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2 TIMC-IMAG RFMQ (CNRS-UMR 5525), Université Joseph Fourier Grenoble 1, F-38706 La Tronche
Cedex, France

Keywords: Microarray technology, Gene expression data, proximity measure, classification, clustering.

abstract

This paper focuses on the cell division cycle insuring the proliferation of cells and which is dras-
tically aberrant in cancer cells. The aim of this biological problem is the identification of genes
characterizing each cell cycle phase. The identification process is commonly based on a prior set
of well-characterized cell cycle genes, called reference genes. The expression levels of the studied
genes are measured during the cell division cycle. Each studied gene is assigned a cell cycle phase
by it’s peak similarity to the reference genes. This classical approach suffers of two limitations.
On the one hand, the most widely used proximity measures between gene expression profiles are
based on the closeness of the values regardless to the similarity with respect to (w.r.t.) the genes
expression behavior. On the other hand, many different ill-founded sets of reference genes are pro-
posed in the literature, and biologists are not agree about those of genes best characterizing the
observed cell cycle phases. Our aim in this paper is twice. We propose a new dissimilarity index for
gene expression profiles to include both proximity measures w.r.t. values and w.r.t. behavior. An
adaptive unsupervised classification, based on the proposed dissimilarity index, is then performed
to identify the cell cycle phases of the studied genes. Finally, we propose a new set of reference
genes, well-assessed by a biological knowledge.

1 Introduction

DNA microarray technology allows to monitor simultaneously the expression levels of thousands
of genes during important biological processes and across collections of related experiments. Clus-
tering and classification techniques have proved to be helpful to understand gene function, gene
regulation, and cellular processes. Though most cells in our bodies contain the same genes, not all
of them intervene in each cell: genes are turned on, or expressed when needed. Such specific genes
define the molecular pattern related to a specific function of a cell and in most cases appear as
organized in molecular regulation networks. To know how cells achieve such specialization, scien-
tists need to identify which genes each type of cell expresses. Microarray technology now allows us
to look at many genes at once and determine which are expressed in a specific cell type, i.e. which
transcriptome (set of all mRNA or ”transcripts”) is characteristic of its particular function (Eisen
et al.(1999)). Researchers are using this powerful technology to learn which genes are turned on or
off in diseased versus healthy human tissues for example. The genes that are expressed differently
in the two tissues may be involved in causing the disease. In this paper we will be interested in
the dynamic progression of cell division cycle through the four distinct phases: G1, S,G2 and M
phases. The expression levels of a set of studied genes are then observed at a specific instants of
time during cell division cycle. The identification of the set of genes highly characterizing each cell
cycle phase is generally based on a prior set of reference genes. Each studied gene is assigned a
cell cycle phase by it’s peak similarity to the reference genes. This classical approach suffer of two
limitations. On the one hand, the most widely used proximity measures between gene expression
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2 Adaptive clustering for identifying cell cycle expressed genes

profiles are based on the closeness of the values regardless to the similarity with respect to (w.r.t.)
the genes expression behavior. On the other hand, many different ill-founded sets of reference genes
are proposed in the literature, and biologists are not agree about those of genes best characterizing
the observed cell cycle phases. Our aim is twice. We propose a new dissimilarity index for gene
expression profiles to include both proximity measures w.r.t. expressed values and w.r.t. genes
expression behavior. An adaptive unsupervised classification, based on the proposed dissimilarity
index, is then performed to identify the cell cycle phases of the studied genes. Finally and assessed
by a biological knowledge, we propose a new well-justified set of reference genes.
The paper is organized as follows: the next section gives the definition and the properties of the
new dissimilarity index. Section 3 presents the human HeLa cell line application, and gives the
principal of the proposed adaptive unsupervised classification for cell cycle genes identification.
Section 4 performs a comparative analysis and discuss the main obtained results.

2 Proximity measure between genes expression profile

For clustering or classifying a set of gene expression profiles evolving over time, the commonly
used proximity measures are the euclidean distance. Let g1 = (u1, ..., up) and g2 = (v1, ..., vp) be
the expression levels of two genes g1, g2 observed at the instant of times (t1, ..., tp). The Euclidean

distance δE between g1 and g2 is defined as: δE(g1, g2) =
(
∑p

i=1(ui − vi)
2
)

1
2 . It stems directly

from the above definition that the closeness between two gene expression profiles depends on
the closeness of the values regardless to the gene expression behavior. Our aim is to propose
a dissimilarity index including both gene expression behavior and values proximity measures.
A necessary prior step to the design of such a dissimilarity is to define what we mean about
similar gene expression behaviors, and specify the main characteristics that the dissimilarity would
measure. We distinguish at least two important characteristics of temporal data. On the one hand,
the temporal data where only occurring events, and not their instants of time, are determinant for
the proximity evaluation. For instance, in voice processing domain only the occurring syllables are
used to identify words; the flow rate being specific to each person. On the other hand, the temporal
data where both occurring events and their instants of time are determinant, for instance, ECG,
delay response to a treatment, etc. The gene expression data lie within the scope of the latter case.

2.1 Behavior proximity measures

We define the similarity w.r.t gene expression behavior by considering two features. On the one
hand, the strength of the monotonicity and, on the other hand, the closeness of the growth rates.
Without loss of generality, assume that g1 and g2 values lie in [0,D]. g1 and g2 are similar w.r.t.
behavior if at any observed period [ti, ti+1] they increase or decrease simultaneously (monotonic-
ity), with a growth rate (closeness of growth rates). One can quantify this similarity concept by
considering the classical Pearson correlation coefficient, however this correlation leads to an over-
estimation when taking into account the temporal dependency between measurements. For more
discussion about alternative approaches see Douzal Chouakria et al. (2007).
To overcome this problem we propose the following temporal correlation coefficient:

cort(g1, g2) =

∑p−1
i=1 (u(i+1) − ui)(v(i+1) − vi)

√

∑p−1
i=1 (u(i+1) − ui)2

√

∑p−1
i=1 (v(i+1) − vi)2

where cort(g1, g2) belongs to the interval [−1, 1]. The value cort(g1, g2) = 1 signifies that in
any observed period [ti, ti+1], the genes g1 and g2 increase or decrease simultaneously with the
same growth rate (similar behavior). The value cort(g1, g2) = −1 means that in any observed
period [ti, ti+1] where g1 increases, g2 decreases and vice-versa with a same growth rate (in value;
opposite behavior). Finally, cort(g1, g2) = 0 expresses that there is no monotonicity between g1

and g2 and their growth rates are stochastically linearly independent (different behaviors). For
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more details about temporal correlation see Chouakria Douzal (2003).
Now we present the new dissimilarity index based on the temporal correlation coefficient as a
behavior proximity measure.

2.2 Dissimilarity index for gene expression profiles

The aim is to provide a new dissimilarity index which would cover both the euclidean distance for
the proximity w.r.t. values and the temporal correlation for the proximity w.r.t. behavior.
Let us first describe the main specifications of the new dissimilarity index. The dissimilarity index
should modulate the proximity w.r.t. values according to the proximity w.r.t. behavior. For the
same proximity w.r.t. values, the dissimilarity measure should be dependent on the proximity
w.r.t. behavior, and for the same proximity w.r.t. behavior, the dissimilarity should depend on
the proximity w.r.t. values. The resulting dissimilarity measure should also allow to adjust the
weight contribution between both quantities. The modulating function will increase conventional
measure when the temporal correlation decreases from 0 to -1. The resultant dissimilarity should
approach the conventional measure if the temporal correlation is zero. The modulating function
should decrease the conventional measure when the temporal correlation increases from 0 to +1.
According to the specifications above, we propose a dissimilarity index D based on an automatic
adaptive tuning function defined as follows:

D(g1, g2) = f(cort(g1, g2)) · δE(g1, g2)

where f(x) is an exponential adaptive tuning function:

f(x) =
2

1 + exp(k x)
, k ≥ 0

with f(0) = 1. Figure 1 shows the adaptive tuning effect for several values of k ≥ 0. In the case
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FIGURE 1. The adaptive tuning effect

of genes with different behavior (i.e. with cort near 0), f(x) is near 1 whatever the value of the
weight k and D is approximately equal to δE . However, in the case of genes with an opposite
or similar behavior (i.e. with |cort| near to 1), the parameter k modulates the contributions
of the proximity w.r.t. values and w.r.t. behavior to the dissimilarity index D. As k increases,
the contribution of the proximity w.r.t. behavior 1 − 2/(1 + exp(k |cort|)) increases, whereas
the contribution of the proximity w.r.t. values 2/(1 + exp(k |cort|)) decreases. For instance, for
k = 0, the proximity w.r.t. behavior contributes at 0% to D whereas the proximity w.r.t. values
contributes at 100% to D (the value of D is totally determined by δE). For k = 2, the proximity
w.r.t. behavior contributes at 76.2% to D whereas the proximity w.r.t. values contributes at 23.8%
to D (23.8% of the value of D is determined by δE and the remaining 76.2% by cort). Table
1 summarizes, in the case of similar or opposite behavior (|cort|=1), the contributions of both,
proximity w.r.t. behavior and w.r.t. values, to the dissimilarity index D. Let us add two remarks:
First, if k = 0 the proposed dissimilarity index D is identical to δE ; hence D could be considered
as an extension of δE to both, behavior and value proximity measures. The second point is that if
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Proximity w.r.t. behavior Proximity w.r.t. values
Contribution (%) Contribution (%)

k = 0 0 100
k = 1 46.2 53.7
k = 2 76.2 23.8
k = 3 90.5 9.4
k ≥ 5 ; 100 ; 0

TABLE 1. Contribution of the proximity w.r.t. behavior and w.r.t. values to D as a function of k

δE approaches 0 (i.e., the genes expression are close w.r.t. values), then cort approaches 1 (i.e.,
the genes expression are similar w.r.t. behavior) and D approaches 0. Finally, we can check easily
that D verifies the identity and the symmetry properties of a distance, but not the triangular
inequality.

3 Adaptive unsupervised classification for identifying of cell cycle

regulated genes

3.1 HeLa Cell line Data description

This paper focuses on a specific biological events occurring during cell proliferation, this process
insuring the multiplication of cells, which is drastically aberrant in cancer cells. The cell cycle,
or cell division cycle, is the series of events between one cell division and the next one. The cell
cycle consists of progression along four distinct phases: G1, S (DNA synthesis or DNA replica-
tion), G2 and M phases. A molecular surveillance system monitors the cell’s progress through
the cell cycle and checkpoints ensure that a cell divides only when it has completed all of the
molecular prerequisites for producing healthy daughter cells. These restriction points mark the
inter-phases transitions, G1/S is the first such transition. The genome-wide program of gene ex-
pression during the cell division cycle aims to determine the genes well expressed during studied
cell cycles (Spellman et al (1998), Oliva et al. (2005) and Cho et al. (2001)). Looking at the
transcriptome of proliferating synchronized cells leads to the construction of gene expression pro-
files along time, i.e. during cell cycle progress. This application is concerned with the analysis
of experimental transcriptomic data from the human Hela cell line published in Whitfield et al.
(2002) (http://genome-www.stanford.edu/Human-CellCycle/Hela/). Our study will focus on the
1099 genes, recorded in the third experimentation of the HeLa application. Genes are described
by their expressing levels, during the cell-cycle progression, along 48 instants of times after cell
synchronization.

3.2 Conventional identification of cell cycle genes

Let’s illustrate the approach proposed by Whitfield et al. (2002) to identify the cell cycle genes of
the HeLa application. Authors consider a set of 20 reference genes characterizing the following 5
cell cycle phases and transitions: S, G1/S, G2, G2/M , and M/G1. The set of 20 genes is composed
of 5 classes of 4 reference genes per phase (table 2). Figure 4 gives, for each cell cycle phase, the
expression profiles of the 4 reference genes. Authors argued the selection of the 20 reference genes
by their peaks expression in each cell cycle phase. Each of the 1099 studied genes is then assigned a
cell cycle phase of the most similar 4 reference genes. The used similarity is based on the expression
values regardless to the gene expression behavior. If we observe in detail the 20 gene expression
profiles given in figure 2 we find some contradictions. First, the reference genes CDC2, CCNF,
CCNA2 characterizing the G2 phase don’t peak at G2 but at G2/M . Similarly, the G2/M reference
genes BUB1 and PLK peak at M/G1 instead at G2/M . These observations are supported by the
annotations of Genecards database (http://www.genecards.org/) and KEGG molecular pathway
database (http://www.genome.ad.jp/kegg/kegg2.html).
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Phase G1/S S G2 G2/M M/G1

Name CCNE1,E2F1 RFC4,DHFR CDC2, TOP2A STK15,BUB1 PTTG1, RAD21
CDC6,PCNA RRM2, RAD51 CCNF, CCNA2 CCNB1, PLK VEGFC, CDKN3

TABLE 2. The 20 reference genes.
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FIGURE 2. Gene expression profiles for the 20 reference genes whose expression peaks in each phase of
the cell cycle : G1/S, S, G2, G2/M and M/G1. The double arrowed lines delimit the time duration for
each cell cycle phase : G1, S, G2 and M.

3.3 Adaptive unsupervised classification for identifying genes cell cycle phases

Our purpose is first to identify the cell cycle phases of the studied genes; then to determine the
set of genes well characterizing each cell cycle phase. For this, we propose to use the classical
partitioning around medoids (PAM) method through an adaptive approach based on the new
dissimilarity index. The idea of PAM method is that in order to classify objects into nb clusters,
it selects nb objects called representative objects, the clusters are then obtained by assigning
each remaining object to the nearest representative object. The clue is that the representative
objects must be selected so that they minimize the average dissimilarity to all the other objects
of the same cluster. In this work, PAM method is preferred to the familiar k-means approach
for mainly two reasons. First, it is more robust with respect to outliers, which are numerous in
genes expression data due to measurement errors. Secondly, it allows a more detailed analysis of
the partition by providing clustering characteristics and a graphical display (a so-called silhouette
plot). In particular, the extraction of the set of genes well characterizing each cluster (i.e. each
cell cycle phase) is based on the silhouette width of each classified object indicating whether an
object is well classified, misclassified or lies on the boundary of a cluster. The quality of a partition
is estimated by the average of the silhouette width for all the classified objects. For more details
about PAM see Kaufman and Rousseeuw (1990). The main idea of the adaptive approach is to
perform, for several values of k (k=0,...,6 per a lag of 0.01), a PAM (number of clusters=5, for
the 5 cell cycle phases in interest) method on the whole 1099 genes based on the dissimilarity
index Dk to look for the best value of k maximizing the average silhouette width of the obtained
partition. Let Pk∗ (k*=5.9) be such a partition and figure 3 the associated silhouette plot. In
the literature, there are 43 genes (about 10 genes per phase) identified as involving in the cell
cycle division process (Whitfield et al. (2002)); therefor we extract from each cluster of Pk∗ a



6 Adaptive clustering for identifying cell cycle expressed genes

kernel set of the 10 well-classified genes maximizing the silhouette width. Table 3 gives for each
cluster the set of kernel genes (Gene Type = K). We indicate for each kernel gene it’s name, it’s
Whitfield assignment phase, the number of the neighbor cluster and it’s silhouette width (sw)
indicating if it is well-classified (sw close to 1) or misclassified (sw close to -1). We indicate also
the set of Whitfield reference genes (table 2) belonging to each cluster (Gene Type = R). Figure
4, visualizes for each cluster the expression profiles of the associated kernel genes. The observation
of the progression of the kernel genes during the cell division cycle reveals that: kernel genes of the
cluster 1 peak clearly at S phase, kernel genes of cluster 2 peak at G1/S, kernel genes of cluster 3
peak at G2/M phase, kernel genes of cluster 4 peak at M/G1 and finally, kernel genes of the cluster
5 peak at G1 phase. Let’s remark that due to the asynchronization of cells, it’s more reliable that
interpretations will be limited to the earlier cell cycles. According to that, each cluster is assigned
the cell cycle phase of its kernel set genes (indicated in the last column of the table 3). Finally,
each of the 1099 studied genes is then assigned the cell cycle phase of the cluster it belongs to.

Cluster Gene Name Whitfield Gene Type Neighbor Silhouette High
Number Assignment Cluster width (sw) peaked phase

Homo S K 2 0.806
KIAA0855 S K 3 0.697
KIAA1598 S K 2 0.688
KIAA0855 S K 2 0.686
KIAA0855 S K 3 0.681

SHC1 S K 2 0.677
1 AA452872 S K 3 0.674 S

ESTs S K 3 0.665
KIAA0841 S K 2 0.658
**ESTs S K 3 0.635
RRM2 S R 2 0.586
DHFR S R 2 0.315
RAD51 S R 3 0.238

E2F1* G1/S K 1 0.832
ORC1L G1/S K 1 0.829

SERPINB3 G1/S K 1 0.82
ESTs G1/S K 1 0.812
MCM6 G1/S K 1 0.812
RAMP G1/S K 1 0.812

LOC51218 G1/S K 1 0.802
2 ESTs G1/S K 1 0.794 G1/S

ESTs G1/S K 1 0.794
CCNE1 G1/S K/R 5 0.786
E2F1 G1/S R 1 0.775
CDC6 G1/S R 1 0.682
PCNA G1/S R 1 0.625
RFC4 S R 1 0.526

CASP3 G2 K 4 0.811
CDKN1B G2 K 4 0.807
WISP1 G2 K 4 0.799
UBE2C G2 K 4 0.788
CKS1 G2 K 4 0.784

T56726 G2 K 4 0.779
FLJ11029 G2 K 1 0.779
UBE2C G2 K 4 0.779
HMG2 G2 K 4 0.768

3 FZR1 G2 K 4 0.765 G2/M
CCNF G2 R 4 0.757
TOP2A G2 R 4 0.669
CDC2 G2 R 1 0.618
STK15 G2/M R 4 0.478
CCNA2 G2 R 4 0.458

FLJ13154 M/G1 K 3 0.737
PCF11 M/G1 K 5 0.717

AA705332 G2/M K 5 0.695
FLJ10461 G2/M K 3 0.651
CNAP1 G2/M K 3 0.599
NR3C1 G2 K 3 0.593

MRPL19 M/G1 K 3 0.585
HMGCR M/G1 K 3 0.579

4 ZPBP M/G1 K 3 0.578 M/G1
IDN3 G2 K 3 0.576

RAD21 M/G1 R 3 0.433
CDKN3 M/G1 R 3 0.320
PTTG1 M/G1 R 5 0.282
BUB1 G2/M R 3 0.184

VEGFC M/G1 R 3 0.148
CCNB1 G2/M R 3 0.095
PLK G2/M R 3 0.003

RAB3A M/G1 K 2 0.561
H2BFQ M/G1 K 2 0.502
HMGE M/G1 K 4 0.489
IFIT1 M/G1 K 2 0.484

5 BAIAP2 G1/S K 2 0.478 G1
FLJ23053 G1/S K 2 0.475

ESTs M/G1 K 4 0.429
ESTs G1/S K 2 0.407
SSP29 G2/M K 4 0.398
TOP1 M/G1 K 4 0.394

TABLE 3. The 50 Kernel genes (Gene Type = K) well-characterized the cell cycle phases: S, G1/S, G2/M ,
M/G1 and G1, with the classification of the 20 Whitfield reference genes (Gene Type = R) through the
5 obtained clusters.
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FIGURE 3. Silhouette width of Pk∗=5.9

4 Comparative analysis and discussion

Let’s first discuss the PAM obtained results. The optimal partition Pk∗ maximizing the average
silhouette is obtained for k*=5.9. This value means that the 5 main patterns of gene expression
profiles are distinctive essentially through their behaviors (table 1). Figure 3, reveals an average
silhouette (sw) of 0.33 which indicates that the clustering structure is no better than reasonable.
However, if limited to the 50 kernel genes, the average silhouette coefficient is about 0.67, which
means that the kernel sets are well separated from each other. Figure 3 indicates that the cluster
2 (G1/S) possesses the largest sw of 0.47, which means that this cluster is well separated from the
other clusters, whereas the cluster 5 (G1) possesses a rather very narrow sw of 0.08, which means
that the cluster G1 is not very clearly separated from the other clusters.

According to the biological knowledge, note that the well studied genes CCNE1, CCNA2, and
CCNB1 known as mitotic cyclins, respectively classed into the clusters G1/S, G2/M and M/G1,
appear in the expected biological temporal order during the cell division cycle (G1, S, G2 and M).
As a support to the obtained G1/S cluster note that E2F1, a transcription factor known as a key
regulator of cell cycle progression involved in the control of cell cycle progression from G1 to S,
exhibits the largest silhouette (sw=0.832). The genes CCNE1 (sw=0.786) and MCM6 (sw=0.812)
known as activated and induced respectively by E2F1, are also classified into the G1/S cluster.
It’s shown experimentally that the CCNA2 gene promotes G2/M transition.

Our proposed approach classified well CCNA2 into the cluster G2/M (sw=0.458), whereas it
is selected as a G2 Whitfield reference gene. The gene UBE2C (sw=0.779) belonging to the G2/M
cluster is well assessed by the biological knowledge: it represents an enzyme of the ubiquitin
pathway regulating destruction of mitotic cyclins near the end of mitosis (G2/M transition).
Finally, note all Whitfield reference genes labeled as G2 phase are classified into the cluster G2/M
and except STK15, all the reference genes labeled as G2/M are classified into the cluster M/G1,
which clearly corroborate the contradictions discussed in the paragraph 3.2.

5 Conclusion

This paper focuses on an alternative adaptive clustering for the identification of the cell cycle
genes. We propose a new dissimilarity index for gene expression profiles to include both proximity
measures w.r.t. expressed values and w.r.t. genes expression behavior. An adaptive unsupervised
classification, based on the proposed dissimilarity index, is then performed to identify the cell
cycle phases of the studied genes. Finally, we propose a new well-justified set of reference genes,
assessed by a published biological knowledge.
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FIGURE 4. Kernel Gene expression profiles during cell division cycle
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