombian model, the magnetic pole surface densities
can be determined by calculating the scalar product between the
polarization vector �J and the four normal units �n1, �n2, �n3 and �n4. Let
us first define the vector polarization �J . As the polarization considered
is uniform and tangential, the vector polarization �J is expressed as
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follows:

�J = −J sin
(

θ2 + θ1

2

)
�ux + J cos

(
θ2 + θ1

2

)
�uy (1)

The four normal units are defined as follows:

�n1 = − cos(θ)�ux − sin (θ) �uy (2)
�n2 = − sin(θ2)�ux + cos (θ2) �uy (3)
�n3 = + cos (θ) �ux + sin (θ) �uy (4)
�n4 = + sin (θ1) �ux − cos (θ1) �uy (5)

Consequently, we deduct that the magnetic pole surface densities are
the following:

σ∗
1(θ) = −J sin

(
θ −

(
θ1 + θ2

2

))
(6)

σ∗
2 = J cos

(
θ1 − θ2

2

)
(7)

σ∗
3(θ) = J sin

(
θ −

(
θ1 + θ2

2

))
(8)

σ∗
4 = −J cos

(
θ1 − θ2

2

)
(9)

3.2. Analysis of the Repartition of the Magnetic Pole
Surface Densities

The magnetic pole surface densities located on the inner and outer
faces of the tile permanent magnet σ∗

1 and σ∗
3 are not constant but

depend on the angle θ. A careful study shows that the sign of the
magnetic pole surface density varies on the face whose normal unit is
�n1 and the face whose normal unit is �n3. Indeed, let us first consider
the face whose normal unit is �n1. In this surface, the magnetic pole
surface density is defined by −J sin

(
θ − ( θ1+θ2

2 )
)
. Therefore:

θ1 ≤ θ <

(
θ1 + θ2

2

)
⇒ σ1(θ)∗ > 0

θ =
(

θ1 + θ2

2

)
⇒ σ1(θ)∗ = 0

(
θ1 + θ2

2

)
≤ θ < θ2 ⇒ σ1(θ)∗ < 0 (10)
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Let us now consider the face whose normal unit is �n3 in which the
magnetic pole surface density is defined by J sin

(
θ − ( θ1+θ2

2 )
)
. We

deduct the following relations:

θ1 ≤ θ <

(
θ1 + θ2

2

)
⇒ σ3(θ)∗ < 0

θ =
(

θ1 + θ2

2

)
⇒ σ3(θ)∗ = 0

(
θ1 + θ2

2

)
≤ θ < θ2 ⇒ σ3(θ)∗ > 0 (11)

Let us now consider the face whose normal unit is �n2 in which the
magnetic pole surface density is defined by J cos

(
θ1−θ2

2

)
. We call this

face f2. We deduct directly that

∀θ ∈ f2 ⇒ σ∗
2 > 0 (12)

By the same token, for the face whose normal unit is �n4 in which
the magnetic pole surface density is defined by −J cos

(
θ1−θ2

2

)
and by

using the notation f4 for this face, we deduct that:

∀θ ∈ f4 ⇒ σ∗
4 < 0 (13)

By using the mathematical properties determined previously, we can
display in Fig. 4 the repartition of the magnetic poles.
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Figure 4. Representation of the fictitious magnetic poles on the faces
of the tile permanent magnet whose polarization is both uniform and
radial.
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4. EXPRESSION OF THE THREE COMPONENTS Hr,
Hθ, Hz

These three components are functions of the parameters r, θ and z.

4.1. Basic Equation

The magnetic field created by a tile permanent magnet whose
polarization is both uniform and tangential can be determined by using
the Coulombian model. By definition, the magnetic field H(r, θ, z)
created by this magnet is expressed as follows:

H(r, θ, z) =
∫ ∫

S1

σ1(θ̃)∗

4πµ0

�u1

| �u1|3
dS1

+
∫ ∫

S2

σ∗
2

4πµ0

�u2

| �u2|3
dS2

+
∫ ∫

S3

σ3(θ̃)∗

4πµ0

�u3

| �u3|3
dS3

+
∫ ∫

S4

σ∗
4

4πµ0

�u4

| �u4|3
dS4 (14)

where �ui is the vector between the observation point and a point owing
to the surface Si.

It is noted that �u1, �u2, �u3 and �u4 are expressed in a general
form because we are interested in a three-dimensional solution for
calculating the magnetic field for all points in space. The integration
of (14) leads to the three magnetic field components along the three
defined axes: Hr(r, θ, z), Hθ(r, θ, z) and Hz(r, θ, z).

4.2. Radial Component

The radial component of the magnetic field created by a tile permanent
magnet whose polarization is both uniform and tangential can be
expressed as follows:

Hr(r, θ, z) =
2∑

i=1

2∑
j=1

(−1)(i+j)h(I)
r (ri, zj)

+
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(i+j+k)h(II)
r (ri, zj , θk) (15)
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where h
(I)
r (ri, zj) represents the magnetic field created by the fictitious

magnetic poles located on the arc-shaped faces of the tile permanent
magnet and h

(II)
r (ri, zj , θk) represents the magnetic field created by

the fictitious magnetic poles located on the straight faces of the tile
permanent magnet.

h(I)
r (ri, zj) =

J

4πµ0
ri(z − zj)Ẽ∗ [θa, ri, zj ] (16)

h(II)
r (ri, zj , θk) = −J cos( θ1−θ2

2 )
8πµ0Xk

(
(1 − x2

k + xkXk) log[Ai,j,k]
)

−J cos( θ1−θ2
2 )

8πµ0Xk

(
(−1 + x2

k + xkXk) log[Bi,j,k]
)
(17)

where Ẽ∗ [θa, ri, zj ] can be seen as a non-classical elliptic integral that
is defined as follows:

Ẽ∗ [θa, ri, zj ] =
∫ θ2

θ1

(r − ri cos(θ − θ̃)) sin(θa − θ̃)

ξ(i, j, θ̃)
(
ξ(i, j, θ̃)2 − (z − zj)2

)dθ̃ (18)

and

Ai,j,k =
2(rriX

2
k + r2X2

k(−xk + Xk))
(−X2

k + xxXk)(ri + r(−xk + Xk))(z − zj)

−
2Xk(z − zj +

√
r2 + r2

i − 2rrixk + (z − zj)2)

(−X2
k + xxXk)(ri + r(−xk + Xk))

(19)

Bi,j,k = − 2(rriX
2
k − r2X2

k(xk + Xk))
(X2

k + xkXk)(ri − r(xk + Xk))(z − zj)

+
2Xk(z − zj +

√
r2 + r2

i − 2rrixk + (z − zj)2)

(X2
k + xkXk)(ri − r(xk + Xk))

(20)

with

Xk =
√

x2
k − 1 =

√
cos(θ − θk)2 − 1 (21)

and

ξ(i, j, θk) =
√

r2 + r2
i + (z − zj)2 − 2rri cos(θ − θk) (22)

It is emphasized here that h
(II)
r (ri, zj , θk) is fully analytical whereas

h
(I)
r (ri, zj) is based on a non-classical elliptic integral.
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It has to be noted that all the numerical calculations to illustrate
the analytical formulations will be done in this section for the following
tile dimensions: r1 = 0.025 m, r2 = 0.028 m, z2 − z1 = 0.003 m,
θ2 − θ1 = π

6 rad. Moreover, the polarization is J = 1 T and the
observation path always corresponds to: z = 0.001 m, r = 0.024 m.

Figure 5 represents the radial component versus the angle θ for
the defined set of values.
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75000
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25000
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25000
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75000
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Figure 5. Representation of the radial component Hr of the magnetic
field created by a tile permanent magnet whose polarization is both
uniform and tangential. We take r1 = 0.025 m, r2 = 0.028 m, its
angular width is θ2 − θ1 = π

6 rad, J = 1 T, z = 0.001 m, r = 0.024 m,
z2 − z1 = 0.003 m.

4.3. Azimuthal Component

The azimuthal component of the magnetic field created by a tile
permanent magnet whose polarization is both uniform and tangential
is expressed as follows:

Hθ(r, θ, z) =
2∑

i=1

2∑
j=1

(−1)(i+j)h
(I)
θ (ri, zj)

+
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(1+i+j+k)h
(II)
θ (ri, zj , θk) (23)

with

h
(I)
θ (ri, zj) =

J

4πµ0
r2
i (zj − z)L̃∗

[
θ1 + θ2

2
, ri, zj

]
(24)
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where L̃∗ [θa, ri, zj ] can be seen as a non classical definite elliptic
integral.

L̃∗ [θa, ri, zj ] =
∫ θ2

θ1

sin(θa − θ̃) sin(θ − θ̃)

ξ(i, j, θ̃)
(
ξ(i, j, θ̃)2 − (z − zj)2

)dθ̃ (25)

and

h
(II)
θ (ri, zj , θk) =

J cos( θ1−θ2
2 )

8πµ0

2r + yk

(
−xk + X̃k

)
X̃k

log [Ci,j,k]

+
J cos( θ1−θ2

2 )
8πµ0

−2r + yk

(
xk + X̃k

)
X̃k

log [Di,j,k] (26)

Ci,j,k =
4X̃k

(
(zj − z) −

√
r2 + r2

i − rix̃k + (z − zj)2
)

(2ri − x̃k + X̃k)
(
2r + ( ˜Xk − x̃k)yk

)

+
X̃k(x̃k

2 − 4r2) + (2ri − x̃k)(x̃k
2 − 4r2)

(2ri − x̃k + X̃k)
(
2r + ( ˜Xk − x̃k)yk

)
(z − zj)

(27)

Di,j,k =
4X̃k

(√
r2 + r2

i − rix̃k + (z − zj)2 + (z − zj)
)

(−2ri + x̃k + X̃k)
(
−2r + (x̃k + X̃k)yk

)

+

(
4r2 − x̃k

2
)

(
−2r + (x̃k + X̃k)yk

)
(z − zj)

(28)

with

X̃k =
√

x̃k
2 − 4r2 =

√
(2r cos(θ − θk))2 − 4r2 (29)

yk = sin(θ − θk) (30)

Figure 6 represents this radial component versus the angle θ with the
defined values of parameters.
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Figure 6. Representation of the azimuthal component Hθ of the
magnetic field created by a tile permanent magnet whose polarization
is both uniform and tangential. We take r1 = 0.025 m, r2 = 0.028 m,
its angular width is θ2−θ1 = π

6 rad, J = 1 T, z = 0.001 m, r = 0.029 m,
z2 − z1 = 0.003 m.

4.4. Axial Component

The axial component Hz(r, θ, z) can be expressed as follows:

Hz(r, θ, z) =
2∑

i=1

2∑
j=1

(−1)(i+j)h(I)
z (ri, zj)

+
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(i+j+k)h(II)
z (ri, zj , θk) (31)

with

h(I)
z (ri, zj) =

J

4πµ0
(−ri)K̃∗

[
θ1 + θ2

2
, ri, zj

]
(32)

where K̃∗ [θa, ri, zj ] represents a non-classical definite elliptic integral
that is defined as follows:

K̃∗ [θa, ri, zj ] =
∫ θ2

θ1

sin(θa − θ̃)
ξ(i, j, θ̃)

dθ̃ (33)

and

h(II)
z (ri, zj , θk)=

J

4πµ0
cos

(
θ1−θ2

2

)
log [ri−r cos(θ − θk)+ξ(i, j, θk)]

(34)
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Figure 7. Representation of the axial component Hz of the magnetic
field created by a tile permanent magnet whose polarization is both
uniform and tangential. We take r1 = 0.025 m, r2 = 0.028 m,
θ2−θ1 = π

6 rad, J = 1 T, z = 0.001 m, r = 0.024 m, z2−z1 = 0.003 m.

Figure 7 represents this radial component versus the angle θ with
the defined values of parameters.

5. INFLUENCE OF THE TILE ANGULAR WIDTH ON
THE THREE MAGNETIC FIELD COMPONENTS

We have seen in the previous section that the three components of the
magnetic field created by a tile permanent magnet whose polarization
is both uniform and tangential can be determined by using a three-
dimensional approach. However, the contributions of all the surfaces
densities have not the same weight but depend greatly on the tile
permanent magnet dimensions. Indeed, the scalar products between
the polarization vector �J and the normal units �n1 and �n3 tend to
zero when the curvature of the inner and outer faces of the tile
permanent magnet becomes negligible or when the angular width tends
to zero. We illustrate this phenomenon in this section by considering
an alternate magnet structure in which we use 6, 8 or 12 tile permanent
magnets.

5.1. Radial Component

First, we study the radial field produced by an alternate magnet
structure using respectively 6, 8 and 12 tile permanent magnets whose
polarizations are both uniform and tangential. We represent in Figs. 8,
9 and 10 the radial field versus the angle θ in these three configurations.
The numerical set of parameters is the same, except for the angular
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Figure 8. Representation of the radial component Hr of the magnetic
field created by an alternate magnet structure owing 6 tile permanent
magnets whose polarization is both uniform and tangential. We take
r1 = 0.025 m, r2 = 0.028 m, θ2 − θ1 = π

3 rad, J = 1 T, z = 0.001 m,
r = 0.024 m, z2 − z1 = 0.003 m.
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Figure 9. Representation of the radial component Hr of the magnetic
field created by an alternate magnet structure owing 8 tile permanent
magnets whose polarization is both uniform and tangential. We take
r1 = 0.025 m, r2 = 0.028 m, θ2 − θ1 = π

4 rad, J = 1 T, z = 0.001 m,
r = 0.024 m, z2 − z1 = 0.003 m.

width which depends on the tile number and will be specified in each
case. Figs. 8, 9 and 10 clearly show that the effects of the magnetic
pole surface densities located on the inner and outer faces of the
tile permanent magnet become negligible when the angular width of
the tile permanent magnet decreases. This is in fact an interesting
point because it gives indications about the number of tile permanent
magnets that should be used in ironless structures. Indeed, if a great
radial field is required, it is more interesting to use 12 tiles rather than 6
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Figure 10. Representation of the radial component Hr of the
magnetic field created by an alternate magnet structure owing 12 tile
permanent magnets whose polarization is both uniform and tangential.
We take r1 = 0.025 m, r2 = 0.028 m, θ2 − θ1 = π

6 rad, J = 1 T,
z = 0.001 m, r = 0.024 m, z2 − z1 = 0.003 m.
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Figure 11. Representation of the azimuthal component Hθ of the
magnetic field created by an alternate magnet structure owing 6 tile
permanent magnets whose polarization is both uniform and tangential.
We take r1 = 0.025 m, r2 = 0.028 m, θ2 − θ1 = π

3 rad, J = 1 T,
z = 0.001 m, r = 0.024 m, z2 − z1 = 0.003 m.

tiles. However, it must be emphasized here that a small tile permanent
magnet is generally more difficult to manufacture than a greater one.

5.2. Azimuthal Component

Second, we study now the azimuthal field produced by an alternate
magnet structure using respectively 6, 8 and 12 tile permanent magnets
whose polarizations are both uniform and tangential. We represent in
Figs. 11, 12 and 13 the azimuthal field versus the angle θ in these three
configurations.



Progress In Electromagnetics Research B, Vol. 13, 2009 15

3 2 1 0 1 2 3
Angle [rad]

60000

40000

20000

0

20000

40000

60000

H
th

et
a

−

−

−

− − −

[A
/m

]

Figure 12. Representation of the azimuthal component Hθ of the
magnetic field created by an alternate magnet structure owing 8 tile
permanent magnets whose polarization is both uniform and tangential.
We take r1 = 0.025 m, r2 = 0.028 m, θ2 − θ1 = π

4 rad, J = 1 T,
z = 0.001 m, r = 0.024 m, z2 − z1 = 0.003 m.
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Figure 13. Representation of the azimuthal component Hz of the
magnetic field created by an alternate magnet structure owing 6 tile
permanent magnets whose polarization is both uniform and tangential.
We take r1 = 0.025 m, r2 = 0.028 m, θ2 − θ1 = π

3 rad, J = 1 T,
z = 0.001 m, r = 0.024 m, z2 − z1 = 0.003 m.

Here again, Figs. 11, 12 and 13 clearly show that the effects of the
magnetic pole surface densities located on the inner and outer faces of
the tile permanent magnet become negligible when the angular width
of the tile permanent magnet decreases. In addition, the number of tile
permanent magnets has also an influence on the shape of the azimuthal
field. Consequently, the tile permanent magnet dimension should also
be optimized according to the intended application (in which a given
azimuthal field shape is required).
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Figure 14. Axial component Hz. Alternate structure with 6 tiles.
Tile: r1 = 0.025 m, r2 = 0.028 m, z2 − z1 = 0.003 m, θ2 − θ1 = π

3 rad,
J = 1 T. Observation path: z = 0.001 m, r = 0.024 m.
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Figure 15. Representation of the axial component Hz of the magnetic
field created by an alternate magnet structure owing 8 tile permanent
magnets whose polarization is both uniform and tangential. We take
r1 = 0.025 m, r2 = 0.028 m, θ2 − θ1 = π

4 rad, J = 1 T, z = 0.001 m,
r = 0.024 m, z2 − z1 = 0.003 m.

5.3. Axial Component

Eventually, we study the axial field produced by an alternate magnet
structure using still respectively 6, 8 and 12 tile permanent magnets
whose polarizations are both uniform and tangential. We represent in
Figs. 14, 15 and 16 the axial field versus the angle θ in these three
configurations. Here again, Figs. 14, 15 and 16 clearly show that the
effects of the magnetic pole surface densities located on the inner and
outer faces of the tile permanent magnet become negligible when the
angular width of the tile permanent magnet decreases. In addition,
the number of tile permanent magnets has also an influence on the
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Figure 16. Representation of the axial component Hz of the magnetic
field created by an alternate magnet structure owing 12 tile permanent
magnets whose polarization is both uniform and tangential. We take
r1 = 0.025 m, r2 = 0.028 m, θ2 − θ1 = π

6 rad, J = 1 T, z = 0.001 m,
r = 0.024 m, z2 − z1 = 0.003 m.

shape of the axial field. For example, Fig. 14 shows that the use of
only 6 permanent magnets in an ironless structure whose diameter
is small (here 0.05 m) is not sufficient. Thus, our three-dimensional
approach allows us to optimize easily magnet dimensions for studying
the magnetic field produced by such structures.

6. CONCLUSION

This paper has presented 3D analytical expressions for studying the
magnetic field created by a tile permanent magnet whose polarization
is both uniform and tangential. The three magnetic components of this
magnetic field are determined by using the Colombian model. As no
simplifying assumptions are used for calculating the radial, axial and
azimuthal fields created by a tile permanent magnet, our expressions
are valid for all points in space, whatever the magnet dimensions. We
also discuss the influence of the angular width of a tile permanent
magnet on the field produced. The results obtained confirm that the
scalar product �J · �ni where �ni is the normal unit of the face i can be a
good indicator for studying the effects of all the magnetic pole charge
contributions on the magnetic field created. The expressions given in
this paper are available online [35] and for each expression, a numerical
calculation has been carried out for confirming our three-dimensional
approach.
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