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1 Introduction

In a series of recent articles, two processes have been proposed in or-

der to deal with multi-rationale choices. Let us consider two rationales (or

criteria). The first process, introduced in [Tadenuma, 2002] and applied in

[Tadenuma, 2005] works as follows. Let us construct the following binary

preferences: for any pair of alternatives, x and y, x is prefered to y if and

only if x is prefered to y when considering the first rationale, or, y is not

prefered to x according to the first rationale and x is prefered to y accord-

ing to the second rationale. Then, the choice function is the maximization

function of these composed binary preferences. By construction, since it

is the maximization function of binary preferences, this composed choice

function satisfies the most common rationality axioms (see [Sen, 1993] and

[Sen, 1977] for instance), α and γ. However, it is known that it is almost

never non-empty.

The second process has been axiomatized by [Houy, 2008a] in order to

avoid the problem of empty choices. When choosing from a any set, prudent

preferences are constructed. A prudent preference is one that contains the

first rationale and as many instances of the second rationale as possible with

the constraint that the prudent preferences remain acyclic. Since prudent

preferences are not unique, we define prudent choices as the set of alternatives

that maximize at least one set of prudent preferences. By construction,

prudent choices are always non-empty. We also know from [Houy, 2008a]

how rational they are (they satisfy γ but only a weak version of α.) We

prove in this article that actually, prudent choices satisfy α if and only if

they are equal to the first process described above and then, if and only if

the first process makes empty choices. Said differently, if the first process

makes empty choices, we can be sure that implementing the second process

will solve the problem of empty choices at the cost of irrational choices.

Conversely, if the second process makes irrational choices, implementing the
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second process will solve the problem of irrational choices at the cost of empty

choices.

A third process has been axiomatized by [Houy, 2008b] in order to refine

prudent choices. Since prudent preferences are not unique, we define re-

fined prudent choices as the set of alternatives that maximize all the prudent

preferences. It is known that refined prudent choices can make non empty

choices. Moreover, they satisfy γ but only a weak version of α (different

from the one satisfied prudent choices), see [Houy, 2008b]. We show in this

paper that refined prudent choices are a refinement of prudent choices that

always choose, possibly among others, the choices made by the first process

of choice. However, we also show that refined prudent choices are different

from prudent choices if and only if they make empty choices. Moreover, re-

fined prudent choices are equal to the first process of choice making if and

only if they are rational.

In the first section we give the notation and a few lemmas. Main results

are given in the second section.

2 Notation

Let X be a finite set of alternatives. X is the set of all non-empty subsets

of X, X = 2X \ ∅. A choice function on X is a function C : X → 2X such

that ∀S ∈ X , C(S) ⊆ S. Let C(X) be the set of all choice functions on X.

Let P ⊆ X×X be a binary relation on X. For any subset S of X, P |S is

the restriction of P to S, i.e. P |S= {(a, b) ∈ P, a, b ∈ S}. P t is the transitive

closure of P i.e. ∀a, b ∈ X, (a, b) ∈ P t if and only if ∃n ∈ N, ∃a1, ..., an ∈ X

such that ∀i ∈ {1, ..., n − 1}, (ai, ai+1) ∈ P , a1 = a and an = b. We say

that P is irreflexive if and only if ∀a ∈ X, (a, a) /∈ P . We say that P is

asymmetric if and only if ∀a, b ∈ P, (a, b) ∈ P ⇒ (b, a) /∈ P . We say that P

is acyclic if and only if (a, a) /∈ P t.1 An asymmetric binary relation will be

1Notice that, by definition, acyclicity implies asymmetry and asymmetry implies ir-
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called a preference relation.

Let P1 and P2 be two preference relations on X. We define Q(P1, P2) by:

∀a, b ∈ X, (a, b) ∈ Q(P1, P2) if and only if (a, b) ∈ P1 or [(b, a) /∈ P1 and

(a, b) ∈ P2].

Let (P1, P2) be an ordered pair of preference relations on X such that P1

is acyclic. Let S ∈ X . We say that P ⊆ X × X is a prudent composition of

P1 and P2 on X if

• P = P1 |S
⋃

Q with Q ⊆ P2 |S,

• P is acyclic and,

• ∀Q′ such that Q ⊂ Q′ ⊆ P2 |S, P1 |S
⋃

Q′ is cyclic.

Then, a prudent composition of P1 and P2 on S is a binary relation containing

P1 |S and as many elements of P2 |S as possible with the constraint that

the prudent composition is not cyclic. We denote by ̂(P1, P2)(S) the set

of all prudent compositions of P1 and P2 on S. Notice that by definition,

̂(P1, P2)(S) is non-empty if and only if it is well defined or, said differently,

if P1 |S is acyclic.2

Let P ⊆ X × X be a preference relations on X. We define CP : X → 2X

by

∀S ∈ X , CP (S) = {a ∈ S, ∀b ∈ S, (b, a) /∈ P}.

We say that P rationalizes the choice function CP .

Let P1, P2 ⊆ X × X be two preference relations on X with P1 acyclic.

We define C∪
(P1,P2)

by

∀S ∈ X , a ∈ C∪
(P1,P2)

(S) ⇔ a ∈ S and ∃P ∈ ̂(P1, P2)(S) such that

∀b ∈ S, (b, a) /∈ P.

reflexivity.
2Obviously, if ̂(P1, P2)(S) = {∅}, we still have ̂(P1, P2)(S) 6= ∅.
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We say that (P1, P2) ∪-prudently rationalizes C. We define C∩
(P1,P2)

by

∀S ∈ X , a ∈ C∩
(P1,P2)(S) ⇔ a ∈ S and ∀P ∈ ̂(P1, P2)(S),

∀b ∈ S, (b, a) /∈ P.

We say that (P1, P2) ∩-prudently rationalizes C.

The three following lemmas are axioms in the litterature. The first im-

poses that the choice function makes always non-empty choices. The second

and third are the usual Contraction Consistency (or Chernoff3 or α) and

Expansion Consistency (or γ) axioms (see [Sen, 1993]).

Axiom 1 (NE)

Let C ∈ C(X). The choice function C satisfies NE if and only if ∀S ∈ X ,

C(S) 6= ∅.

Axiom 2 (γ)

Let C ∈ C(X). The choice function C satisfies γ if and only if ∀n ∈ N and

∀S1, ..., Sn ∈ X ,

a ∈
⋂

i∈{1,...,n} C(Si) implies a ∈ C(
⋃

i∈{1,...,n} Si).

Axiom 3 (α)

Let C ∈ C(X). The choice function C satisfies α if and only if ∀S, T ∈ X

such that S ⊆ T and ∀a ∈ S,

a ∈ C(T ) implies a ∈ C(S).

The following lemma is well known in the litterature since it has been

stated in [Blair et al., 1954]. A good reference for these results in [Suzumura, 1983].

Lemma 1

Let C ∈ C(X). C satisfies α and γ if and only if ∃P ⊆ X × X such that

C = CP . C satisfies NE, α and γ if and only if ∃P ⊆ X ×X such that P is

acyclic and C = CP .

3See [Chernoff, 1954]
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The following lemmas characterize the choices made by CQ(P1,P2), C∪
(P1,P2)

and C∩
(P1,P2)

. The first result has been proved in [Houy and Tadenuma, 2008],

the second in [Houy, 2008a] and the third in [Houy, 2008b].

Lemma 2

Let P1, P2 be two preference relations on X. Let S ∈ X and a ∈ S. a ∈

CQ(P1,P2)(S) if and only if:

• ∀b ∈ S, (b, a) /∈ P1 and,

• ∀b ∈ S such that (b, a) ∈ P2, (a, b) ∈ P1.

Lemma 3

Let P1, P2 be two preference relations on X with P1 acyclic. Let S ∈ X and

a ∈ S. a ∈ C∪
(P1,P2)

(S) if and only if:

• ∀b ∈ S, (b, a) /∈ P1 and,

• ∀b ∈ S such that (b, a) ∈ P2, (a, b) ∈ (Q(P1, P2) |S)t.

Lemma 4

Let P1, P2 be two preference relations on X with P1 acyclic. Let S ∈ X and

a ∈ S. a ∈ C∩
(P1,P2)

(S) if and only if:

• ∀b ∈ S, (b, a) /∈ P1 and,

• ∀b ∈ S such that (b, a) ∈ P2, (a, b) ∈ (P1 |S)t.

As a simple corollary of the preceding lemmas, we can state that C∩
(P1,P2)

is indeed a refinement C∪
(P1,P2)

that contains CQ(P1,P2).

Proposition 1

Let P1, P2 be two preference relations on X with P1 acyclic. ∀S ∈ X , CQ(P1,P2) ⊆

C∩
(P1,P2)

(S) ⊆ C∪
(P1,P2)

(S).
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3 Results

We will now study the non-emptyness and rationality properties of CQ(P1,P2),

C∪
(P1,P2)

and C∩
(P1,P2)

. Proposition 2 states that obviously, C∪
(P1,P2)

satisfies NE.

Proposition 2

Let P1, P2 ⊆ X × X be two preference relations with P1 acyclic. C∪
(P1,P2)

satisfies NE.

Proof. By definition. �

Proposition states that C∩
(P1,P2)

satisfies NE if and only if C∩
(P1,P2)

=

C∪
(P1,P2)

. Hence, we cannot refine C∪
(P1,P2)

by C∩
(P1,P2)

without falling on a

function that is empty for some choice sets.

Proposition 3

Let P1, P2 be two preference relations on X with P1 acyclic. C∩
(P1,P2)

= C∪
(P1,P2)

if and only if C∩
(P1,P2)

satisfies NE.

Proof. If: Assume that C∩
(P1,P2)

6= C∪
(P1,P2)

. Let S ∈ X be such that

C∩
(P1,P2)

(S) 6= C∪
(P1,P2)

(S). By Proposition 1, C∩
(P1,P2)

(S) ⊆ C∪
(P1,P2)

(S). Hence,

∃a ∈ C∪
(P1,P2)

(S) such that a /∈ C∩
(P1,P2)

(S). By Lemma 3, a ∈ C∪
(P1,P2)

(S) im-

plies ∀b ∈ S, (b, a) /∈ P1. Moreover, by Lemmas 3 and 4, ∃c ∈ S, (c, a) ∈ P2,

(a, c) ∈ (Q(P1, P2) |S)t, (a, c) /∈ (P1 |S)t. Then, (Q(P1, P2) is cyclic. Let us

have A be the smallest cycle of Q(P1, P2) containing a and c. It is straight-

forward to check that we can denote A = {a1, ..., a#A} with (Q(P1, P2) |A=

{(a#A, a1)} ∪i∈{1,...,#A−1} {(ai, ai+1)} and with no loss of generality c = a#A,

a1 = a. Since (a, c) /∈ (P1 |S)t, ∃i ∈ {1, ..., #A − 1} such that (ai, ai+1) ∈ P2

and (ai, ai+1), (ai+1, ai) /∈ P1. Hence, it is easy to check that C∩
(P1,P2)

(A) = ∅.

Only If: By Proposition 2. �

Proposition 4 gives the conditions under which the predicates of Propo-

sition 3 apply.
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Proposition 4

Let P1, P2 ⊆ X × X be two preference relations with P1 acyclic. C∩
(P1,P2)

satisfies NE if and only if ∀A ∈ X , Q((P1 |A)t, P2 |A) is acyclic.

Proof. If: Let A ∈ X . If Q((P1 |A)t, P2 |A) is acyclic, then it has a

maximal element. Let us have a ∈ A such that ∀b ∈ A, (b, a) /∈ Q((P1 |A

)t, P2 |A). Then, by definition, ∀b ∈ A, (b, a) /∈ P1. Moreover, ∀b ∈ A such

that (b, a) ∈ P2, by definition of Q((P1 |A)t, P2 |A) we have (a, b) ∈ (P1 |A)t.

Hence, by Lemma 4, a ∈ C∩
(P1,P2)

(A).

Only If: On the contrary, assume ∃A ∈ X , such that Q((P1 |A)t, P2 |A)

is cyclic. By definition of Q((P1 |A)t, P2 |A), it is asymmetric. Then we can

define n ∈ N \ {1, 2} and B = {a1, ..., an} ⊆ A such that ∀i ∈ {1, ..., n},

(ai+1, ai) ∈ Q((P1 |A)t, P2 |A) where we define, for the sake of simplic-

ity, an+1 = a1. Let us have E = {ai ∈ B, (ai+1, ai) ∈ (P1 |A)t}. For

all ai ∈ E, define ni ∈ N \ {1} and Di = {d1, ..., dni
} ⊆ A such that

∀j ∈ {1, ..., ni − 1}, (dj+1, dj) ∈ P1 |A with dni
= ai+1 and d1 = ai. Let

us compute C∩
(P1,P2)

(B ∪ai∈E Di). Obviously, for all Di, dni
is the only el-

ement non dominated by P1. Hence, if C∩
(P1,P2)

(B ∪ai∈E Di) 6= ∅, then,

C∩
(P1,P2)

(B ∪ai∈E Di) ⊆ B \ E. Let us have ak ∈ B \ E. By definition,

(ak+1, ak) ∈ P2. Assume (ak, ak+1) ∈ (P1 |B∪ai∈EDi
)t. Then, (ak, ak+1) ∈

(P1 |A)t which contradicts (ak+1, ak) ∈ Q((P1 |A)t, P2 |A). Hence, by Lemma

4, ak /∈ C∩
(P1,P2)

(B ∪ai∈E Di). Hence, C∩
(P1,P2)

(B ∪ai∈E Di) = ∅. �

The first result concerning rationality states that obviously, by definition

and Lemma 1, CQ(P1,P2) is rational in the sense that it satisfies both α and γ.

Moreover, it has been proved in [Houy, 2008a] and [Houy, 2008b] respectfully

that C∪
(P1,P2)

and C∩
(P1,P2)

satisfy γ.

Proposition 5

Let P1, P2 ⊆ X × X be two preference relations. CQ(P1,P2) satisfies α and γ.

C∪
(P1,P2)

and C∩
(P1,P2)

satisfy γ.
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Proposition states that C∩
(P1,P2)

satisfies α if and only if C∩
(P1,P2)

= CQ(P1,P2).

Hence, we cannot expand CQ(P1,P2) by C∩
(P1,P2)

without falling on a function

that is not rational.

Proposition 6

Let P1, P2 be two preference relations on X with P1 acyclic. C∩
(P1,P2)

=

CQ(P1,P2) if and only if C∩
(P1,P2)

satisfies α.

Proof. If: Assume that C∩
(P1,P2)

6= CQ(P1,P2). Let S ∈ X be such that

C∩
(P1,P2)

(S) 6= CQ(P1,P2)(S). By Proposition 1, CQ(P1,P2)(S) ⊆ C∩
(P1,P2)

(S).

Hence, ∃a ∈ C∩
(P1,P2)

(S) such that a /∈ CQ(P1,P2)(S). Then, by Lemmas 2 and

4, ∀b ∈ S, (b, a) /∈ P1, ∃d ∈ S, (d, a) ∈ P2, (a, d) /∈ P1 and ∃n ∈ N \ {1} and

∃a1, ..., an ∈ S such that ∀i ∈ {1, ..., n − 1}, (ai, ai+1) ∈ P1, a1 = a and an =

d. Then, by definition, a /∈ C∩
(P1,P2)

({a, d}) and a ∈ C∩
(P1,P2)

({a1, ..., an}),

contradicting the fact that C∩
(P1,P2)

satisfies α.

Only If: By Proposition 5. �

Proposition 7 gives the conditions under which the predicates of Propo-

sition 6 apply.

Proposition 7

Let P1, P2 ⊆ X × X be two preference relations with P1 acyclic. C∩
(P1,P2)

satisfies α if and only if Q(P1, P2) ∪ P t
1 is asymmetric.

Proof. If: Let A, B ∈ X be such that A ⊆ B. Let b ∈ C∩
(P1,P2)

(B). By

Lemma 4, ∀c ∈ B, (c, b) /∈ P1. Now assume that ∃d ∈ B, (d, b) ∈ P2. Then,

by Lemma 4, (b, d) ∈ P t
1 . Hence, (d, b) ∈ P1 (else, Q(P1, P2)∪P t

1 is symmetric

contradicting the assumptions). Then, ∀d ∈ B, (d, b) ∈ P2 ⇒ (b, d) ∈ P1.

Then, ∀d ∈ A, (d, b) /∈ P1 and [(d, b) ∈ P2 ⇒ (b, d) ∈ P1]. Hence, by Lemma

4, b ∈ C∩
(P1,P2)

(A).

Only If: Let us have Q(P1, P2) ∪ P t
1 symmetric. Then, ∃a, b ∈ X such

that (a, b), (b, a) ∈ Q(P1, P2) ∪ P t
1. By definition, Q(P1, P2) is asymmetric

and P t
1 is asymmetric since P1 is acyclic. Hence, let us have, with no loss of
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generality, (a, b) ∈ Q(P1, P2) \ P t
1 and (b, a) ∈ P t

1 \ Q(P1, P2). By definition,

b /∈ C∩
(P1,P2)

({a, b}). Now, let us have n ∈ N\{1, 2} and A = {a1, ..., an} such

that ∀i ∈ {1, ..., n − 1}, (ai, ai+1) ∈ P1, a1 = b, an = a. Then, by definition,

∀c ∈ A, (b, c) ∈ P t
1 and ∀c ∈ A, (c, b) /∈ P1 by acyclicity of P1. Hence, by

Lemma 4, b ∈ C∩
(P1,P2)

(A) with a ∈ A. Hence a contradiction with α. �

Finally, we prove that C∪
(P1,P2)

satisfies α if and only if CQ(P1,P2) satisfies

NE if and only if C∪
(P1,P2)

= CQ(P1,P2) and hence, by the following results,

C∩
(P1,P2)

= C∪
(P1,P2)

= CQ(P1,P2).

Proposition 8

Let P1, P2 ⊆ X×X be two preference relations with P1 acyclic. The following

are equivalent:

1. C∪
(P1,P2)

satisfies α,

2. C∪
(P1,P2)

= CQ(P1,P2),

3. C∩
(P1,P2)

satisfies α and NE,

4. CQ(P1,P2) satisfies NE,

5. Q(P1, P2) is acyclic.

Proof. 5 ⇔ 4: By Lemma 1.

2 ⇔ 3: By Propositions 1, 3 and 6.

3 ⇒ 1: By Proposition 3, if C∩
(P1,P2)

satisfies NE, then, C∩
(P1,P2)

= C∪
(P1,P2)

.

Then, if C∩
(P1,P2)

satisfies α, C∪
(P1,P2)

does as well.

1 ⇒ 5: Assume that Q(P1, P2) is cyclic. Since by definition, Q(P1, P2)

is asymmetric, ∃n ∈ N \ {1, 2} and ∃a1, ..., an ∈ X such that ∀i ∈ {1, ..., n},

(ai, ai+1) ∈ Q(P1, P2) with an+1 = a1. Since P1 is acyclic, let us set with no

loss of generality, (a1, a2) ∈ P2, (a1, a2), (a2, a1) /∈ P1. Then, by Lemma 3,

a2 /∈ C∪
(P1,P2)

({a1, a2}) whereas a2 ∈ C∪
(P1,P2)

({a1, ..., an}) contradicting α for

C∪
(P1,P2)

.
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(5 and 4) ⇒ 3: By Proposition 1, CQ(P1,P2) satisfies NE implies that

C∩
(P1,P2)

satisfies NE. Let us have A, B ∈ X be such that A ⊆ B. Let

a ∈ C∩
(P1,P2)

(B). By Lemma 4, ∀b ∈ B, (b, a) /∈ P1. Moreover, by the fact

that Q(P1, P2) is acyclic, ∀b ∈ B, (b, a) /∈ Q(P1, P2). Then, ∀b ∈ A, (b, a) /∈

Q(P1, P2). Hence, by Lemma 4, a ∈ C∩
(P1,P2)

(A). �

The following examples show that the conditions given in Propositions

4 and 7 are independent. More precisely, let P1 and P2 be two preference

relations with P1 acyclic. It not necessarily true that if C∩
(P1,P2)

satisfies NE

(resp. α), then it satisfies α (resp. NE).

Example 1

Let X = {a, b, c, d} and let P1 = {(a, b), (c, d)} and P2 = {(b, c), (d, a)}. By

Proposition 7, since Q(P1, P2)∪P t
1 = {(a, b), (c, d), (b, c), (d, a)}, C∩

(P1,P2)
sat-

isfies α. However, C∩
(P1,P2)

(X) = ∅ since ̂(P1, P2)(X) = {{(a, b), (b, c), (c, d)}, {(a, b), (d, a), (c, d)}}

Example 2

Let X = {a, b, c} and let P1 = {(a, b), (b, c)} and P2 = {(c, a)}. By Proposi-

tion 4, C∩
(P1,P2)

satisfies NE. However, it does not satisfy α since C∩
(P1,P2)

(X) =

{a} whereas C∩
(P1,P2)

({a, c}) = {c}.
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