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Abstract. DNA microarray technology allows to monitor simultaneously the ex-
pression levels of thousands of genes during important biological processes and
across collections of related experiments. Clustering and classification techniques
have proved to be helpful to understand gene function, gene regulation, and cellular
processes. However the conventional proximity measures between genes expression
data, used for clustering or classification purpose, do not fit gene expression speci-
fications as they are based on the closeness of the expression magnitudes regardless
of the overall gene expression profile (shape). We propose in this paper an adaptive
dissimilarity index which would cover both values and behavior proximity. The ef-
fectiveness of the adaptive dissimilarity index is illustrated through a classification
process for identification of genes cell cycle phases.

1 Introduction to microarray technology

Though most cells in our bodies contain the same genes, not all of the genes
are used in each cell. Some genes are turned on, or ”expressed” when needed.
Such specific genes define the ”molecular pattern” related to a specific func-
tion of a cell and in most cases appear as organized in a molecular regulation
network. To know how cells achieve such specialization, scientists need a way
to identify which genes each type of cell expresses. Microarray technology now
allows us to look at many genes at once and determine which are expressed in
a particular cell type (Eisen and Brown (1999)). DNA molecules representing
many genes are placed in discrete spots regularly organized in a line/column
matrix on a microscope slide. This is called a DNA microarray. Thousands of
individual genes (clones) can be spotted on a single square inch slide surface.
Next, total messenger RNA (the working copies of genes within cells, indica-
tors of which genes are being used) is purified from cells. The RNA molecules
are then labeled by attaching a fluorescent dye and spread over the DNA dots
on the microarray. Due to a phenomenon termed base-pairing, RNA will stick
to the gene it came from (this is the hybridization process). After washing
away all of the unstuck RNA, we can look at the microarray under a micro-
scope and see which RNA remains stuck to the DNA spots. Fluorescent mea-
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surements are performed using specific scanners and related spot fluorescent
values are extracted from images (http://genomewww.stanford.edu/Human-
CellCycle/HeLa/). Since we know which gene each spot represents, we can
determine which genes are turned on in the cells. Some researchers are us-
ing this powerful technology to learn which genes are turned on or off in
diseased versus healthy human tissues for example. The genes that are ex-
pressed differently in the two tissues may be involved in causing the disease.
In other experiments time-course DNA microarray analysis are necessary
to determine temporal genomic expression profiles relative to the dynamic
progression of a specific biological process or to response at stimulation or
treatment. In this paper we will be interested in the dynamic progression of
cell division cycle. Additionally, in order to take in account systematic biases
in the measured expression levels related to experimental factors, two-channel
array experiments are usually performed. It consists in using a reference ma-
terial in parallel to the tested material. For example: normal cells used as
references versus pathological ones being the tested cells. Both materials are
labeled using two different colors (green and red) and are mixed in equal
proportion prior to hybridization. The final expression measured is given as
log(base2)ratio between the tested material against the reference one.
The purpose of clustering or classification tasks is to determine co-expressed
genes which indicate co-function and co-regulation. Because different genes
are usually functionally implied in a same regulation network, users of mi-
croarrays data may not only be interested in clustering or classifying genes,
but also be interested in the relationship between these clusters (e.g. which
clusters are most close to each other), and the relationship between the genes
within the same cluster (e.g. which gene can be considered as the represen-
tative of the cluster and which ones are at the boundary area of the cluster).

2 Proximity measure between genes expression data

For clustering or classifying a set of genes expression profiles evolving over
time, the commonly used proximity measures are the euclidean distance or
the person’s correlation coefficient. Let g1 = (u1, ..., up) and g2 = (v1, ..., vp)
be the expressions levels of two genes g1, g2 observed at the instant of times
(t1, ..., tp). On the one hand, the Euclidean distance δE between g1 and g2 is

defined as: δE(g1, g2) =
(
∑p

i=1(ui − vi)
2
)

1
2 . It stems directly from the above

definition that the closeness between two expression profiles depends on the
closeness of the values observed at corresponding points of time. δE ignores
the information of interdependence among the observed values. However, for
genes expression data, the overall shapes of gene expression patterns are of
greater interest than the individual magnitudes at corresponding instants of
time.
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2.1 Shape proximity measures

The alternate conventional measure to estimate the similarity between gene
expression shapes is Pearson’s coefficient correlation (called classical correla-
tion). Unfortunately, we will illustrate in the following that the classical corre-
lation do not score well for proximity between shapes either. For shape prox-
imity measure, we propose the temporal correlation coefficient introduced in
Chouakria Douzal (2003), Chouakria Douzal and Nagabhushan (2006) and
defined as follows:

cort(g1, g2) =

∑p−1
i=1 (u(i+1) − ui)(v(i+1) − vi)

√

∑p−1
i=1 (u(i+1) − ui)2

√

∑p−1
i=1 (v(i+1) − vi)2

The temporal correlation coefficient cort ∈ [−1, 1] presents an interesting
property, it allows to estimate the linear dependency between the growths
of two gene expression profiles, observed at corresponding times. A value of
cort = 1 means that the growths (positive or negative) observed on both
expression profiles, at any corresponding instant of time, are similar in direc-
tion and rate (similar behavior). On the contrary a value of -1 means that the
growths observed on both expression profiles, at any corresponding instant
of time, are similar in rate but opposite in direction (opposite behavior). Fi-
nally, a value of 0 expresses that the growths observed on both expression
patterns are stochastically linearly independent (different behaviors).

2.2 Adaptive dissimilarity index for gene expression proximity

Our aim is to provide a new dissimilarity index model D which would cover
both proximity on values δE(g1, g2) and on behavior cort(g1, g2). The model
would allow to adjust the weights of behavior (shape) or values components.
The proposed model is based on an adaptive tuning function which modu-
lates the proximity on values according to the proximity on behavior. The
modulating function will increases the proximity on values if the proximity
on behavior (i.e the temporal correlation) decreases from 0 to -1. The re-
sultant dissimilarity D approaches the proximity on values if the temporal
correlation is zero (different behaviors). Finally, the modulating function will
decreases the proximity on values if the proximity on behavior (i.e temporal
correlation) increases from 0 to +1. The formulation to compute the resultant
dissimilarity index D is:

D(S1, S2) = f(cort(S1, S2)).δE(S1, S2)

where f(x) is an exponential adaptive tuning function fitting the above prop-
erties:

f(x) =
2

1 + exp(k x)
k ∈ 0, 1, ...
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Figure 1 shows the adaptive tuning function effect for several values of k.
The parameter k defines the weights, in the dissimilarity index D, of both
behavior and values components as summarized in the Table 1. For instance
for k=5, D ; 2 δE when cort ; −1 and decreases until D ; 0 when
cort ; 1, finally when cort ; 0 D ; δE . Figure 1 illustrates that higher is
the value of k, higher will be the temporal correlation weight and lower will
be δE weight.
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f(x)=2/(1 +exp(k x))

Fig. 1. The adaptive tuning effect

Behavior weight (%) Values weight (%)
k=0 0% 100 %
k=1 50% 50%
k=2 80% 20%
k=3 90% 10%

k ≥ 5 ; 100% ; 0%

Table 1. Behavior (cort) and Values (δE) weights according to k

3 Classification for genes expression profiles

We propose to compare the adaptive dissimilarity index with the classical cor-
relation through a genes classification (assignment) approach. For the genes
classification purpose, we define first two conventionally used genes assign-
ment approaches: a supervised and an unsupervised approaches. Two genes
samples are considered: a learning sample based on a set of well-studied genes,
and a test sample based on a set of published genes compiled from the litera-
ture. Let’s give briefly the algorithmic details of these assignment approaches,
first in the case of the classical correlation Cor as a genes proximity measure,
then in the case of the adaptive dissimilarity index D.
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3.1 Supervised and unsupervised assignment approaches based

on the classical correlation Cor

The supervised assignment approach based on the classical correlation noted
(SupAss − Cor) consists to assign each gene to the most similar prior class
(Average-Link, Centroid-Link,...) of the well-studied genes. The assessment
step consists to evaluate the rand index between the obtained and the prior
classes of the published genes. The unsupervised assignment approach based
on 1−Cor noted (UnsupAss− cor) consists first to perform an hierarchical
clustering of the whole genes to classify, then each obtained cluster is assigned
to the most similar prior class as detailed in the following:

1 Begin UnsupAss-Cor
% assignment part %

2 - Perform an Hierarchical clustering (Average-Link) of the whole genes
3 - Extract the Nb clusters partition,
4 - Estimate the proximity between each obtained cluster
5 and the Nb prior classes of the well-studied genes,
6 - Assign each cluster to the most similar class,
7 - Assign each gene to the cluster’s class it belongs in.

%assessement part%
8 - Evaluate the rand index between the obtained and prior classes
9 of the published genes
10 End

3.2 Supervised and unsupervised assignment approaches based

on the adaptive dissimilarity index D

The main idea of the assignment approach based on the adaptive D, is to
learn the weights of both values and behavior components of D to fit best
the prior partition of the well-studied genes. Let’s give the algorithmic steps
of the supervised assignment approaches based on D and noted SupAss−D.

1 Begin SupAss-D based on the adaptive D
% assignment part %

2 - For each value of k from 0 to 6 per 0.1 %(61 values)
3 - Assign each gene to the most similar class

(Average-Link, Centroid-link,...)
5 - Evaluate the rand index between the obtained
6 and the prior classes of the well-studied genes.
7 - End For
8 - Let k* be the value of k maximizing the rand index
9 and Pk* the corresponding obtained assignments

% assessement part%
10 - Evaluate the rand index between the obtained and prior
11 classes of the published genes
12 End

Similarly the unsupervised assignment approach based on D noted UnSupAss−
D algorithmic steps are:

1 Begin UnsupAss-D
% assignment part %

2 - For each value ok k from 0 to 6 per 0.1 %(61 values)
3 - Perform an Hierarchical clustering (Average-Link) of the whole genes
4 - Extract the Nb clusters partition,
5 - Estimate the proximity between each obtained cluster
6 and the Nb prior classes of the well-studied genes,
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7 - Assign each cluster to the most similar class,
8 - Assign each gene to the cluster’s class it belongs in.
9 - End For
10 - Let k* be the value of k maximizing the obtained rand
11 index and Pk* the corresponding obtained assignments

%assessement part%
12 - Evaluate the rand index between the obtained and prior classes
13 of the published genes 19 End

4 Application and results

4.1 Data description

In this paper we will focus on the specific biological events occurring dur-
ing cell proliferation, this process insuring the multiplication or reproduction
of cells and which is drastically aberrant in cancer cells. The cell cycle, or
cell-division cycle, is the series of events between one cell division and the
next one. The cell cycle consists of progression along four distinct phases: G1
phase, S phase (DNA synthesis or DNA replication), G2 phase and M phase.
A molecular surveillance system monitors the cell’s progress through the cell
cycle and checkpoints help to ensure that a cell divides only when it has
completed all of the molecular prerequisites for producing healthy daughter
cells. These restriction points mark the transition from one phase to another
: the transition from G1 to S phase is the first such transition (G1/S). Ac-
cording to that, we will focus on the G1/S, S, G2, G2/M and M/G1 phases
and transitions we will short cut named ”cell cycle phases” in the text. The
genome-wide program of gene expression during the cell division cycle has
been investigated in a wide range of organisms Spellman et al. (1998), Cho et
al. (2001), Oliva et al. (2005), using DNA microarrays. In this paper we will
focus on a set of genes expression data recorded in the third experimentation
of Whitfield et al. published data Whitfield et al. (2002) (http://genome-
www.standford.edu/Human-CellCycle/Hela/). The dataset describes 1099
genes, periodically expressed in the human cell cycle. RNA was isolated from
Hela cells et 1 hour intervals after release from a synchronous arrest in S
phase. Two lists of genes are considered respectively for learning and assess-
ment steps. On the one hand a list of 20 well-studied genes composed of 4
referenced genes for each of the 5 phases is used for learning step (Table 2,
Figure 4). On the other hand, and for assessment step, a list of 39 genes was
compiled Whitfield et al. (2002) from the literature that had been shown to
be cell cycle regulated by traditional bio-molecular methods (Table 5).

Phase G1/S S G2 G2/M M/G1
Name CCNE1,E2F1 RFC4,DHFR CDC2, TOP2A STK15,BUB1 PTTG1, RAD21

CDC6,PCNA RRM2, RAD51 CCNF, CCNA2 CCNB1, PLK VEGFC, CDKN3

Table 2. List of the 20 genes assigned in Whitfield et al. (2002) to the 5 cell cycle
phases.
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Fig. 2. Gene expression profiles for the 20 well-characterized cell cycle genes whose
expression peaks in each phase of the cell cycle : G1/S, S, G2, G2/M and M/G1.
The double arrowed lines delimit the time duration for each cell cycle phase : G1,
S, G2 and M.

4.2 Identification of genes cell cycle phases results

To illustrate the efficiency of the adaptive dissimilarity index D against the
classical correlation, we compare their effectiveness to identify the cell cycle
phases of the 39 published genes, through the supervised and unsupervised
assignment approaches. On the one hand, we have performed a supervised
assignment SupAss for centroid and average link. We have then compared
the obtained assignments when the supervised approach is based on the clas-
sical correlation and on the adaptive D. The obtained results of the assign-
ments of the 39 published genes and the corresponding corrected rand index
are reported in the Table 5 at the columns 3-4 for average-link and 5-6 for
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centroid-link. On the other hand, we have performed the unsupervised as-
signment approach UnsupAss based respectively on the classical correlation
and on the proposed dissimilarity index D. First an hierarchical clustering is
performed on the whole 1099 genes based respectively on 1 − Cor and Dk.
A 5 clusters partition is then extracted. For each extracted cluster we esti-
mate it’s dissimilarity to each of the well-referenced phases. The dissimilarity
values between the 5 clusters and the 5 phases are reported in the Tables
3 and 4. The obtained dendrograms illustrating the 5 obtained clusters and
the identified cell cycle phases are given in the Figure 3. Each gene is then
assigned to the cluster’s phase it belongs in. The assignments of the 39 pub-
lished genes obtained through UnsupAss − Cor and UnsupAss − Dk are
reported in the last two columns of the Table 5.

Fig. 3. The unsupervised approach: the dendrograms of the 1099 genes and there
phases identification based on Cor(left) and D(right).

G1/S S G2 G2/M M/G1
Cluster 1 0.755 0.416 0.806 1.236 1.461
Cluster 2 0.404 0.632 1.314 1.589 1.512
Cluster 3 1.461 0.976 0.345 0.451 0.663
Cluster 4 1.500 1.056 0.540 0.475 0.694
Cluster 5 1.494 1.411 0.737 0.457 0.426

Table 3. Unsupervised approach based on Cor: similarity between the 5 extracted
clusters and the 5 well-referenced phases
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G1/S S G2 G2/M M/G1
Cluster 1 1.520 0.762 3.284 5.016 4.123
Cluster 2 0.502 1.180 6.374 7.238 4.936
Cluster 3 5.709 2.194 0.761 0.907 1.161
Cluster 4 6.688 3.565 0.989 0.464 0.521
Cluster 5 4.264 3.025 2.873 1.755 1.158

Table 4. Unsupervised approach based on Dk* (k*=3.9): similarity between the 5
extracted clusters and the 5 well-referenced phases

Name Published Supervised Supervised UnSupervised
Phase Average-Link Centroid-Link

COR Dk∗
COR Dk∗

COR Dk∗

E2F5 G1 G2/M M/G1 G2/M M/G1 G2/M G2/M

CCNE1 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

CCNE2 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

CDC25A G1/S G1/S G1/S G1/S G1/S G1/S G1/S

CDC6 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

CDKN3 G1/S M/G1 M/G1 M/G1 M/G1 M/G1 G2/M

E2F1 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

MCM2 G1/S G1/S G1/S G1/S G1/S G1/S S

MCM6 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

NPAT G1/S G1/S G1/S G1/S G1/S G1/S G1/S

PCNA G1/S G1/S G1/S G1/S G1/S G1/S S

SLBP G1/S G1/S G1/S G1/S G1/S G1/S G1/S

BRCA1 S S S S S G1/S S

CDKN2C S G2 S G2 S G2 G2

DHFR S S S S S S S

MSH2 S G1/S S G1/S S G1/S S

NASP S G1/S G1/S G1/S G1/S G1/S G1/S

RRM1 S S S S S S S

RRM2 S S S S S S S

TYMS S S S S S S S

CCNA2 G2 G2 G2 G2 G2 G2 G2

CCNF G2 G2 G2 G2 G2 G2 G2

CENPF G2 G2/M G2/M G2/M G2/M M/G1 G2M

TOP2A G2 G2 G2 G2 G2 G2 G2

BIRC5 G2/M G2/M M/G1 G2/M M/G1 M/G1 G2/M

BUB1 G2/M G2/M G2/M G2/M G2/M M/G1 G2/M

BUB1B G2/M G2/M G2/M G2/M G2/M G2/M G2/M

CCNB1 G2/M G2/M M/G1 G2/M M/G1 M/G1 G2/M

CCNB2 G2/M G2/M M/G1 G2/M G2/M M/G1 G2/M

CDC2 G2/M G2 G2 G2 G2 G2 G2

CDC20 G2/M G2/M M/G1 G2/M M/G1 M/G1 G2/M

CDC25B G2/M G2/M M/G1 G2/M M/G1 M/G1 G2/M

CDC25C G2/M G2 M/G1 G2 M/G1 G2/M G2

CDKN2D G2/M M/G1 M/G1 G2/M M/G1 M/G1 M/G1

CENPA G2/M G2 G2 G2/M G2 G2 G2/M

CKS1 G2/M G2 G2 G2 G2 G2 G2

CKS2 G2/M G2/M G2/M G2/M G2/M M/G1 G2/M

PLK G2/M G2/M G2/M G2/M G2/M M/G1 G2/M

STK15 G2/M G2/M G2/M G2/M G2/M G2 G2/M

Rand Index 0.760 0.830 0.790 0.818 0.757 0.771

Table 5. The assignment cell cycle phases of the 39 published genes

5 Discussion and future scope

5.1 Comparative analysis

Let’s note that the assignments obtained in Whitfield et al. (2002) corre-
sponds to the centroid-linkage SupAss−Cor (3rd column). We can first show,
that whatever is the considered variant of the supervised approach, the rand
index of SupAss−D is greater than the one obtained through SupAss−Cor,
as illustrated at the last row of the Table 5. Hence, the genes cell cycle
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phases of the 39 published genes are better identified through the adaptive
dissimilarity index D than through the classical correlation. Through the
both assignment approaches UnsupAss − Cor and UnsupAss − Dk, each
cluster is assigned to a distinguish phases. However the 20 referenced genes
are not well distributed through the 5 extracted clusters. Indeed, through
UnsupAss − Cor, 7 referenced genes 4 from M/G1 and 3 from G2/M are
merged in a same cluster labeled as M/G1, with one cluster including no
referenced genes (Figure 3 on left) and labeled as G2/M. A nearly similar
distribution is obtained through UnsupAss − D, 8 referenced genes 4 from
M/G1 and 4 from G2/M are merged in a same cluster labeled as G2/M, with
one cluster including non referenced genes (Figure 3 on right) and labeled
as M/G1. Finally, all the obtained assignment results show that whatever is
the assignment approach (supervised or unsupervised) the identification of
the genes cell cycle phases is better through the adaptive dissimilarity index
than through th classical correlation.

5.2 The unsupervised classification: a promising tool for better

understanding of dynamic cell cycle events

Considering the actual fast progression in the acquisition of new biological
data, mainly due to recent developments in high throughoutput experimen-
tal methods (such as DNA microarrays), biological concepts and knowledge
are undergoing drastic and rapid evolution. Keeping this in mind it appears
quite reasonable to expect some invaluable assistance from unsupervised clas-
sification methods rather than supervised ones to help in understanding the
complexity of life. The results obtained in this specific study, dedicated to
better understanding cell cycle progression and regulation, bring some sup-
port to such an expectation. For example, considering results obtained by the
unsupervised classification associated to D (Fig.5 right) it’s possible to draw-
back three interesting and encouraging remarks. Note first, the classification
process lead to the 5 expected cell cycle phases, then the PCNA gene which
has been chosen by Whitfield et al. (2002) as representative of G1/S phase
has been classified by the UnsupASS−D approach in the S phase. And effec-
tively it’s quite well established that PCNA is a DNA polymerase expressed
at the highest levels in the S-phase. Indeed if PCNA is first expressed in mid-
G1, PCNA expression peaks in S phase and continues to be weakly expressed
in G2 and M phases of the cell cycle. Finally, among the four misclassified
M/G1 genes as G2/M by the UnsupASS −D approach we will just discuss,
as an example, on the PTTG1 gene. It has been recently demonstrated, by
classical molecular biology methods, that the PTTG1 expression peaks at
the S-G2 transition and declined thereafter Vlotides et al. (2006). According
to that, it makes sense to work out PTTG1 gene as classified in the G2/M
cluster rather than in the M/G1 one. On the basis of all these encouraging
remarks our future works will focus on the biological processes related to the
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different genes obtained in the 5 clusters including new biological knowledge
and the genes implication in regulation cell cycle molecular network.

6 Conclusion

This paper focuses on a new application domain of the microarrays and genes
expression profile analysis. We introduce the microarrays technology, discuss
main challenges of genes expression profile analysis and the great need of
clustering and classification techniques. For genes expression profile classifi-
cation, we propose an adaptive dissimilarity index which would cover both
values and behavior proximity. We show it’s effectiveness for genes identifi-
cation cell cycle phases , whatever is the considered assignment approach.
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