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Surface plasmon Fourier optics
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Surface plasmons are usually described as surface waves with either a complex wavevector or a
complex frequency. When discussing their merits in terms of field confinment or enhancement of the
local density of states, controversies regularly arise as the results depend on the choice of a complex
wavevector or a complex frequency. In particular, the shape of the dispersion curves depends on
this choice. When discussing diffraction of surface plasmon a scalar approximation is often used.
In this work, we derive two equivalent vectorial representations of a surface plasmon field using
an expansion over surface waves with either a complex wavevector or a complex frequency. These
representations can be used to account for propagation and diffraction of surface waves. They can
also be used to discuss the issue of field confinment and local density of states as they have a
non-ambiguous relation with the two dispersion relations.

PACS numbers:

I. INTRODUCTION

Surface plasmons have been known since the pioneer-
ing work of Ritchie in the 1950s1. Considerable advances
made in nanotechnology in recent years and the desire
to control and manipulate light at nanoscale have
renewed the interest in surface plasmons2. Numerical
simulations and experiments have demonstrated unique
properties of different plasmonic nanostructure such
as extraordinary transmission3,4, guiding5,6,7,8, fluores-
cence enhancement9,10,11,12,13, field enhancement14,15,16,
focussing17, superresolution20,21,22, omnidirectional
absorption23,25, coherent thermal emission24,25,26.

In this paper, we shall focus on surface plasmons prop-
agating along flat surfaces. Propagation of surface plas-
mons on a flat surface perpendicular to the z axis is of-
ten discussed using a mode E(z) exp[i(Kxx + Kyy −ωt)]
characterized by a frequency ω and a wave vector K =
Kxx̂ + Kyŷ parallel to the interface. However, the sur-
face plasmon fields diffracted by edges, guided by ridges,
focussed by lenses cannot be described by a simple mode.
It is well-known that a finite size beam propagating in a
vacuum has to be described in terms of a linear superpo-
sition of plane waves. Differents ansatz, often neglecting
polarization, have been used in the litterature to address
this question5,18,27. One of the goals of this paper is to
derive a rigorous representation for the surface plasmon
field. Such a superposition is the equivivalent of the an-
gular plane wave spectrum for surface plasmons It can be
used to develope a framework for surface plasmon fourier
optics.

In doing so, a difficulty arises. When losses are taken
into account, a mode with real K and real ω is no longer
a valid solution. Although we can still use a Fourier rep-
resentation with real K and real ω, it is not convenient
to deal with waves that are not a solution. Elementary
solutions using either a complex K or a complex ω can
be found. However, we cannot assume that they form a

basis. The first issue is thus to derive a general repre-
sentation for the surface plasmon field as a superposition
of modes. The second issue is related to the dispersion
relation. A dispersion relation can be found when using
either a complex K and a real ω or vice versa. These two
choices leads to different shapes as seen in Fig.1. One
dispersion relation has an asymptote for very large val-
ues of K while the other has limited values of K and
presents a backbending.

This issue was first noted by Alexander et al.28 and
later discussed by Arakawa et al.29. Arakawa remarked
that when plotting the position of the dips in a reflec-
tivity experiment where the angle of incidence is varied
at fixed frequency, one finds the dispersion relation with
backbending. Instead, when plotting the points obtained
from a spectrum at fixed angle, one finds the dispersion
relation without backbending. This approach seems sim-
ple and easily applicable. It is sufficient to explain the
attenuated total reflection (ATR) experiments. Never-
theless, it is not a general prescription that can be used
to discuss all possible issues. Let us illustrate this point
by addressing two questions regarding the most impor-
tant properties of surface plasmons : confinment of the
fields and large density of states. For a theoretical dis-
cussion of these applications, different dispersion rela-
tions lead to different predictions. Confinment of the
field is the key property regarding applications such as
optical lithography, enhanced non-linear effects or super-
resolution issues. The dispersion relation with a back-
bending predicts a cut-off spatial frequency and therefore
a resolution limit whereas the dispersion relation with-
out backbending does not predict any resolution limit.
Enhancement of the local density of states (or Purcell
effect) is fundamental for fluorescence enhancement and
more light emission assisted by surface plasmons. The
dispersion relation with a backbending again predicts a
cut-off spatial frequency and therefore an upper limit to
the LDOS. No limit is predicted by the other dispersion
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FIG. 1: (color online) Dispersion of surface plasmons prop-
agating along the metal/air interface. (a) Real ω is chosen
to obtain a complex Ksp. (b) Real K is chosen to obtain a
complex ωsp. The flat asymptote (dashed line) situated at
ωp/
√

2 represents the nonretarded surface plasmon solution.
The slanting solid line represents the light cone inside which a
wave is propagating (radiative) and outside which is evanes-
cent (surface).

relation. A general discussion on the applicability of the
different dispersion relations is thus needed.

In this paper we start by deriving two general represen-
tations of the surface plasmon field in terms of linear su-
perpositions of modes having the structure exp[i(Kxx +
Kyy + γz − ωt)] with a well-defined polarization. Each
representation is associated with either a complex fre-
quency or a complex wavevector and therefore to a par-
ticular dispersion relation. We then show that the most
convenient choice depends on the physical problem to be
discussed. We introduce a prescription that allows to
choose complex or real frequency and the associated dis-
persion relation. We then apply our analysis to discuss
the resolution limit issue and the LDOS issue. The paper

is organized as follows. For the sake of completeness, we
briefly summarize the derivation of the dispersion rela-
tion in the next section. The following section introduces
the general representations of the surface plasmon field.
We then discuss the physical content of these represen-
tations.

II. SURFACE PLASMON DISPERSION

RELATION

Let us consider a flat metal surface z = 0 bounded by
dielectric media with dielectric constant ε1. For conve-
nience, we describe the dielectric response of the metal
to an electric field using the local Drude model

ǫ2(ω) = 1 −
ω2

p

ω(ω + iνe)
, (1)

where ωp is the bulk plasmon frequency and νe is a phe-
nomenological bulk electron relaxation rate. We derive
the dispersion relation of surface plasmons propagating
along the metal/dielectric interface.

We search a solution of Maxwell equations for an inter-
face between two linear isotropic and local media charac-
terized by dielectric constants ǫm where m = 1, 2 denotes
medium 1 (z < 0) or 2 (z > 0). A surface wave solution
has a structure exp[i(K · r + γm|z| − ωt)] with

K2 + γ2
m = ǫmω2/c2 (2)

where γm is chosen so that Imγm > 0. Boundary condi-
tions impose the continuity of the tangential components
of the electric field and ǫEz. It follows that a p-polarized
field can exist provided that ǫ1γ2 = −ǫ2γ1. One finds
that a solution is given by

K2 =
(ω

c

)2 ǫ1ǫ2
ǫ1 + ǫ2

. (3)

When dealing with an interface separating a dielectric
from a non lossy metal, ǫ1ǫ2

ǫ1 + ǫ2
yields a unique solu-

tion to the problem. When accounting for losses in the
material, ǫ1ǫ2

ǫ1 + ǫ2
is a complex number so that the dis-

persion relation cannot be solved using real K and real
ω. It is necessary to consider a complex frequency or a
complex wavector to find roots of the equation. Let us
first choose ω real. We denote Ksp the complex root of
the equation (3). Fig.1(a) shows the dispersion curve
obtained from the surface plasmon dispersion relation
Eq. (3) when plotting ω versus ReKsp. This curve ex-
hibits a back-bending in the vicinity of the frequency of
non-retarded surface plasmon ωp/

√
2. The second possi-

ble choice is to keep a real wavector K. We denote ωsp

the complex root of the equation Eq. (3). Fig.1(b) shows
the dispersion curve obtained when plotting Reωsp ver-
sus K. It is seen in Fig.1(b) that this curve exhibits an
asymptote for large wavevectors.

Let us make two remarks regarding the dispersion re-
lation. We first note that Eq.(3) is also a solution of
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ǫ1γ2 = ǫ2γ1 which defines a zero of the reflection factor,
i.e. the Brewster angle. It can be checked that the upper
branch in Fig.1(b) is not a surface wave but the locus
of the Brewster angle in the (ω, K) plane. Finally, we
note that a surface plasmon is a collective oscillation of
charge density. When the frequency ω is smaller than νe,
the collective electron oscillation is overdamped. In this
frequency regime, Eq.(3) describes a surface wave that
has no longer the character of a surface plasmon. Thus,
Eq.(3) describes the Brewster angle for ω > ωp, a surface
plasmon for ωp > ω > νe, a surface wave for νe > ω.

III. GENERAL FIELD REPRESENTATIONS

The aim of this section is to derive a general form of
the surface plasmon field. To this aim, we first use the
simple interface Green’s tensor that yields the general
form of the field for any given source distribution. We
then extract the surface plasmon contribution which is
defined to be the pole contribution to the Green’s ten-
sor. We will show that this procedure leads in a natural
way to different representations that make use of either
a complex wavevector or a complex frequency. We em-
phasize that both representations will describe the same
electromagnetic surface plasmon field Esp(x, y, z, t).

Let us suppose that an arbitrary source is located
nearby the dielectric-metal interface. The electric field
generated by the source j(r, t) is given by the relation

E(r, t) = −µ0

∫
dt′

∫
d3r′ G

↔
(r, r′, t − t′)

∂j(r′, t′)

∂t′
, (4)

where µ0 is vacuum permeability. A Fourier representa-
tion can be written in the form

G
↔

(r, r′, t − t′) =

∫
d2K

4π2

∫
dω

2π
g↔(K, z, z′, ω)

ei[K(r−r
′)−ω(t−t′)], (5)

Here, the integration variables ω and Kx, Ky are real.
The explicit form of the Green’s tensor g

↔
(K, z, z′, ω) in

the presence of the interface is given in Appendix A. It
is seen that the Fourier transform of the Green’s ten-
sor has poles given by the denominator of the Fresnel
factors for p-polarized field. For a dielectric/metal inter-
face, they correspond to the surface plasmon as discussed
previously. Thus, the Green’s tensor can be split into
two terms : the pole contribution that yields the sur-
face plasmon and the remaining contribution that yields
a regularized Green’s tensor.

G
↔

= G
↔

reg + G
↔

sp, (6)

where the pole contribution to the Green’s tensor G
↔

sp can

be explicitly derived using the residue theorem. G
↔

reg is
the contribution of the regularized Green’s dyadic. It can
be shown that the Green’s tensor can be evaluated us-
ing a contour deformation in the complex plane and that

the regularized term is essentially due to the contribution
along the branch cut. This contribution is often termed
cylindrical wave or creeping wave. The relative impor-
tance of these terms is well documented in classical texts
for radiowaves30,31. The analysis of their respective con-
tribution was of practical importance in the early days
of telecommunications as radiowaves were guided by the
earth. This issue has been discussed recently in the con-
text of optics4,33. In this paper, we shall not pursue this
discussion and focus instead on the surface wave contri-
bution defined as the pole contribution.

Esp(r, t) = −µ0

∫
dt′

∫
d3r′ G

↔

sp(r, r
′, t − t′)

∂j(r′, t′)

∂t′
.

(7)
When solving Eq.(3), we can consider that ω is real

and find a complex Ksp or we can impose a real value to
K and find a complex root ωsp. Thus, when extracting
the poles, it is a matter of choice to consider that they are
poles in the complex frequency plane or in the complex
wavevector plane. We find either a couple of poles ωsp

and −ω∗
sp or a complex wavevector pole K2

sp hence two
poles for the component of the wavevector along the x
axis Kx,sp and −Kx,sp for a given component along the y
axis Ky as K2

sp = K2
x,sp +K2

y . It follows that we can cast
the pole contribution to the Green’s tensor in the form :

g
↔

sp(K, z, z′, ω) =
f
↔

ωsp
(K, z, z′)

ω − ωsp
+

f
↔

−ω∗

sp
(K, z, z′)

ω + ω∗
sp

, (8)

where f
↔

ωsp
(K, z, z′) and f

↔

−ω∗

sp
(K, z, z′) are the residues

of g
↔

at ωsp and −ω∗
sp respectively, or in the form :

g↔sp(K, z, z′, ω) =

f
↔

Kx, sp
(Ky, z, z′, ω)

Kx − Kx, sp
+

f
↔

−Kx, sp
(Ky, z, z′, ω)

Kx + Kx, sp

where f
↔

Kx, sp
(Ky, z, z′, ω) and f

↔

−Kx, sp
(Ky, z, z′, ω) are

the residues of g↔ at Kx, sp and −Kx, sp respectively.
These two choices leads to two different forms of the

surface plasmon field given by Eq.(7). We now examine
these forms in detail.

A. Surface plasmon field representation with a real

wavevector

In this section we derive the analytical form of the
surface plasmon field using real wavevectors. For this
purpose we evaluate the pole contribution to the Green’s
tensor by integrating in the complex ω plane. The com-
plex pole ωsp then yields a contribution for t−t′ > 0 that
varies as exp(−iωsp(t − t′)). After integration, we find :

G
↔

sp = H(t − t′) 2Re

∫
d2K

(2π)2
(−i)f

↔

ωsp
(K, z, z′)

ei[K·(r−r
′)−ωsp(t−t′)]

(9)
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where f
↔

ωsp
(K, z, z′) is the residue of g

↔
at ωsp. It is given

in the appendix A. It follows from Eq.(7) that the field
can be cast in the form of a linear superposition of modes
with real wavevector and complex frequency :

Esp = 2Re

∫
d2K

(2π)2
E(K, t)(K̂ − K

γm
nm)

ei(K·r+γm|z|−ωspt), (10)

where the amplitude E(K, t) is given in appendix A,

nm = −ẑ if z < 0 and ẑ if z > 0, and K̂ = K/K. The
surface plasmon field takes a form that looks as a mode
superposition except that the amplitude E(K, t) depends

on the time t. Indeed, when describing a stationary field
using modes that have an exponential decay, the ampli-
tude is necessarily time dependent. In order to obtain a
superposition of modes with fixed amplitudes, it is nec-
essary to assume that all sources are extinguished after
time t = 0 so that we observe the field after it has been
excited. In that case, the decay of the mode is well de-
scribed by the imaginary part of ωsp. Eq. (10) is thus
well suited for fields excited by pulses. Note that the po-
larization of each mode is specified by the complex vector

K̂ − K
γm

nm, whose component along the z axis depends

on the medium from which the field is evaluated.

B. Surface plasmon field representation with a real

frequency

Let us now turn to the alternative choice. We con-
sider the complex poles Kx, sp and −Kx, sp. The Green
function can be cast in the form :

↔
Gsp = i

∫
dω

2π

∫
dKy

2π
f
↔

Kx, sp
(Ky, z, z′, ω)

eiKx, sp(x−x′)eiKy(y−y′)e−iω(t−t′) (11)

if x − x′ > 0, and :

↔
Gsp = −i

∫
dω

2π

∫
dKy

2π
f
↔

−Kx, sp
(Ky, z, z′, ω)

e−iKx, sp(x−x′)eiKy(y−y′)e−iω(t−t′) (12)

if x − x′ < 0. f
↔

Kx, sp
(Ky, z, z′, ω) and

f
↔

K−x, sp
(Ky, z, z′, ω) are the residues of g↔ at Kx, sp

and −Kx, sp. They are given in appendix A. When
inserting this form in Eq.(7), we again obtain a form
for the field that is a superposition of modes whose
amplitude depends on x :

E =

∫
dω

2π

∫
dKy

2π

[
E>(Ky, ω, x)(K̂+ − Ksp

γm
nm)

ei(Kx, spx+Kyy+γm|z|−ωt)

+ E<(Ky, ω, x)(K̂− − Ksp

γm
nm)

ei(−Kx, spx+Kyy+γm|z|−ωt)
]

(13)

where K̂+ = (Kx,spx̂ + Kyŷ)/Ksp and K̂− =
(−Kx,spx̂+Kyŷ)/Ksp. The amplitudes E>(Ky, ω, x) and
E<(Ky, ω, x) are given in appendix A. Again, it seems
natural to have amplitudes of the modes that depend on
x if one describes a homogeneous field using modes with a
decay along x. A proper mode representation should use
only fixed amplitudes. This is possible if all the sources
lie in the x < 0 region and the region of interest is the
x > 0 region. We then obtain a surface plasmon field
that can be cast in the form :

E =

∫
dω

2π

∫
dKy

2π
(K̂− Ksp

γm
nm)E>(Ky, ω)

ei(K·r+γm|z|−ωt) (14)

where K = Kx, spx̂ + Kyŷ is complex and K̂ = K/Ksp.
We conclude that stationary monochromatic fields with a
finite size are well described by a representation that uses
complex wavevectors and real frequencies. This equation
is one of the main result of this paper. Indeed, it pro-
vides a framework to develop surface plasmon Fourier
optics. Similar representations have been postulated as
ansatz to surface plasmons interferences27, propagation
along a stripe5 or focussing18. The framework introduced
above provides a rigorous derivation of the form of the
surface plasmon field valid in a region with no sources.
Let us emphasize that this representation is well suited
to discuss propagation for x > x0 of a surface plasmon
field known along a line x = x0. It is seen on Eq.(14)
that propagation over a distance d amounts to multiply
each mode by a factor exp(iKxd). In general, this in-
volves modifying both the phase and the amplitude of
the mode. Thus, it allows to discuss any surface wave
diffraction problem. Finally, let us stress that this rep-
resentation is valid for a complex wavevector K and a
real frequency ω so that this representation is necessarily
associated with a dispersion relation with backbending.

To summarize, we have shown that the surface plasmon
field can be represented using modes that have either a
complex frequency or a complex wavevector. However,
the amplitudes may still depend on either time or space.
In the case of a field excited by a pulse, the represen-
tation that uses a complex frequency is well suited. It
is associated with the dispersion relation without back-
bending. In the case of a stationary monochromatic ex-
citation localized in space, a representation using modes
with complex wavevectors is well suited. It corresponds
to a dispersion relation with backbending. This simple
analysis yields a simple prescription to choose the proper
dispersion relation. Note that in the case of pulses lim-
ited in space, both representations can be used.

C. Surface plasmon field generated by a dipole

For many applications, it is useful to know the field
generated by a dipole. For instance, when considering
the field scattered by a subwavelength particle, the source
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FIG. 2: A point-like dipole located nearby the dielectric-
metal interface

can be represented by an electric dipole. In addition,
any source can be decomposed as linear superposition of
dipolar sources. Here, we derive the surface plasmon field
generated by a monochromatic point-like dipole charac-
terized by its dipole moment p0 (see Fig. 2). Note that
there are other contributions to the field generated by the
dipole at a distance typically smaller than a wavelength.
The surface plasmon contribution is typically dominant
for larger distances32,33.

For a vertical dipole p0e−iω0t = p0e
−iω0tẑ located at a

distance d below the interface, at x = y = 0, we obtain,
using the cylindrical basis ρ̂, θ̂, ẑ) :

Em = 2Re

{[
H

(1)
1 (Kspρ)ρ̂ + i

Ksp
γm

H
(1)
0 (Kspρ)nm

]

M(Ksp, ω0)
1

ǫ0

(
−i

Ksp
γ1

)
p0e

iγ1deiγm|z|e−iω0t
}

(15)

where H
(1)
0 and H

(1)
1 are Hankel functions of the first kind

of zero-th and first order respectively, Ksp is complex
and verifies Eq. (3) with ω = ω0, M(Ksp, ω0) is given in
appendix B and the other notations are defined above.
The details of the calculation are given in appendix B.
Using the asymptotic forms of the Hankel functions, we
obtain for the field of a vertical dipole, for ρ greater than
a few 1/|Ksp| :

Em = 2Re

[
eiKspρ

√
Kspρ

(
ρ̂ − Ksp

γm
nm

)
M ′

v(Ksp, ω0) p0

eiγ1deiγm|z|e−iω0t

]
(16)

where M ′
v(Ksp, ω0) is given in appendix B. Thus the sur-

face plasmon field is analogous to a damped cylindrical

wave eiKspρ√
Kspρ

with a polarization vector r̂− Ksp
γm

nm. For

a dipole oriented along the x axis p0e
−iω0t = p0e

−iω0tx̂,
we obtain :

Em = 2Re

{[(
[H

(1)
1 (Kspρ)]′ρ̂ − i

Ksp
γm

H
(1)
1 (Kspρ)nm

)

cos θ − H
(1)
1 (Kspρ)

Kspρ
θ̂ sin θ

]

M(Ksp, ω0)
1

ǫ0
p0 eiγ1deiγm|z|e−iω0t

}
(17)

where θ = (x̂, ρ̂). Using the asymptotic forms of the
Hankel functions, we obtain :

Em = 2Re

[
eiKspρ

√
Kspρ

(
ρ̂ − Ksp

γm
nm

)
cos θ

M ′
h(Ksp, ω0) p0 eiγ1deiγm|z|e−iω0t

]
(18)

where M ′
h(Ksp, ω0) is given in appendix B. The surface

plasmon field is analogous to a damped cylindrical wave
eiKspρ√

Kspρ
with the same polarization vector ρ̂ − Ksp

γm
nm,

times a factor cos θ, making the field vanishing in the
direction perpendicular the dipole (here the y direction)
and more intense in the dipole’s direction (here the x
direction).

IV. DISCUSSION

In this section, we revisit two fundamental issues in
the field of surface plasmons : field confinment and large
density of states. Confinment and superresolution are
related to the existence of wavevectors with a modulus
much larger than ω/c. In this respect the choice of the
proper dispersion relation plays a key role as one has a
cut-off wavevector whereas the other predicts no limit for
the dispersion relation. Is there a limit to the resolution ?
Is there a limit to the local density of states ?

A. Super resolution

Let us first discuss the issue of resolution when imag-
ing with a surface plasmon driven at frequency ω by an
external source. Recent experiments on far-field opti-
cal microscopy21 launched a debate34,35 about the role
of surface plasmons in super-resolution imaging effects.
In Ref. [21] the dispersion curve with the asymptotic be-
haviour has been invoked to stress the role of surface
plasmons in the image formation with nano-resolution.
The resolution was estimated to be λsp/2. Therefore,
if the dispersion curve with the asymptotic behaviour is
chosen, there seems to be no diffraction limit and only
the amplitude decay of surface plasmon due to Ohmic
losses in the metal limits the resolution. The effect
of the back-bending of surface plasmon dispersion dis-
cussed in Ref. [35] limits the surface plasmon wavelength
2π/ReKsp and therefore, the resolution. Clearly, both
dispersion relations do not lead to the same conclusion
and a prescription to choose one or the other is needed.
Let us consider a situation where a surface plasmon is ex-
cited locally by a stationary monochromatic field. From
section 3, we know that it is valid to use a represen-
tation with fixed amplitudes using modes with complex
wavevectors and real frequencies. This implies that the
dispersion relation with real frequency (with backbend-
ing) is relevant. It follows that there is a cut-off spatial
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frequency. Indeed, as Kx may be complex, the prop-
agation term exp(iKxx) introduces damping. In the
case of a lossy medium, damping may be due to losses.
However, even for a non-lossy medium (Ksp is real),

Kx = (K2
sp−K2

y)1/2 can be imaginary. This occurs when
Ky exceeds the value Ksp. This situation is the 2D analog
of the evanescent waves with wavevector K larger than
ω/c that cannot propagate in a vacuum. Clearly, Ksp is
a cut-off frequency and the propagation term exp(iKxx)
works as a low-pass filter that prevents propagation of
fields associated with spatial frequencies larger than Ksp.
When dealing with lossy media, it is the real part of Ksp

that specifies the cut-off spatial frequency. It is seen in
Fig.1 that it is limited by the backbending of the disper-
sion relation.

In summary, when discussing imaging using stationary
monochromatic surface plasmons, the relevant represen-
tation is based on modes with a complex wavector and
a real frequency given by Eq.(14). This corresponds to
a dispersion relation that has a backbending. It follows
that the resolution is limited by the cut-off spatial fre-
quency given by the maximum value of ReKsp.

B. Local density of states

Let us now discuss the Local Density of States (LDOS).
The density of states (DOS) is a quantity that plays a
fundamental role in many domains. In particular, it al-
lows to derive all thermodynamic properties of a system.
In the case of an interface, the surface modes are con-
fined close to the interface so that it is useful to introduce
the Local Density of States (LDOS) that depends on the
distance to the interface36,37. It allows to account for
the huge increase of energy density close to an interface
when surface waves are excited37,38. It also plays a key
role in defining the lifetime of a single emitter close to
an interface39,40,41,42,43. In this context, the increase of
the projected LDOS is usually normalized by the LDOS
in a homogeneous medium (e.g. a vacuum) yielding the
so-called Purcell factor. It is well-known in solid state
physics that the density of states can be derived from the
dispersion relation. More specifically, the DOS increases
at a frequency ω when the dispersion relation is flat at
that particular frequency. A quick look at Fig.1 shows
that different dispersion relations seem to predict differ-
ent LDOS. While Fig.1(b) predicts a very large peak at

ωsp/
√

2 due to the asymptote and no states above this
frequency, Fig.1(a) predicts a smaller peak and a non

zero LDOS between ωsp/
√

2 and ωsp. Again, we see that
a prescription is needed to choose the right dispersion
relation.

A standard procedure to derive the DOS in the recip-
rocal space is based on the periodic boundary conditions.
Assuming a surface of side L, the wavevector takes the

form K = nx
2π
L x̂+ny

2π
L ŷ. In the plane Kx, Ky, a mode

has an area 4π2/L2. It follows that the number of modes

per unit area in d2K is given by d2K/4π2. When per-
forming this analysis, both Kx and Ky are real. Thus the
relevant representation uses real wavevectors and com-
plex frequencies. The corresponding dispersion relation
has no backbending and therefore presents a singularity.
This is in agreement with another approach of the LDOS
based on the use of the Green’s tensor that predicts an
asymptotic behaviour proportional to 1/(z3|ǫ + 1|2)36,37.
Of course, this divergence is non physical. It is related
to the modelling of the medium using a continuous de-
scription of the metal. This model cannot be valid on an
atomic scale. Before reaching the atomic scale, non-local
effects must be taken into account.

V. CONCLUSION

The purpose of this work is to clarify several issues re-
garding surface plasmons on flat surfaces. The first issue
deals with the mode representation of the surface plas-
mon field. We have shown that a surface plasmon field
can be represented as a sum of modes with either a com-
plex wavevector or a complex frequency. We have shown
that a representation using complex frequencies is well
adapted to fields excited by pulses and that a represen-
tation using complex wavevectors is well adapted to sta-
tionary monochromatic fields excited in a finite area. The
latter representation provides a rigorous formula that can
be used to analyse the diffraction of a stationary surface
plasmon field. This should be very useful in order to de-
velop a surface plasmon Fourier optics framework. This
formula clearly shows that the maximum value of ReKsp

is a cut-off spatial frequency that gives an upper limit
to the resolution or confinment that can be obtained us-
ing surface plasmons. As a by product, we have derived
the form of the surface plasmon excited by a dipole lo-
cated below the interface. Finally, we have discussed
how to choose the dispersion relation (with or without
backbending) depending on the issue. To illustrate this
procedure, we have shown that there is a resolution limit
given by the maximum value of the wavevector at the
backbending point. We have also shown that the local
density of states should be analysed using the dispersion
relation with a real wavevector. This yields a LDOS that
diverges close to the interface in agreement with the re-
sult obtained from the Green’s tensor approach.

APPENDIX A: CALCULATIONS OF THE

SURFACE PLASMON FIELD

For the plane interface system, it is convenient to use
the representation due to Sipe44 that consists of a de-
composition over elementary plane waves. We consider
the interface such as the lower medium z < 0 is denoted
as medium 1 and the upper medium z > 0 is medium
2. We use the dyadic notation for the tensor. For in-
stance, the s-component of the electric field is given by
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ŝŝE = ŝ(ŝ · E). Using the notations of Eq. (5), we have
for the field in the lower half-space z < 0 and currents
below z (z′ < z) :

g↔(K, z, z′, ω) = g↔0(K, z, z′, ω)

+
i

2γ1

[
ŝrsŝ + p̂−

1 rpp̂
+
1

]
e−iγ1z′

e−iγ1z (A1)

where g↔0(K, z, z′, ω) denotes the Fourier transform of the
Green’s tensor of an infinite space filled by medium 1.

For the field in the upper half-space (z > 0) and cur-
rents still in the lower half-space (z′ < 0), one has :

g↔(K, z, z′, ω) =
i

2γ1

[
ŝtsŝ + p̂2tpp̂

+
1

]
e−iγ1z′

eiγ2z (A2)

The Fresnel reflection and transmission factors are
given by :

rs =
γ1 − γ2

γ1 + γ2
rp =

γ1ǫ2 − γ2ǫ1
γ1ǫ2 + γ2ǫ1

(A3)

ts =
2γ1

γ1 + γ2
tp =

2γ1
√

ǫ1
√

ǫ2
γ1ǫ2 + γ2ǫ1

(A4)

γm =

√
ǫm

(ω
c

)2 − K2 for m = 1, 2 is chosen so that

Imγm > 0. This way, using ǫm(−ω∗) = ǫ∗m(ω), one
has γm(K∗,−ω∗) = −γ∗

m(K, ω). The square roots of
dielectric constants

√
ǫm are chosen so that Re

√
ǫm > 0.

ŝ = K × z/K, p̂±
1 = (Kz ∓ γ1K/K)/(k0

√
ǫ1) and p̂2 =

(Kz− γ2K/K)/(k0
√

ǫ2), k0 = ω/c and K =
√

K2
x + K2

y

is chosen so that ImK > 0 or ImK = 0 and ReK > 0.
This way, one has p̂(−K,−ω∗) = −p̂(K, ω)∗ when K is
real and ω complex and p̂(−K∗,−ω) = p̂(K, ω)∗ when
K is complex and ω real.

We extend the definition of g↔(K, z, z′, ω) to complex
values of ω and assume that the denominator of the Fres-
nel coefficients rp and tp (whose nullity is equivalent to
Eq. (3)) has two roots ωsp and −ω∗

sp :

1

γ1ǫ2 + γ2ǫ1
=

C(K, ω)

(ω − ωsp)(ω + ω∗
sp)

(A5)

with Imωsp < 0. g
↔

then features two poles at ωsp and
−ω∗

sp. The residues of g↔ at these poles can be calculated

with f
↔

eω(K, z, z′) = limω→eω [(ω − ω̃)g↔(K, z, z′, ω)] where
ω̃ denotes ωsp or −ω∗

sp. It comes :

f
↔

ωsp
(K, z, z′) = i

γ1ǫ2
k0
√

ǫ1

C(K, ωsp)

2Reωsp
(K̂ − K

γm
nm)p̂+

1

e−iγ1z′

eiγm|z| (A6)

where nm denotes −ẑ for z < 0 and ẑ for z > 0, γm

denotes γ1 for z < 0 and γ2 for z > 0. γ1 and γ2 depends
on K and ωsp and p̂+

1 on K and ωsp.
Using ǫm(−ω∗) = ǫ∗m(ω), γm(K,−ω∗) = −γ∗

m(K, ω),
and p̂+

1 (K,−ω∗) = −p̂+
1 (−K, ω)∗, we have :

f
↔

−ω∗

sp
(K, z, z′) = −f

↔
∗
ωsp

(−K, z, z′) (A7)

Using Eq. (7), (9) and (A6), one can find the ampli-
tudes in Eq. (10) :

E(K, t) = −µ0
γ1ǫ2

k0
√

ǫ1

C(K, ωsp)

2Reωsp

∫
d2r′e−iK·r′

∫ 0

−∞

dz′e−iγ1z′

∫ t

−∞

dt′eiωspt′p̂+
1 .

∂j

∂t′
(r′, t′) (A8)

We now extend the definition of g↔(K, z, z′, ω) to com-
plex values of Kx and assume45 that the denomina-
tor of the Fresnel coefficients rp and tp has two roots

Kx, sp =
√

K2
sp − K2

y and −Kx, sp :

1

γ1ǫ2 + γ2ǫ1
=

γ1ǫ2 − γ2ǫ1
ǫ21 − ǫ22

1

(Kx − Kx, sp)(Kx + Kx, sp)
(A9)

with ImKx, sp > 0, and where Ksp depends on ω and
is given by the dispersion relation. g↔ then features two
poles at Kx, sp and −Kx, sp.

The residues of g↔ at these poles can be calculated with

f
↔

fKx
(Ky, z, z′, ω) = limKx→ fKx

[
(Kx − K̃x)g

↔(K, z, z′, ω)
]

where K̃x denotes Kx, sp or −Kx, sp. It comes :

f
↔

Kx,sp
(Ky, z, z′, ω) =

i

2Kx, sp

γ1ǫ2
k0
√

ǫ1

γ1ǫ2 − γ2ǫ1
ǫ21 − ǫ22

(K̂+ − K
γm

nm)p̂+
1 (Kx,spx̂ + Kyŷ, ω)e−iγ1z′

eiγm|z| (A10)

f
↔

−Kx,sp
(Ky, z, z′, ω) = − i

2Kx, sp

γ1ǫ2
k0
√

ǫ1

γ1ǫ2 − γ2ǫ1
ǫ21 − ǫ22

(K̂− − K
γm

nm)p̂+
1 (−Kx,spx̂ + Kyŷ, ω)e−iγ1z′

eiγm|z|

(A11)

where K̂+ =
Kx, spx̂ + Kyŷ

Ksp
, K̂− =

−Kx, spx̂ + Kyŷ
Ksp

,

and the other notations are defined above.
Using Eq. (7), (11), (12), (A10) and (A11), one can

find the amplitudes in Eq. (13) :

E>(Ky, ω, x) = µ0
1

2Kx, sp

γ1ǫ2
k0
√

ǫ1

γ1ǫ2 − γ2ǫ1
ǫ21 − ǫ22∫ x

−∞

dx′e−iKx,spx′

∫
dy′e−iKyy′

∫ 0

−∞

dz′e−iγ1z′

∫
dt′eiωt′

p̂+
1 (Kx,spx̂ + Kyŷ, ω).

∂j

∂t′
(r′, t′) (A12)

E<(Ky, ω, x) = µ0
1

2Kx, sp

γ1ǫ2
k0
√

ǫ1

γ1ǫ2 − γ2ǫ1
ǫ21 − ǫ22∫ ∞

x

dx′e−iKx,spx′

∫
dy′e−iKyy′

∫ 0

−∞

dz′e−iγ1z′

∫
dt′eiωt′

p̂+
1 (−Kx,spx̂ + Kyŷ, ω).

∂j

∂t′
(r′, t′) (A13)
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APPENDIX B: SURFACE PLASMON FIELD OF

A DIPOLE

The currents associated with the dipole p0e
−iω0t at

a distance d above the interface are given by j(r, t) =
2Re

[
e−iω0t(−i)ω0p0

]
δ(r−(−d)ẑ). Using the form of the

surface plasmon field given by Eq. (14), one can compute
the amplitude with this expression and Eq. (A12) :

E>(Ky, ω) = −γ1ǫ2 − γ2ǫ1
ǫ21 − ǫ22

γ1ǫ2
k0
√

ǫ1

1

2Kx,sp
eiγ1dµ0ω

2
0

p̂+
1 . [2πδ(ω − ω0)p0 + 2πδ(ω + ω0)p

∗
0] (B1)

Hence, using Eq. (14) and the properties
K(−K∗) = −K∗(K), Kx,sp(Ky,−ω) = −K∗

x,sp(Ky, ω),
γm(K∗,−ω) = −γ∗

m(K, ω), ǫm(−ω) = ǫ∗m(ω) and the
definition of p̂+

1 , it comes :

Em = −Re

[
eiγm|z|e−iω0t γ1ǫ2 − γ2ǫ1

ǫ21 − ǫ22

γ1γ2

ǫ0
∫

dKy

2π

eiK·r

Kx,sp
(K̂ − K

γm
n̂m)(K̂ − K

γ1
ẑ).p0

]
(B2)

By derivating
∫ dKy

2π
eiK·r

Kx,sp
= 1

2H
(1)
0 (Kspρ) with

respect to x or y one finds
∫ dKy

2π
eiK·r

Kx,sp
K̂ =

i
2H

(1)
1 (Kspρ)ρ̂ and

∫ dKy

2π
eiK·r

Kx,sp
K̂K̂ =

1
2

[
[H

(1)
1 (Kspρ)]′ρ̂ρ̂ +

H
(1)
1 (Kspρ)
Kspρ

θ̂θ̂

]
. Using these

relations and the value of p0, with M(K, ω) =

−γ1γ2
4

γ1ǫ2 − γ2ǫ1
ǫ21 − ǫ22

, we get Eq.(15) and (17). According

to Eq.(14), the field found in Eq.(15) and (17) only
apply in the x > 0 half-space. Using symmetries
arguments, one find easily that they also apply in the
x < 0 half-space.

Eq.(15) and (17) can then be simplified us-
ing the asymptotical form of the Hankel functions

Hn(z) →
√

2
πz eiz−

1
2πi(n+

1
2 ). Denoting M ′

v(Ksp, ω0) =

−
√

2
π e−i π

4 M(Ksp, ω0)
Ksp
γ1ǫ0 , we obtain Eq.(16). Us-

ing also the property of the Hankel functions

H ′
1(z) = H0(z) − 1

z H1(z) and denoting M ′
h(Ksp, ω0) =√

2
πe−i π

4 M(Ksp, ω0)
1
ǫ0 , we obtain Eq.(18).
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