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Abstract. This paper focuses on the Fréchet distance introduced by Maurice
Fréchet in 1906 to account for the proximity between curves (Fréchet (1906)). The
major limitation of this proximity measure is that it is based on the closeness of
the values independently of the local trends. To alleviate this set back, we propose
a dissimilarity index extending the above estimates to include the information of
dependency between local trends. A synthetic dataset is generated to reproduce
and show the limited conditions for the Fréchet distance. The proposed dissimilar-
ity index is then compared with the Fréchet estimate and results illustrating its
efficiency are reported.

1 Introduction

Time series differ from ”non-temporal” data due to the interdependence be-
tween measurements. This work focuses on the distances between time series,
an important concept for time series clustering and pattern recognition tasks.
The Fréchet distance is one of the most widely used proximity measure be-
tween time series. Fréchet distance uses time distortion by acceleration or
deceleration transformations to look for a mapping that minimizes the dis-
tance between two time series. We show in section 4, that the Fréchet distance
ignores the interdependence among the occurring values; proximity is only
based on the closeness of the values; which can lead to irrelevant results.
For this reason, we propose a dissimilarity index extending this classical dis-
tance to include the information of dependency between local trends. The
rest of this paper is organized as follows: the next section presents the defini-
tions and properties of the conventional Fréchet distance. Section 3, discusses
the major limitations of such proximity estimate, then gives the definition
and properties of the new dissimilarity index. Section 4, presents a synthetic
dataset reproducing limited conditions for this widely used time series prox-
imity measure, then perform a comparison between the proposed dissimilarity
index and the Fréchet distance before concluding.
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2 The Fréchet distance between Time Series

The success of a distance, intended to distinguish the events of a time series
that are similar from those that are different, depends on its adequacy with
respect to the proximity concept underlying the application domain or the
experimental context.

The Fréchet distance was introduced by Maurice Fréchet in 1906 (Fréchet
(1906)) to estimate the proximity between continuous curves. We present a
discrete variant of this distance. An in-depth study of the Fréchet distance
is provided by Alt (Alt and Godau (1992)) and an interesting comparison of
the different distance theories can be found in Eiter and Mannila (1994). The
popular and highly intuitive Fréchet distance definition is: ” A man is walking
a dog on a leash. The man can move on one curve, the dog on another. Both
may vary their speed independently, but are not allowed to go backwards.
The Fréchet distance corresponds to the shortest leash that is necessary”.
Let’s provide a more formal definition.

We define a mapping r € M between two time series S = (u1, ..., up) and
Sy = (v1,...,vq) as the sequence of m pairs preserving the observation order:

r= ((ual » Uby )7 (Ua2 ) sz)v I (uam s Ub,, ))

with a; € {1,..,p}, b; € {1,..,q} and satisfying for i € {1,..,m — 1} the
following constraints:

ar =1, am=p by =1,bp, =¢q (1)
ai+1 =a; or a; +1 bi+1 =b; or b;+1 (2)

We note |r| = max;=1,...m |tq; —Vp, | the mapping length representing the max-
imum span between two coupled observations. The Fréchet distance 6 (57, S2)
is then defined as:

0p(S1, 82) = min |r| = min( max fua, —vs,]) (3)
Graphically, a mapping between two time series S1 = (u1,...,up) and Sy =
(v1,...,v4) can be represented by a path starting from the corner (1,1) and
reaching the corner (p,q) of a grid of dimension (p,q). The value of the
square (i, ) is the span between the coupled observations (u;, v;). The path
length corresponds to the maximum span reached through the path. Then,
the Fréchet distance between S; and Ss is the minimum length through all
the possible grid paths. We can easily check that dr is a metric verifying
the identity, symmetry and triangular inequality properties (a proof can be
found in Eiter and Mannila (1994)).

According to dp two time series are similar if there exists a mapping
between their observations, expressing an acceleration or a deceleration of the
occurring observation times so that the maximum span between all coupled
observations is close.
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Note that the Fréchet distance is very useful when only the occurring
events, not their occurring times, are determinant for the proximity evalu-
ation. This explains the great success of Fréchet distance in the particular
domain of voice processing where only the occurring syllables are used to
identify words; the flow rate being specific to each person.

3 Fréchet distance Extension for Time Series
Proximity Estimation

Generally, the interdependence among the occurring values, characterizing
the local trends in the time series, is determinant for the time series proximity
estimation. Thus, Fréchet distance fails as it ignores such main information.
Section 4 illustrates two major constraints in the Fréchet measure: ignorance
of the temporal structure and the sensitivity to global trends. To alleviate
these drawbacks in the classical Fréchet estimate we propose a dissimilarity
index extending Fréchet distance to include the information of dependency
between the time series local trends. The dissimilarity index consists of two
components. The first one estimates the closeness of values and is based on a
normalized form of the conventional proximity measure. The second compo-
nent, based on the temporal correlation Von Neumann (1941-1942)), Geary
(1954) and (Chouakria-Douzal (2003), estimates the dependency between the
local trends.

3.1 Temporal Correlation

Let’s first recall the definition of the temporal correlation between two time
series Sy = (u1,...,up) and Sy = (v1, ..., Vp):

Zf:_ll(u(iﬂ) — i) (V(+1) — Vi)
\/Zfz_ll(u(i+1) —u3)? Y0 (V1) — 03)?

The temporal correlation coefficient CORT € [—1,1] estimates how much
the local trends observed simultaneously on both times series, are posi-
tively /negatively dependent. By dependence between time series we mean
a stochastic linear dependence: if we know at a given time ¢ the growth of
the first time series then we can predict, through a linear relationship, the
growth of the second time series at that time . Similar to the classical correla-
tion coefficient, a value of CORT = 1 means that, at a given time ¢, the trends
observed on both time series are similar in direction and rate of growth, a
value of -1 means that, at a given time ¢, the trends observed on both time
series are similar in rate but opposite in direction and finally, a value of 0
expresses that the trends observed on both time series are stochastically lin-
early independent.

CORT(Sl, SQ) =
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Contrary to the classical correlation coefficient, the temporal correlation es-
timates locally not globally the dependency between trends; indeed, two time
series may be highly dependent through the classical correlation and linearly
independent through the temporal correlation (illustrated in section 4). Fi-
nally, contrary to classical correlation, the temporal correlation is global trend
effect free. Let’s now present the new dissimilarity index as an extension of
the Fréchet distance.

3.2 The dissimilarity Index

The proposed dissimilarity index consists in the combination of two com-
ponents. The first one, estimates the closeness of values and is based on a
normalized form of the Fréchet distance. The second one is based on the
temporal correlation introduced above. Many functions could be explored for
such combination function. To illustrate well the additive value of the tem-
poral correlation to account for local trends dependency, we limit this work
to a linear combination function. Let’s note DisF' the dissimilarity index
extending dp:

DisF(51,82) = a ( Or (51, 5) 1 — CORT(S1, 92) SZ))

1_
Maxs,,s;es 5F(Si,Sj)> +( a)( 5

where DisF(S1,S52) € [0,1], £25 is the set of the observed time series, a €
[0, 1] determines the weight of each component in the dissimilarity evaluation
and CORT the temporal correlation defined above.

Note that for a« = 1, DisF corresponds to the normalized §r and the
proximity between two time series is only based on taken values, considered
as independent observations. For a = 0, DisF corresponds to CORT and the
proximity is based solely on the dependency between local trends. Finally for
0 < a < 1, DisF implies a weighted mean of the normalized dr and CORT,
the proximity between time series includes then, according to their weights,
both the proximity between occurring values and the dependency between
local trends.

4 Applications and Results

In this section, we first present the time series synthetic dataset which re-
produces the limited conditions for Fréchet distance. Then we explore and
compare the distribution of the temporal and classical correlations between
the synthetic dataset time series. Finally, the proposed dissimilarity index is
compared to the conventional estimate.

4.1 Synthetic Dataset

To reproduce the limited conditions for the widely used conventional dis-
tances, we consider a synthetic dataset of 15 time series divided into three
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classes of functions. The first five time series are of class Fj, the next five
are of class F» and the last five are of the class F3; where, Fy, Fy and F3 are
defined as follows:

Fi={A(0) | f1) = F() +2t+ 3+ €}
By = {fot) | folt) = p— F(t) + 2t + 3+ €}
By = {fs(0) | falt) = 4£(t) — 3+ €}

f(t) is a given discrete function, u = E(f(t)) is the mean of f(¢) through
the observation period, € ~ N(0,1) is a zero mean gaussian distribution and
2t + 3 describes a linear upward trend tainting F; and F> classes. Figure 1
represents simultaneously these three classes through 15 synthetic time series.
Note that F; and F3 show similar local tendencies, they increase (respectively

50
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Time

Fig. 1. Three classes of synthetic time series

decrease) simultaneously. On the contrary, F» shows local tendencies opposite
to those of F; and F3, when Fj increases (respectively decreases) F; and F3
decreases (respectively increases). Finally, F} and F5 are the closest in values.

4.2 Time Series Temporal correlation vs Classical correlation

Let’s explore in figure 2 the distribution of the temporal and classical correla-
tions among the times series into Fy, F> and Fj3 classes. On the one hand, the



6 A. Chouakria-Douzal and P. Nagabhushan

(a) (b) (c)

-0.86

0.91
1

1
-0.88

0.89
1

}
-0.90

1
0.87
1

-0.75 -0.70 -0.65 -0.60

(d) (e) )

i
0.35

1

1
-0.56

0.65
1

0.30
1

1
-0.60

0.55
|
0.25
L

0.20
1
-0.64

}_______
f
P

Fig.2. (a) CORT(Fi(z),F2(x)) (b) CORT(Fi(z),F3(x)) (c) CORT(F2(x),F3(x))
(d)cor(Fi(2), Fa(x)) (e) COR(Fi(x), Fi(x)) (£) COR(Fy(x), Fi(x))

temporal correlation distribution CORT(F1, F3) € [0.87,0.92], CORT(FY, F») €
[—0.73, —0.60] and CORT(F>, F3) € [—0.91, —0.86]) reveal a high positive de-
pendency between Fi and Fj classes and a high negative dependency between
F> and the two remaining classes. These results supported well the depen-
dencies illustrated above in figure 1.

On the other hand, the classical correlation distribution COR(F}, F3) €
[0.15,0.35], COR(F1, F») € [0.45,0.70] and COR(F3, F3) € [—0.66, —0.56]) in-
dicates a weak (nearly independence) positive dependency between F; and
F3 classes and a high positive dependency between F; and F5 classes. These
results illustrate well that the classical correlation estimates globally (not
locally) the dependency between tendencies of time series. Indeed, F; and
F5 which are not locally but globally dependent, due to the linear upward
trend tainting them, are considered as highly dependent; whereas F} and Fj3
which are dependent locally not globally are considered as very weakly de-
pendent. Note that contrary to classical correlation, the temporal correlation
is global-trend effect free.

4.3 Comparative Analysis

To compare the above proximity measures, we estimate first the proxim-
ity matrices between the 15 synthetic time series, according to DisF and
6r. DisF is evaluated with o = 0.5 and a = 0. For o = 1, results are



0.4 06 o8 .0

0.2

0.0

Improved Fréchet Distance For Time Series 7

similar to those obtained from dp. A hierarchical cluster analysis is then
performed on the obtained proximity matrices. Figure 3 illustrates the ob-
tained dendograms. Note first that the three above proximity measures (dp,
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Fig. 3. or DisF (a=0.5) DisF (a=0)

DisF(a = 0.5) and DisF(a = 0)) divide the 15 time series on the well ex-
pected three classes F (from 1 to 5), F5 (from 6 to 10) and F3 (from 11 to
15). In addition, on the one hand, §jr dendogram works out the time series
of the classes F7 and F5 as the closest. Indeed, for dr, after stretching each
class to match well an other class, the proximity evaluation is based solely
on the taken values, which are close on F} and F5.

On the other hand, DisF for a = 0.5 and o« = 0 determines successfully
the classes F; and F3 as the closest. Note particularly that for « = 0.5 DisF
still provides three classes with a high proximity between F} and Fj3; whereas
for « = 0 F} and F3 are nearly merged and the respective dendogram comes
out with only two main classes. Indeed, for & = 0 the proximity evaluation
are based solely on the dependency between time series which is very high
between F; and F3.

5 Discussion and Conclusion

This paper focuses on the Fréchet distance between time series. We have pro-
vided the definitions and properties of this conventional measure. Then we
illustrated the limits of this distance. To alleviate these limits, we propose
a new dissimilarity index based on the temporal correlation to include the
information of dependency between the local trends.

Note that, as this paper introduces the benefits of the temporal correla-
tion for time series proximity estimation, and mainly for clarity reasons, we

e I e
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limit our work on two points. First we restrict the combination function to
a linear function to show clearly, by varying the parameter «, the additive
value of the temporal correlation. Secondly, we restrict the illustration of the
proposed index to a synthetic dataset which reproduces the limited condi-
tions for the conventional Fréchet distance.

Future works, on the one hand, will study other combination functions.
For instance, if we consider the two dimensional space defined by the compo-
nents CORT and a normalized form of d, then we can define a new euclidean
distance between time series as their norm vector in such two dimensional
space. On the second hand, these combination functions will be compared to
the conventional Fréchet distance through a wide range of a real datasets.

Finally, let’s remark that the proposed dissimilarity index DisF' could be
very useful for time series classification problem, where the aim consists in
determining the most adaptable DisF by looking for the optimal value of
«a maximizing a classification rate. This is an interesting direction to study
through a priori time series classification.
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