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1 Introduction

Both in Boolean and algebraic complexity, the permanent has proven to
be a central problem and showing lower bounds on its complexity has
become a major challenge. This central position certainly comes, among
others, from its ♯P-completeness [15], its VNP-completeness [14], and from
Toda’s theorem stating that the permanent is as powerful as the whole
polynomial hierarchy [13]. More recently, it played a role in the celebrated
and subtle result of Kabanets and Impagliazzo [6]: either NEXP

RP does
not have Boolean circuits of polynomial size, or the permanent does not
have arithmetic circuits of polynomial size.

However little is known on the circuit complexity of the permanent in
the general case. Indeed, the best lower bound so far on its circuit size is
no more than the trivial Ω(n2) (remember that PERn has n2 variables).
Despite this rather dark state of affairs, some progress has been made
on restricted classes of circuits. For instance, we know lower bounds on
monotone circuits (such circuits for the permanent must have exponential
size, see [5,11]), and recently, lower bounds on multilinear circuits were
obtained (see e.g. [8,9,10]).

A lot of work has also been done on constant-depth circuits, in which
gates have unbounded fan-in. This line of research has been quite success-
ful on Boolean circuits and gave deep insights into circuit complexity: see
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e.g. [3,12]. However, pushing the limit of lower bounds beyond constant
depth for polynomial-size circuits has remained elusive so far.

Another restriction worth studying is uniformity: circuits are not ar-
bitrary any more but are required to be described by a Turing machine.
If this description is very efficient (running in time logartihmic in the
size of the circuit, we speak of DLOGTIME-uniformity), Allender [1] (see
also similar results on circuits with modulo gates in [2]) has shown that
the permanent does not have threshold circuits of constant depth and
subexponential size. In this paper, we obtain a tradeoff between size and
depth: instead of subexponential size, we only prove a superpolynomial
lower bound on the size of the circuits, but now the depth is no more
constant. More precisely, we show the following theorem.

Theorem 1. The permanent does not have DLOGTIME-uniform
polynomial-size threshold circuits of depth o(log log n).

It seems to be the first superpolynomial lower bound on the size of
non-constant-depth threshold circuits for the permanent (though a lower
bound is proved in [10] on multilinear arithmetic circuits of depth
o(log n/ log log n)). Admittedly, the depth o(log log n) is still small but
until now the known techniques were only able to prove lower bounds on
constant-depth circuits.

Let us very briefly describe our proof technique. In contrast with [1],
we do not use the relation between threshold circuits and the counting hi-
erarchy, which implied to consider only constant-depth circuits. Also, the
diagonalization in [1] is a variant on the nondeterministic time hierarchy
theorem. Here, we use the usual deterministic time hierarchy theorem as
an indirect diagonalization : under the assumption that the permanent
has DLOGTIME-uniform circuits of polynomial size and depth o(log log n),
we show

1. the value of a threshold circuit of size s and depth d can be computed
in time (log s)2

O(d)
(Lemma 3 combined with Lemma 1);

2. every language in E has uniform threshold circuits of size 2O(n) and
depth o(log n) (Corollary 4).

These two points together imply that every language in E can be com-
puted in subexponential time, a contradiction with the time hierarchy
theorem.

Since threshold circuits can simulate arithmetic circuits, we also ob-
tain a superpolynomial lower bound on the size of uniform arithmetic
circuits of depth o(log log n) for the permanent (Corollary 7).
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Organization of the paper — The next section is devoted to the
definition of the notions in use: circuits (Boolean, threshold, arithmetic),
uniformity and some complexity classes. Then Section 3 is dedicated to
the proof of Theorem 1 by showing a series of results along the way
suggested above.

2 Preliminaries

The notions we use are very standard but, for completeness, we still recall
them in this section.

2.1 Boolean circuits

A Boolean circuit on n variables is a directed acyclic graph, whose vertices
are labeled either by a variable among {x1, . . . , xn} or by an operation
among {∨,∧,¬}. Vertices of indegree3 0 are called inputs, the others are
called gates. A gate labeled by ¬ is required to have indegree 1, whereas
gates labeled by ∨ or ∧ have indegree 2. A single gate has outdegree 0
and is called the output gate.

The value computed by a vertex is defined recursively: an input xi has
for value the value of the variable xi ∈ {0, 1}. A ¬ gate g = ¬h has for
value the negation of the value of h. An ∨ gate g = h1 ∨ h2 (respectively
an ∧ gate g = h1 ∧ h2) has for value the disjunction (resp. conjunction)
of the values of h1 and h2. The value of the circuit is by definition the
value of its output gate.

The size of the circuit is the number of vertices and the depth is the
length of the longest path from an input vertex to the output gate.

Remark that in order to recognize a language, one needs not only
one but a whole family (that is, an infinite sequence) of circuits (Cn), as
explained below. There is also a variant in which gates ∨ and ∧ have un-
bounded fan-in: this is useful when defining classes of circuits of constant
depth.

2.2 Threshold circuits

A threshold circuit has a similar definition as a Boolean circuit with ∨ and
∧ gates of arbitrary fan-in, but another type of gates is allowed: threshold
gates (also known as majority gates). A threshold gate is also of arbitrary

3 Indegree and outdegree are also called fan-in and fan-out, respectively.
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fan-in, and its value is 1 if at least half of its inputs have value 1, and 0
otherwise.

Again, in order to recognize a language, a whole family of circuits
is needed. Remark that it makes sense to consider families of bounded
depth threshold circuits since gates are allowed to have arbitrary fan-in.

2.3 Arithmetic circuits

An arithmetic circuit is defined similarly as a Boolean circuit but with
other kinds of gates. It has +, − and × gates, all of fan-in 2, and besides
variables, another input is labeled by the constant 1. The variables are not
considered to have Boolean values anymore, but instead they are symbolic
and the circuit computes a polynomial (over the ring Z) in the obvious
way: the value of the input gate labeled by 1 is the constant polynomial
1, the value of an input gate labeled by xi is the polynomial xi, the value
of a + gate (respectively − gate, × gate) is the sum (resp. difference,
product) of the values of its inputs.

An arithmetic circuit C with n input gates computes a multivariate
polynomial over Z with n variables. Circuit families (Cn) are used to com-
pute families of polynomial. The permanent family (also called permanent
for short) is the family (PERn) of polynomials defined as follows:

PERn(x1,1, x1,2, . . . , x1,n, x2,1, . . . , xn,n) =
∑

σ

n∏

i=1

xi,σ(i)

where the sum is taken over all the permutations σ of {1, . . . , n}. The n2

variables xi,j can be viewed as the coefficients of an n×n matrix, allowing
us to speak of the permanent of a matrix.

2.4 Uniformity

Circuits, be they Boolean, threshold or arithmetic, are finite objects easily
encoded in binary (e.g. by the list of their vertices and edges). Hence they
can be handled by Turing machines.

As already mentioned, we are interested in sequences (Cn) of circuits
in order to recognize languages. In whole generality, no assumption is
made on the structure of these circuits: in particular, the Boolean encod-
ings of the circuits of a family may be uncomputable. However, if a single
Turing machine is able to produce the Boolean encoding of all the cir-
cuits of the family, then we speak of uniformity. The degree of uniformity
depends on the ressources needed by the machine.
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A family of circuits (Cn) is said P-uniform if there exists a determin-
istic Turing machine which, on input (n, i) given in binary, outputs the
i-th bit of the encoding of Cn in time polynomial in n (that is, in time
exponential in the size of the input). Similarly, a family of circuits (Cn)
is said DLOGTIME-uniform if there exists a deterministic Turing machine
which, on input (n, i) given in binary, outputs the i-th bit of the encoding
of Cn in time logarithmic in n (that is, in time linear in the size of the
input). Of course, DLOGTIME-uniformity implies P-uniformity. It can be
argued that DLOGTIME-uniformity is the right notion of uniformity for
small-depth circuits, see [7].

Remark 1. In the remainder of the paper, we shall work with DLOGTIME-
uniformity, but everything remains valid if replaced by “polylogtime”
uniformity.

2.5 Complexity classes

Finally, we will meet some complexity classes defined now. Let
DTIME(t(n)) denote the set of languages recognized in time t(n) by
a deterministic Turing machine. Then P is the class DTIME(nO(1)) =
∪k>0DTIME(nk) (that is, deterministic polynomial time) and E is the
class DTIME(2O(n)) = ∪k>0DTIME(2k.n) (that is, deterministic exponen-
tial time with linear exponent).

Recall the time hierarchy theorem [4]: for time-constructible func-
tions f and g, if f(n)/g(n) = o(1/ log(g(n))) then DTIME(g(n)) 6⊂
DTIME(f(n)). In particular, we will use the following consequence: E 6⊂

DTIME(n2o(log n)
).

The class ♯P is the set of functions f : {0, 1}∗ → N defined as follows:
there exist a polynomial p and a language A ∈ P such that f(x) = #{y ∈
{0, 1}p(|x|) : (x, y) ∈ A}. Computing the permanent of a 0-1 matrix is ♯P-
complete (Valiant [14]). Then PP is the set of languages B such that there
is f ∈ ♯P satisfying [x ∈ B ⇐⇒ f(x) ≥ 2p(|x|)−1]. The class PP can also
be viewed as the languages B such that there exists a polynomial-time
nondeterministic Turing machine N satisfying [x ∈ B iff at least half of
the computation paths of N are accepting]. Remark that if every function
in ♯P can be computed in polynomial time, then PP = P.

Complexity classes can also be defined in terms of circuits (either
Boolean or threshold). An input x is accepted by a circuit C if the value
of C on x, denoted by C(x), is 1. In order to recognize languages, families
(Cn) of circuits are considered: circuit Cn will recognize inputs of size
n, hence we make the assumption that Cn has n input gates. Now, a
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language A is recognized by a family (Cn) of circuits if A = {x ∈ {0, 1}∗ :
C|x|(x) = 1}.

We shall use the well known characterization of P in terms of circuits:
P is the set of languages recognized by P-uniform families of polynomial-
size Boolean circuits. The class AC

0 is the set of languages recognized
by a family of constant-depth Boolean circuits of polynomial size, where
the gates ∨ and ∧ have unbounded fan-in. The class TC

0 is the set of
languages recognized by a family of constant-depth threshold circuits
of polynomial size. Uniform versions of these classes, DLOGTIME-AC

0

and DLOGTIME-TC
0 respectively, are defined by requiring DLOGTIME-

uniformity on the circuit family.

3 Technical developments

This series of results is devoted to the proof of Theorem 1.

Lemma 1. If the permanent has P-uniform polynomial-size threshold cir-
cuits then PP=P.

Proof. First turn the threshold circuits into Boolean circuits. To this
end, every ∧ or ∨ gate of unbounded fan-in is replaced by trees of ∧ or
∨ gates of fan-in 2 (which clearly remains P-uniform and of polynomial
size), and every threshold gate with N = nO(1) inputs is replaced by the
addition of the inputs followed by a comparison of the result with N/2.
This iterative addition can easily be carried out by a P-uniform circuit
of size polynomial in N , hence polynomial in n. This proves that the
permanent has P-uniform polynomial-size Boolean circuits.

Thus, by ♯P-completeness of the permanent every function in ♯P can
be computed in polynomial time. This implies that PP = P. ⊓⊔

As a preparation to the proof of Lemma 3, let us first rephrase the hy-
pothesis PP = P in a convenient way.

Lemma 2. Let A be a language with a (deterministic) algorithm running
in time t(n) ≥ n. Consider the following problem B: given a word x, a
length n and an integer N ≤ 2n, decide whether at least N words y of
size n satifsy (x, y) ∈ A.
If PP = P then B has an algorithm running in time p(t(n)) for a fixed
polynomial p (independent of A).

Proof. Remark that this is not a completely obvious consequence
of PP = P since the polynomial p is required to be independent of



A Lower Bound for the Permanent 7

A. In fact this comes from the existence of a complete problem for
PP. Take indeed the canonical PP-complete language H = {(M,x, 1n) :
at least half of the computation paths of M(x) are accepting in time n},
where M is a nondeterministic Turing machine. The hypothesis PP = P

implies that H is decidable in time p(n) for some polynomial p.
To the problem B is associated a language B̃ = {(x, n,N, 1t(n)) :

#{y ∈ {0, 1}n : (x, y) ∈ A} ≥ N}. Then B̃ is in PP and a reduction
from B̃ to H is the mapping (x, n,N, 1t(n)) 7→ (M, (n,N, x), 1t(n)), where
M(n,N, x) has the following behaviour: it guesses a bit b ∈ {0, 1}; if
b = 0 then it creates 2n − N accepting paths among 2n paths; if b = 1
then it guesses y ∈ {0, 1}n and decides whether (x, y) ∈ A by running the
algorithm for A in time t(n). Therefore M(n,N, x) runs in time O(t(n)),
has 2n+1 paths, and among them #{y ∈ {0, 1}n : (x, y) ∈ A} + (2n − N)
are accepting. This is at least half iff #{y ∈ {0, 1}n : (x, y) ∈ A} ≥ N .
This reduction shows that B̃ is decidable in time p(t(n)). ⊓⊔

Similarly as succinct representations used for exponential-time-complete
languages, threshold circuits can be succinctly given, not by their binary
encoding but rather by a description of their gates. That is, instead of
giving the threshold circuit C directly, a Boolean circuit B is given, whose
value B(i) on input i is the i-th bit of the encoding of C. This may enable
to give a much shorter representation of the circuit. Circuits given in that
way will be called “succinctly given”.

Lemma 3. Let A be the problem of deciding the value of a succinctly
given threshold circuit, that is,

A = {(B,x) : B represents a threshold circuit C and C(x) = 1}

where B is a Boolean circuit and x is a Boolean input to C of appropriate
size. The size of the threshold circuit C is denoted by s and its depth by d.
Suppose furthermore that the size of the input (B,x) is less than (log s)2

d

.

If PP = P, then A has an algorithm of running time (log s)2
O(d)

.

Proof. The idea is to recursively evaluate the values of the gates at each
depth of the circuit, using Lemma 2 for threshold gates. In order to apply
Lemma 2, one has to consider all the inputs of a particular gate, leading
us to define the language Ak corresponding to the gates being inputs of
the i-th gate of C, whose depth is ≤ k, as follows:

Ak = {(B,x, i, j) : B represents a threshold circuit C in which
gate number i is at depth ≤ k,
gate number j is an input of gate i, and
the value of gate j in the computation C(x) is 1}
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Note that one can artificially add to C a final “identity gate” taking as
input the output of C, in which case deciding Ad+1 implies computing
the value of C(x).

Let us call T (k, d, s) the time needed to decide Ak as a function of the
size s and the depth d of C. The language A2 merely consists in evaluating
an input gate, that is, deciding to which bit of x it corresponds: this can
be done in polynomial time, hence in time (log s)O(2d) by assumption on

the size of (B,x). Therefore T (2, d, s) = (log s)O(2d).

The purpose is now to decide Ak+1 by using the algorithm for Ak. It
can be done easily since we can decide the value of a gate at depth k if
we know the values of the gates at depth ≤ k − 1. Indeed, let us decide
whether (B,x, i, j) ∈ Ak+1, supposing gate i is at depth k + 1 and has
gate j as input: we want to compute the value of gate j. Since gate j is
at depth ≤ k, the algorithm for Ak provides the value of all the inputs of
gate j, which are used in turn to compute the value of gate j itself. More
precisely we proceed inductively:

– If gate j is a ¬ gate, that is, f = ¬g, then the value of f is the negation
of the value of g.

– If gate j is an ∨ or an ∧ gate, that is, f = g ⋄ h with ⋄ ∈ {∨,∧}, then
we perform the corresponding Boolean operation on the values of g
and h.

– Finally, if gate j is a threshold gate, it has at most s − 1 inputs and
we decide whether at least half of them evaluate to 1.

Let us bound the execution time T (k + 1, s, d) of this algorithm for Ak+1

as a function of T (k, s, d) (the execution time of the algorithm for Ak). In
the first case, we take the negation of one request of the form (B,x, j, g) ∈
Ak, therefore we have the following relation: T (k + 1, s, d) = T (k, s, d) +
O(1). Similarly, in the second case we make a Boolean combination of two
requests (one for each input), hence T (k + 1, s, d) ≤ 2T (k, s, d) + O(1).
Finally in the third case, the task is to decide whether more than half of
the inputs y of gate j evaluate to 1. Applying Lemma 2 to the language
Ak with requests of the form (B,x, j, y) ∈ Ak for all gates y input of j,
yields T (k + 1, s, d) ≤ p(T (k, s, d)) for some fixed polynomial p.

As a whole, we have the following relation, for a fixed polynomial p:

T (k + 1, s, d) ≤ p(T (k, s, d)).

In other words, there exists an exponent α ∈ N such that T (k + 1, s, d) ≤

T (k, s, d)α, hence T (k, s, d) ≤ T (2, s, d)α
k

. Since T (2, s, d) = (log s)O(2d)
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and deciding A requires to go up to k = d + 1, there is an algorithm for
A running in time

T (d + 1, s, d) = (log s)2
O(d)

.

⊓⊔

Lemma 3 concerns the evaluation of succinctly given threshold circuits;
the consequence for languages is the following.

Corollary 1. Suppose a language A has threshold circuits of size s(n),
depth d(n) and constructible in polynomial time (that is, the i-th bit of Cn

is computable in time nO(1)). Suppose furthermore that (log s(n))2
O(d(n))

is superpolynomial in n.
If PP = P, then A has an algorithm of running time (log s(n))2

O(d(n))
.

Let us now see how to relate the hypothesis on the permanent to decision
languages. We need the following result concerning the completeness of
the permanent under a very strong notion of reduction. This result ap-
pears in [2] as a careful analysis of the usual reduction of Valiant [15] (see
also [16] for many-one reductions), which can in fact be carried out in a
much more efficient way than just polynomial time.

Proposition 1. The permanent of 0-1 matrices is hard for ♯P under
DLOGTIME-uniform AC

0 many-one reductions, that is, the reduction is
computed by DLOGTIME-uniform AC

0 circuits.

Corollary 2. Every language A ∈ P can be expressed as the perma-
nent of a 0-1 matrix M of size nO(1), computed by DLOGTIME-uniform
AC

0 circuits. More precisely, there are functions M and α computed by
DLOGTIME-uniform AC

0 circuits such that x ∈ A ⇒ α(PER(M(x))) = 1
and x /∈ A ⇒ α(PER(M(x))) = 0.

Scaling up this result to exponential time yields the following corollary.

Corollary 3. For every language A ∈ E, there are two functions M and α
computable by size 2O(n), constant-depth Boolean circuits constructible
in polynomial time (that is, the i-th bit of the circuit is computable in
time nO(1)), such that x ∈ A ⇒ α(PER(M(x))) = 1 and x /∈ A ⇒
α(PER(M(x))) = 0.

This implies the following result.

Corollary 4. If the permanent has DLOGTIME-uniform polynomial-size
threshold circuits of depth d(n), then every language A in E has thresh-
old circuits of size 2O(n) and depth O(d(2O(n))), these circuits being con-
structible in polynomial time (that is, the i-th bit of Cn is computable in
time nO(1)).
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Proof. By Corollary 3, membership to A is decided by the permanent of
a matrix M(x) of size 2O(n). It is enough to compute the matrix M(x) by
constant-depth uniform circuits, then to plug the result into the uniform
threshold circuits of depth d(2O(n)) for the permanent of matrices of size
2O(n), and finally to apply function α computed by constant-depth uni-
form circuits. The remaining circuits are again uniform threshold circuits
of depth O(d(2O(n))). ⊓⊔

Combining Corollary 4, Lemma 1 and Corollary 1 yields the following.

Corollary 5. If the permanent has DLOGTIME-uniform polynomial-size

threshold circuits of depth d(n), then E ⊆ DTIME(n2O(d(2O(n)))
).

This is in contradiction with the time hierarchy theorem as soon as d(n) =
o(log log n), hence we have proved our main result:

Corollary 6 (Theorem 1). The permanent does not have DLOGTIME-
uniform polynomial-size threshold circuits of depth o(log log n).

Since an arithmetic circuit can be simulated by a threshold one (addition
and multiplication are indeed in DLOGTIME-uniform TC

0), we obtain the
following corollary.

Corollary 7. The permanent does not have DLOGTIME-uniform
polynomial-size arithmetic circuits of depth o(log log n).

Acknowledgments — The authors want to thank Eric Allender for useful
discussions.
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