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1 Introduction

It’s quite often that we are faced to datasets where a priori relationship structure is defined on the

statistical units. Such structure is generally represented by a neighborhood graph, where vertices

are statistical units and the edges connect neighboring units. A pioneering work to include a priori

structure in factorial analysis was proposed by Lebart (Lebart (1969) and Banet et al. (1984)) with

the local and contiguity analysis which mainly consists in decomposing the total variance through

the neighboring and non neighboring units. Many other studies follow, for instance, Le Foll (1982)

generalizes the local analysis to weighting neighborhood graphs. Mom (1988) proposes a new operator

generalizing the discriminant factorial analysis to account for a priori neighboring structure. Escofier

and Benali (1989) propose an interesting work on factorial smooth analysis and factorial analysis

of local differences. Thioulouse et al. (1995) propose another decomposition of the total variance

into local variance and global covariance where units are weighted and centered according to the

neighboring relationship structure.

This paper focuses on the local analysis for the exploratory of multivariate time series partitioned into

a priori classes. The studied structure includes two kinds of relationship: the temporal relationship

between observations of a same time series, and the membership relationship between time series

belonging to a same class. According to that particular structure, we explore two local analysis

approaches based on two distinct neighborhood matrices.

2 Local Analysis

2.0.1 Notation

Let X = [xij ] be an (n × p) matrix describing n individuals by p variables. A neighboring structure

is defined on the set of n individuals, it is represented by a neighborhood graph, where vertices

identify individuals and edges connect neighboring individuals. Let M = [mij ] be a symmetric (n×n)

matrix describing the neighboring relationship between the n individuals: mij = 1 if i and j are

neighbors; 0 otherwise. mi,i is assumed equal to 0. Let N = diag(n1, ..., nn) be a diagonal matrix

where ni =
∑n

j=1
mij defines the number of i’s neighbors. We consider m =

∑

i,j mij =
∑n

i=1
ni as

the total number of couple of neighbors.



2.0.2 Local variance/covariance matrix

Let V = [vjj′ ] be the classical empirical covariance matrix of X. To include the neighboring structure
Lebart proposes a decomposition of the covariance matrix into two covariance matrices: the first one,
called local covariance, is defined on the neighboring individuals and the second one is defined on the
non neighboring individuals. The local covariance matrix VL = [vL

jj′ ] expression is:

VL =
1

2m
X ′(N − M)X with vL

jj′ =
1

2m

∑

i,i′ neighbors

(xij − xi′j)(xij′ − xi′j′)

Note that VL is identical to V in the case of a complete structure where any couple (i, i′) are neighbors.

Local analysis consists of the diagonalization of VL to look for the first principal components maxi-

mizing the local variance. On the contrary, the diagonalization of VL

V
to look for the axis minimizing

the local variance while maximizing the variance due to the non neighboring individuals defines a

extension of the discriminant factorial analysis to include a priori structure. It becomes the classical

discriminant factorial analysis in the case of a neighborhood graph composed of disjoint cliques where

edges connect individuals belonging to a same class.

3 Exploratory of multivariate time series

Let’s consider a matrix X describing n multivariate time series S1, ...Sn through p variables X1, ..., Xp

observed at the instants of time t1, ..., tk. We assume the set of time series partitioned into C a priori

classes, and C(Si) denoting the Si’s class.

3.0.3 Neighboring structure

According to the above dataset X, we distinguish two a priori relationships: the temporal relationship
between the observations of a same time series, and the membership relationship between the time
series belonging to a same class. This structure can be represented by a neighborhood hyper-graph,
where an hyper-node, representing a time series, is described by a neighborhood temporal graph
connecting the observations of a same time series, and an hyper-edge, connecting two neighboring time
series, is described by a set of edges connecting the observations of the two time series in question.
Let’s define the general form of the corresponding neighborhood block matrix M = [Mij ]:

S1 . . . Sn

M =

S1

...

Sn







M11 . . . M1n

... . . .
...

Mn1 . . . Mnn







where Mij = [mls] (i 6= j) is the (k × k) symmetric matrix defining the membership relationship

between the time series Si and Sj , and Mii = [mls] the symmetric matrix defining the temporal

relationship between the observations of Si.

3.0.4 Exploratory analysis purposes

In this paper we propose two exploratory analysis of the set of multivariate time series. The first
exploratory analysis purpose is to look for the first axis best separating the time series belonging to
different classes; while making closer the time series of a same class. These axis should give back
of the central position of the time series not of their temporal behavior. The second exploratory
analysis, similarly to the first analysis, looks for the first axis best separating the time series belonging
to different classes, while making closer the time series of the same class, but with preserving the
temporal behavior characterizing each time series.



With respect to the first exploratory analysis purpose, we propose the following neighborhood block
matrices M = [Mij ] definition:

Mij =

{

zero matrix if C(Si) = C(Sj)

unit matrix if C(Si) 6= C(Sj)

Let VL be the local covariance matrix based on the neighborhood matrix M . The first analysis, consists
in diagonalizing VL

V
to look for the first principal components maximizing the local variance. This local

analysis will reveal the main directions separating well the time series belonging to different classes,
while bringing closer the time series of a same class and the observations of a same time series. As
Mii is a zero matrix, factorial projections will reveal some central position of each time series instead
of their behaviors. According to the second exploratory analysis purpose, let’s consider the following
neighborhood block matrices M1 = [M1

ij ] and M2 = [M2
ij ] definitions:

M1

ij =







zero matrix if C(Si) = C(Sj) and (i 6= j)

mls = 1 if i = j and s = l ± 1; 0 otherwise

unit matrix if C(Si) 6= C(Sj)

M2

ij =







Identity matrix if C(Si) = C(Sj) and (i 6= j)

zero matrix if i = j

zero matrix if C(Si) 6= C(Sj)

Let V 1
L , V 2

L be the local covariance matrices based on the neighborhood matrices M1 and M2 re-

spectively. To bring out as well as possible the temporal behavior of each time series, we propose

to maximize the local covariance V 1
L defined for one on the neighboring temporal observations, and

to minimize the local variance V 2
L defined by the time series of a same class, based on their values

observed at the same time. Thus, the second exploratory analysis, consists in diagonalizing
V 1

L

V 1

L
+V 2

L

to

look for the first principal components maximizing the local variance V 1
L while minimizing the local

variance V 2
L .

4 Application and results

To illustrate the above two variants of the discriminant factorial analysis, we consider the Auslan

dataset (http://kdd.ics.uci.edu/databases/auslan/auslan.data.html) describing a set of hand signs lan-

guage of the deaf Auslan community. Instances of the hand signs were collected using an instrumented

glove. Position information is calculated on the basis of ultrasound emissions from emitters on the

glove. Each sign is measured through a time series described by 8 variables: x (left/right), y (up/down),

z (backward/forward), and roll (the palm pointing up or down) giving the spatial position of the glove,

and the four remaining variables thumb, fore middle and ring finger indicating if a finger is fully bent or

not. For clarity reasons, we have limited our dataset to the 5 signs “Eat”, “Boy”, “You”, “Wild” and

“Pen” of the Adam’s session 2, with 6 instances per sign. The 30 collected time series were resampled

to 57 points (the maximal observed length). We have processed the two above exploratory analysis

on the 30 time series. Figure 1 illustrates, on the left the coordinates on the first factorial plan of the

30 time series according to the first exploratory analysis, and on the right the factorial coordinates

obtained through the second exploratory analysis. We use a three-dimensional visualization to show

the temporal behavior of the projected time series. We can see that both exploratory analysis succeed

to separate well the 5 time series classes, with projecting very closely the time series of each class.

Let’s focus on the main differences between the two produced factorial plans. Based on the temporal

neighboring relationship, the local variance of a projected time series is maximum if the behavior of

the projected time series is as close as possible to the initial time series behavior (i.e. behavior in the

initial descriptive space). On the contrary, the local variance, of a projected time series is minimum

if the projection sub-space is some what orthogonal to the initial time series behavior, where all the
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Figure 1: First principal components of the 30 time series

values are projected in a minimal variance domain. Indeed, through the first exploratory analysis,

looking for axis minimizing the local temporal variance, the obtained factorial plan (figure 1 on the

left) shows well that each projected time series is of minimal variability, all time series are roughly

described by a lines, each giving the central position of a projected time series. Whereas, through

the second exploratory analysis maximizing the local temporal variance, the obtained factorial plan

(figure 1 on the right) shows well the two dimensional behavior characterizing each time series classes.

5 Conclusion

This paper focuses on the exploratory analysis of a set of multivariate time series partitioned into

a priori classes. We propose two exploratory analysis. The both exploratory analysis look for a

sub-space separating well the time series of different classes; while making closer those belonging to a

same class. The main difference, is that the first exploratory analysis looks for a subspace working out

the main central position of each time series regardless to their behaviors, whereas on the contrary,

the second analysis looks for a subspace projecting as well as possible the behavior characterizing the

time series. Based on the obtained discriminant spaces, future work will focus on the classification

approaches and on the choice of the appropriate proximity measure according to the two above analysis.
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