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L1-stability of periodic stationary solutions of

scalar convection-diffusion equations

Valérie Le Blanc∗

February 11, 2009

Abstract

The aim of this paper is to study the L
1-stability of periodic sta-

tionary solutions of scalar convection-diffusion equations. We obtain

dispersion in L
2 for all space dimensions using Kružkov type entropy.

And when the space dimension is one, we estimate the number of sign

changes of a solution to obtain L
1-stability.

Keyword : L1-stability, periodic stationary solutions, entropy, disper-
sion inequality, lap number.

1 Introduction

We study the solutions of a scalar convection-diffusion equation of the form:

∂tu + div(f(u, x)) = ∆u, t > 0, x ∈ R
d, (1)

where x 7→ f(·, x) is an Y -periodic function with Y =
∏d

i=1(0, Ti) the basis
of a lattice. We assume that f belongs to C2(R, C1(Rd)). For this equation,
periodic stationary solutions wp exist and are parameterized by their space
average p: this is a result of Dalibard in [2]. In this paper, we focus on the
L1-stability of these periodic stationary solutions.
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When f only depends on u, the periodic stationary solutions are the con-
stants and the L1-stability of the constants is already proved by Freistühler
and Serre in the one-dimensional space case in [3] and by Serre in all space
dimension in [9]. We define the space

L1
0(R

d) = {u ∈ L1(Rd) :

∫

Rd

u(x)dx = 0}.

With this notation, the result can be written as follows:

Theorem 1. [9] For all k ∈ R, b ∈ L1
0(R

d) ∩ L∞(Rd), the unique solution
u ∈ L∞

loc(R, L∞(Rd)) of
{

∂tu + div(f(u)) = ∆u, t > 0, x ∈ R
d,

u(0, x) = k + b(x), x ∈ R
d,

(2)

satisfies:
lim
t→∞

‖u(t, ·) − k‖1 = 0.

The proof of this result can be made in 3 steps. First, the global existence
of solution of (2) is proved using the Duhamel’s formula with div(f(u)) as a
perturbation of the Heat equation, one obtains :

u(t) = Kt ∗ u0 +

∫ t

0

div Kt−s ∗ f(u(s))ds.

The maximum principle allows to conclude about global existence by induc-
tion. This defines the nonlinear semigroup S̃t so that u(t) = S̃tu0 is the
solution of (2).

Secondly, one establishes the so-called four “Co-properties” for u0, v0 in
L∞(Rd):

1. Comparison: u0 ≤ v0 a.e.⇒ S̃tu0 ≤ S̃tv0 a.e.,

2. Contraction: v0 − u0 ∈ L1(Rd) ⇒ S̃tv0 − S̃tu0 ∈ L1(Rd) and

‖S̃tv0 − S̃tu0‖ ≤ ‖v0 − u0‖,

3. Conservation (of mass): v0 −u0 ∈ L1(Rd) ⇒ S̃tv0 − S̃tu0 ∈ L1(Rd) and
∫

Rd

(S̃tv0 − S̃tu0) =

∫

Rd

(v0 − u0),
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4. Constants: if u0 is a constant, then S̃tu0 ≡ u0.

Two methods allow to conclude: one in one space dimension and another
one in all space dimension. The first one is due to Freistühler and Serre [3]:
they study the number of sign changes of the solution. Having assumed that
k = 0, f(0) = 0, they study the primitive V of the solution u which vanishes
at −∞: V (x, t) =

∫ x

−∞
u(y, t)dy. Since b ∈ L1

0(R), this primitive also vanishes
at +∞ and belongs to L∞(R). Moreover, V satisfies a parabolic equation

∂tV + f(∂xV ) = ∂2
xV.

They also apply the lemma of Matano [4] on V to estimate the number of sign
changes of the derivative of V : u. Estimates on both ‖u(t)‖L1 by ‖V (t)‖L∞

follow. Using L2-estimates on the equations on both u and V , one shows
that lim

t→∞
‖V (t)‖L∞ = 0, which permits to obtain the theorem.

The second method, due to Serre [9], is based on the Duhamel’s formula.
A dispersion inequality is obtained using the entropy u 7→ u2 for equation
(2) and L1-contraction, one obtains :

‖S̃tu0‖2 ≤ cd
‖u0‖1

td/4
.

Under the rather general assumption that f(u) is bounded by |u|2,we prove
lim
t→∞

‖S̃tb‖1 = 0 combining dispersion estimate and estimates on the heat

kernel.
In this article, we will see how we can adapt some of these arguments to

the case where f depends both on u and x. We recall that in this case the
stationary solutions wp considered are periodic, parameterized by their space
average p.

We obtain one theorem in the one-dimensional space case :

Theorem 2. For all p ∈ R, b ∈ L1
0(R) ∩ L∞(R), the unique solution u in

L∞
loc(R, L∞(R)) of

{

∂tu + div(f(u, x)) = ∆u, t > 0, x ∈ R,
u(0, x) = wp + b(x), x ∈ R,

satisfies:
lim
t→∞

‖u(t, ·) − wp‖1 = 0.
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First, we observe that in this theorem we assume
∫∞

−∞
b(x)dx = 0. This

assumption is necessary because of the conservation of mass:

∫

Rd

(v − wp) =

∫

Rd

(v0 − wp) =

∫

Rd

b.

Actually, we can not have L1-convergence when
∫

Rd b 6= 0. But this assump-
tion is not necessary to prove Lp-convergence for 1 < p ≤ 2 and in this case
we obtain a rate of convergence d/2(1 − 1/p).

To prove the theorem, we use results on the nonlinear semigroup and the
lemma of Matano, as in [3]. The main difference with the proof of Serre
and Freistühler ([9] & [3]) appears in the proof of L2-estimates for u and its
primitive V . Since the problem is inhomogeneous, u 7→ u2 is not an entropy
and we have to find a new entropy to prove dispersion inequality. For V
the results on periodic stationary solutions of Dalibard permit to prove that
‖V ‖2 is bounded.

The paper is organized as follows. In section 2, we recall the result ob-
tained by Dalibard in [2] about the existence of periodic stationary solutions.
In section 3, we focus on the existence and the properties of our nonlinear
semigroup in all space dimension: comparison principle, contraction in L1,
conservation of mass, dispersion inequality. For its existence and its three
first properties the proofs are similar to the homogeneous case f(u, x) = f(u),
except that the maximum principle does not hold anymore and is replaced by
a comparison principle. For the dispersion inequality, we build a new type of
Kružkov entropy, based on periodic stationary solutions instead of constants.
In section 4, we focus on the one-dimensional space case, and prove theorem
2 using the lemma of Matano about the number of sign changes.

2 Existence of stationary solutions

In this section, we recall the existence result of Dalibard [2]. When f depends
only on u, but not on x, i.e. when we are in the case studied by Serre in
[9], the stationary solutions considered are all the constants. But in our case
the constants are not solutions except if div(f(k, x)) = 0 for all x ∈ R

d.
The existence of another class of stationary solutions is proved by Dalibard
(see theorem 2 and lemma 6 in [2]): there exist periodic stationary solutions,
indexed by their space average.
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In this section, we recall a part of her results for the following equation:

div(f(u, x)) = ∆u, x ∈ R
d

where x 7→ f(·, x) is an Y -periodic function with Y =
∏d

i=1(0, Ti) the basis
of a lattice. We note the space average of a function u: 〈u〉Y = 1

|Y |

∫

Y
u(x)dx.

Theorem 3. Let f = f(u, x) ∈ C2(R, C1(Rd)) such that ∂uf ∈ L∞(R × Y ).
Assume that there exist C0 > 0, and n ∈ [0, d+2

d−2
) when d ≥ 3, such that for

all (p, x) ∈ R × Y
| div f(p, x)| ≤ C0(1 + |p|n).

Then for all p ∈ R, there exists a unique solution w(·, p) ∈ H1
per(Y ) of

−∆w(x, p) + div f(w(x, p), x) = 0, such that 〈w(·, p)〉Y = p.

For all p ∈ R, w(·, p) belongs to W 2,q
per(Y ) for all 1 < q < ∞ and for all R > 0,

there exists CR > 0 such that

‖w(·, p)‖W 2,q(Y ) ≤ CR ∀p ∈ R, |p| ≤ R,

CR > 0 depending only on d, Y, C0, n, q, p0 and R.
Furthermore, for all p ∈ R, ∂pw(·, p) ∈ H1

per(Y ) is in the kernel of the
linear operator

−∆ + div(∂uf(w(x, p), x)·) = 0, and 〈∂pw〉Y = 1.

And there exists α > 0 depending only on d, Y and ‖∂uf‖∞ such that

∂pw(x, p) > α for a.e. (x, p) ∈ Y × R.

Hence,
lim

p→+∞
inf
Y

w(x, p) = +∞,

lim
p→−∞

sup
Y

w(x, p) = −∞.

Remarks 1.

• A consequence of this theorem is that for all x ∈ R
d, the application

p 7→ w(p, x) is increasing and bijective from R to R.
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• In this theorem, we impose the restrictive assumption that ∂uf ∈ L∞

on the whole domain R × Y . When ∂uf belongs only to L∞
loc(L

∞(Y )),
we obtain that ∂pw > 0 but we have not the existence of the constant
α. Hence, we have no result on the limit when p → ±∞ of infY w(x, p)
and supY w(x, p), but we have that the application

R →
]

lim
p→+∞

inf
Y

w(x, p), lim
p→−∞

sup
Y

w(x, p)
[

p 7→ w(p, x)

is bijective. And we can adapt the result of theorem 2 in this case : we
just have to make the assumption that there exists p such that for all
x ∈ R

d, u0(x) ∈ [w(−p, x), w(p, x)].

In the sequel, we use the notation: wp = w(·, p).

3 The nonlinear semigroup

In what follows, we focus on the Cauchy problem for equation (1):

{

∂tu + div(f(u, x)) = ∆u, ∀t > 0, ∀x ∈ R
d,

u(0, x) = u0(x), x ∈ R
d,

(3)

where the initial datum u0 belongs to L∞(Rd). First, we adapt the approach
of Serre [9] to prove the existence of solutions and their properties: com-
parison principle, L1-contraction, conservation of mass. Then, we prove a
dispersion inequality, using a new type of entropy based on periodic solu-
tions.

3.1 Existence of the nonlinear semigroup

As in [9], the proof of the existence of solutions is based on Duhamel’s for-
mula for heat equation. We also need a comparison principle to replace the
maximum principle which is not true here.

Let us write problem (3) in the form:

{

∂tu − ∆u = − div(f(u, x)), t > 0, x ∈ R
d,

u(0, x) = u0(x), x ∈ R
d.

(4)
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Here, the heat operator appears in the left handside of (4), and the right
handside is a lower order perturbation. Denote H t the heat semigroup and
Kt its kernel. They are given by:

H tu0 = Kt ∗ u0, Kt(x) =
1

(2πt)d/2
exp

(

−‖x‖2

4t

)

and satisfy the following properties:

‖H tu0‖p ≤ ‖u0‖p, 1 ≤ p ≤ ∞, (5)

‖∇xH
tu0‖p ≤ c′pt

− 1

2‖u0‖p, 1 ≤ p ≤ ∞, (6)

∫

Rd

Kt(x)dx = 1,

∫

Rd

∇xK
t(x)dx = 0. (7)

We prove the following result:

Proposition 1. Assume that f ∈ Ck(R, C1(Rd)). Then for all a ∈ L∞(Rd),
there exist T > 0 and a unique solution u ∈ L∞([0, T ]×R

d) of (3). Moreover,
u ∈ Ck((0, T ), C∞(Rd)) and T depends only on ‖u0‖∞.

Proof. We are searching for the mild solution of (3), i.e which verifies the
Duhamel’s formula:

u(t, ·) = Kt ∗ u0 −
∫ t

0
Kt−s ∗ div(f(u(s, ·), ·))ds

= Kt ∗ u0 −
∫ t

0
∇xK

t−s ∗ f(u(s, ·), ·)ds.

Hence, we search for the solution of (3) as a fixed point of the map

M : u 7→
(

t 7→ Kt ∗ u0 −
∫ t

0

∇xK
t−s ∗ f(u(s, ·), ·)ds

)

.

In order to use Picard’s fixed point theorem we need to find a space which
is stable by M and where M is contractant. Using (5)-(6) with p = ∞ we
have the following estimate for all u ∈ L∞(Rd):

‖Mu(t)‖∞ ≤ ‖u0‖∞ +

∫ t

0

c′∞

(t − s)
1

2

‖f(u(s, ·), ·)‖∞ds.

We assume that for all 0 ≤ s ≤ T, ‖u(s)‖∞ ≤ 2‖u0‖∞. Since f(·, x) is
locally in L∞, uniformly in x, there exists C such that for all 0 ≤ s ≤ T,

‖f(u(s, ·), ·)‖∞ ≤ C
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where C does not depend on u, but only on ‖u‖L∞((0,t)×Rd) ≤ 2‖u0‖∞. There-
fore, we obtain the following estimate

‖Mu(t)‖∞ ≤ ‖u0‖∞ + 2c′∞C
√

T , ∀0 ≤ t ≤ T.

For T sufficiently small (2c′∞C
√

T < ‖u0‖∞), the map M preserves the ball
of radius 2‖u0‖∞ of L∞((0, T )×R

d). This ball is denoted B(2‖u0‖∞). Next
we prove that M is a contraction: let u, v ∈ B(2‖u0‖∞), then

Mv(t) − Mu(t) =

∫ t

0

∇xK
t−s ∗ (f(u(s, ·), ·)− f(v(s, ·), ·))ds.

Since f(·, x) is locally Lipschitz, uniformly in x, there exists C ′ (depending
on 2‖u0‖∞) such that ‖f(u, ·) − f(v, ·)‖∞ ≤ C ′‖u − v‖∞. Hence, we obtain

‖Mu − Mv‖∞ ≤ 2c′∞C ′
√

T‖u − v‖∞
and for T small enough, the map M is stable and contractant on B(2‖u0‖∞).
We can now use Picard’s fixed point theorem to obtain a unique local solution
in L∞([0, T ]×R

d). Moreover, using again Duhamel’s formula, we prove that
this solution is regular in time if f is regular in u and x ; for instance u is in
Ck((0, T ), C∞(Rd)) if f is in Ck(R, C1(Rd)).

To prove global existence in homogeneous problem, one uses maximum
principle. When the problem is inhomogeneous, this maximum principle is
false and one uses a comparison principle:

Lemma 1. Comparison principle: Let u, v ∈ L∞([0, T ]×R
d) two solutions of

(1) on (0, T ) such that for all x ∈ R
d, u0(x) ≤ v0(x). Then for all t ∈ [0, T ],

and x ∈ R
d, we have u(t, x) ≤ v(t, x).

Using this lemma, we then prove global existence of solution:

Proposition 2. Assume that f ∈ Ck(R, C1(Rd)). Then for all u0 ∈ L∞(Rd),
there exists a unique solution u ∈ Ck(R, C∞(Rd)) of (3).

Proof. From theorem 3 and the remark 1 we deduce that for all x, the
application p 7→ wp(x) is invertible from R to R. Since u0 ∈ L∞(Rd),
there exists p such that w−p(x) ≤ u0(x) ≤ wp(x). Proposition 1 gives
us T (we can chose T = T (max{‖w−p‖∞, ‖wp‖∞})) and a unique solu-
tion u. The lemma implies that for all t ∈ (0, T ), and x ∈ R, we have
w−p(x) ≤ u(t, x) ≤ wp(x). Therefore, we can iterate the local existence to
prove that u exists on (0, T ), . . . , (kT, (k + 1)T ) for any k ∈ N. Finally, we
obtain a unique bounded solution, global and smooth for positive time.
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Next, we define the nonlinear semigroup St on L∞(Rd). From now, we
will note u = Stu0, v = Stv0 if u0, v0 ∈ L∞(Rd).

As in [9], we have some properties on this semigroup: we have already
mentioned the comparison principle (lemma 1). We also have L1-contraction
and conservation of mass. And as said above, the constants are no longer
stationary solutions: they are replaced by periodic functions.

Proposition 3. For all u0, v0 ∈ L∞(Rd) such that u0 − v0 ∈ L1(Rd), for all
t > 0 we have

i) L1-contraction : Stu0 −Stv0 ∈ L1(Rd) and ‖Stu0 −Stv0‖1 ≤ ‖u0 − v0‖1;

ii) conservation of mass :

∫

Rd

(Stu0 − Stv0) =

∫

Rd

(u0 − v0).

Proof. Let u0, v0 ∈ L∞(Rd) such that u0 − v0 ∈ L1(Rd). We first prove that
Stu0 − Stv0 ∈ L1(Rd). Using Duhamel’s formula, one obtains:

v(t)−u(t) = Kt∗(v0−u0)−
∫ t

0

(∇xK
t−s)∗(f(v(s, ·), ·)−f(u(s, ·), ·))ds. (8)

Taking the L1-norm and using estimates (5)-(6) for p = 1, we deduce that

sup
s≤t

‖v(s) − u(s)‖1 ≤ ‖v0 − u0‖1 + 2c′1C
′
√

t sup
s≤t

‖v(s) − u(s)‖1.

Hence, for t small enough, v(s) − u(s) ∈ L1(Rd), for all 0 ≤ s ≤ t and by
induction it is true for all t ∈ R

+.
We now prove the L1-contraction principle. For all u0, v0 ∈ L∞(Rd) one
shows that

∂t|u − v| + div(sgn(u − v)(f(u, ·)− f(v, ·))) ≤ ∆|u − v|.

Noting

w = −Kt ∗ |v0−u0|+
∫ t

0

∂xK
t−s ∗div((f(u, x)−f(v, x)) sgn(u−v))+ |u−v|,

(9)
we easily prove ∂tw ≤ ∆w and w(0) = 0. Using comparison principle, we
have w ≤ 0. We integrate (9) according to x to obtain

0 ≥
∫

Rd

w = −
∫

Rd

|v0 − u0| +
∫

Rd

|u − v|. (10)
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From (10), we deduce the contraction principle.
Let us now prove the conservation of mass. Integrating (8), and using (7) we
immediately obtain for all u0, v0 ∈ L∞(Rd): ∂t

∫

Rd(u − v) = 0 and

∫

Rd

(u − v) =

∫

Rd

(u0 − v0).

3.2 Dispersion inequality

In this section, we prove the following dispersion inequality for equation (1):

Proposition 4. Let R ∈ R. There exists C > 0 so that for all p ∈ R, b ∈
L∞(Rd) ∩L1(Rd) such that w−R ≤ wp + b ≤ wR, u(t) = St(wp + b) verifies a
dispersion inequality:

‖u(t) − wp‖2 ≤ Cd
‖b‖1

td/4
. (11)

This estimate gives convergence in L2 when u0 − w0 ∈ L1(Rd) and the
speed of this convergence. In section 4, we will see how L2-convergence imply
L1-convergence in the one dimensional space case.

This property is first proved by Bénilan and Abourjaily in [1] in the case
where f does not depend on x. When S̃t denotes the semigroup of (2), their
result can be written as follows:

‖S̃tu0‖2 ≤ cd
‖u0‖1

td/4
.

In this case, the proof of the inequality is based on the fact that for all convex
function η, there exists g such that for all u, η′(u) div(f(u)) = div(g(u)), in
particular for η(u) = u2. This property is false in our case but we still have
a dispersion inequality (11).

To prove proposition 4, we use a new class of entropies. When f does
not depend on x, an interesting class of entropies is the Kružkov entropies
u 7→ |u− k| with k ∈ R. Those are convex functions and for all u solution of
(2), we have the inequality

∂t|u − k| + div(sgn(u − k)(f(u) − f(k))) ≤ ∆|u − k|.
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This inequality is still true in our case but we do not want to compare our
solutions to constants anymore, because they are not stationary solutions of
(3). Hence, we define a new type of entropy, using the stationary solutions
wp.

Proof. Without loss of generality we assume that p = 0. We have just said
that we need to base our new entropy on the stationary solutions. Theorem 3
gives us that for all p ∈ R, there exists a unique stationary solution wp under
the constraint 〈wp〉Y = p. Following the construction of Kružkov entropies,
let us consider , for any p ∈ R, the function ηp such that

ηp : (x, u) 7→ ηp(x, u) = |u − wp(x)|.

This application verifies the inequality:

∂tηp(u(t, x), x) + div(sgn(u − wp)(f(u, x) − f(wp, x))) ≤ ∆ηp.

In order to define our new entropy η, we define two auxiliary functions
p(u, x) and π(x, t). We recall that for all x ∈ R

d, the function p 7→ wp(x) is
a bijection from R to R. We note p(u, x) the inverse of this application. It
verifies:

∀x ∈ R
d, u ∈ R, wp(u,x)(x) = u.

If u is a function defined on R
+ × R

d such that for all (t, x), we define
π(t, x) = p(u(t, x), x). One remarks that −R ≤ π ≤ R. We can now define
our particular entropy η as:

η(u, x) =

∫ p(u,x)

0

(u − wp(x))dp.

This function is non negative. Next, we derive energy estimate on u using
this new entropy. Deriving η(u(t, x), x) with respect to t and using (3), one
obtains

∂t(η(u(t, x), x))=

∫ π(t,x)

0

∆(u−wp)dp−
∫ π(t,x)

0

div(f(u, x)−f(wp, x))dp. (12)

The last term of (12) is written as:

∫ π(t,x)

0

div(f(u, x) − f(wp, x))dp = div

(

∫ π(t,x)

0

(f(u, x) − f(wp, x))dp

)

11



and
∫ π(t,x)

0

∆(u − wp)dp = ∆(η(u(t, x), x)) −∇π · ∇(u − wp)|p=π(t,x).

We then obtain the following partial differential equation:

∂tη(u)+div

(

∫ π(t,x)

0

(f(u, x)−f(wp, x))dp

)

=∆η(u)−∇π·∇(u−wp)|p=π(t,x). (13)

Moreover, we have the equality:

0 = ∇(u(t, x) − wπ(t,x)(x)) = ∇(u − wp)|p=π(t,x) − ∂pwπ · ∇π. (14)

We deduce from (13) and (14) that η satisfies the equation:

∂tη(u) + div

(

∫ π(t,x)

0

(f(u, x) − f(wp, x))dp

)

= ∆η − ∂pwπ · |∇π|2. (15)

Integrate equation (15) in space: we get

d

dt

∫

Rd

η(u)(x)dx +

∫

Rd

∂pwπ|∇π|2 = 0.

Moreover, theorem 3 gives us ∂pwπ ≥ α > 0. Using this inequality and Nash
inequality ([10]):

‖π‖2 ≤ cd‖π‖(1−θ)
1 ‖∇π‖θ

2 where
1

θ
= 1 +

2

d
,

we obtain:
d

dt

∫

Rd

η(u)(x)dx + Cd
‖π‖2/θ

2

‖π‖2(1−θ)/θ
1

≤ 0. (16)

Let us now relate π with η:

η(u(t, x), x) =

∫ π(t,x)

0

(u(t, x) − wp(x))dp.

From the estimate

|u(t, x) − wp(x)| = |wπ(t,x)(x) − wp(x)| =
∣

∣

∣

∫ π(t,x)

p
∂pwp(x)dp

∣

∣

∣

≤ |π(t, x)| supp |∂pwp|,
(17)
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we deduce,
η(u(t, x), x) ≤ |π(t, x)|2 sup

p
|∂pwp|.

Since ∂pwp is locally bounded in p, i.e. ∂pwp(x) ≤ C for all x ∈ R
d, for all

p ∈ [−R, R], we deduce the inequality:

η(u(t, x), x) ≤ C|π(t, x)|2. (18)

We combine (16) and (18) to obtain:

d

dt

(
∫

Rd

η(u)(x)dx

)

+ C
(
∫

Rd η(u)(x)dx)1/θ

‖π‖2(1−θ)/θ
1

≤ 0.

We have now to overvalue ‖π‖1 uniformly in t. Now

π(t, x) = p(u(t, x), x) − p(w0(x), x) =

∫ u(t,x)

w0(x)

∂up(w, x)dw.

We deduce from the minoration ∂pwp ≥ α the estimate ∂up ≤ 1/α and we
deduce:

‖π(t)‖1 ≤
1

α
‖u(t) − w0‖1 ≤

1

α
‖b‖1

with L1-contraction. Finally, we have the inequation

d

dt

(
∫

Rd

η(u)(x)dx

)

+
C

‖b‖2(1−θ)/θ
1

(
∫

Rd

η(u)(x)dx

)1/θ

≤ 0. (19)

Using g := −
(∫

Rd η(u)(x)dx
)1−1/θ

, we solve this inequation and we obtain

g(t) ≤ (1 − 1/θ)C
t

‖b‖2(1−θ)/θ
1

.

Hence,
(
∫

Rd

η(x)dx

)

≤ C ′‖b‖2
1

td/2
.

To conclude the proof, we prove that there exists C > 0 such that for all

t ≥ 0,
√

∫

η(u(t))(x) ≥ C‖u(t) − w0‖2. First, we have

η(u)(x) =
∫ p(u(x),x)

0
(u(x) − wp(x))dp

=
∫ p(u(x),x)

0
(
∫ p(u(x),x)

p
∂pwq(x)dq)dp

≥ α
∫ p(u(x),x)

0
(p(u(x), x) − p)dp

= α p(u(x),x)2

2
.
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Then, estimate (17) shows that:

|u − w0|2 ≤ (sup
p

|∂pwp|)2p(u(x), x)2 ≤ C2p(u(x), x)2.

This concludes the proof of the theorem.

4 One-dimensional space case: proof of the-

orem 2

In this section, we prove L1-convergence in one space dimension. We bypass
the utilisation of Duhamel’s formula by counting the number of sign changes.
This method is used by Freistühler and Serre in [3] to prove that constants
are stable in L1 when the flux f does not depend on x, and when the space
dimension is one. It uses a lemma of Matano [4] which gives an evaluation
of the number of sign changes for the solution of our equation. The proof
is carried out in four steps: (1) At first, we make additional assumptions
on f and the initial datum. (2) Then, we prove L2-estimates on u and its
primitive V and we deduce that ‖V (t)‖∞ vanishes at +∞. (3) Using lemma
of Matano, we find that ‖u(t)‖1 is controlled by ‖V (t)‖∞, so we prove the
result under the additional hypothesis. (4) We generalized the result without
these assumptions.

Proof. First, up to a translation, we will assume that

p = 0, wp ≡ 0 and f(0, ·) ≡ 0.

We define F (u, x) = f(u, x) − ∂uf(0, x)u which verifies: F (0, ·) ≡ 0, and
∂uF (0, ·) ≡ 0 and we deduce the inequality

F (u, x) ≤ |u|2
2

sup |∂2
uF |.

(1) Let us first assume that b is bounded in the following sense: let

p+ = min{p : b ≤ wp}, p− = max{p : b ≥ wp},

we assume that
max{‖wp+‖∞, ‖wp−‖∞} < r.

14



Therefore, we have: |b| < r and using the comparison property for all t,
|Stb| < r. Moreover, we assume ‖b‖1 sup[−r,r] |∂2

uF | ≤ 1. We will see at the
end of the proof how to remove these assumptions.
We further assume that b ∈ C∞

0 (R, [−r, r]), l(b) < ∞ where l(b) is the number
of sign changes of b. Actually, we can approximate every function b that
verifies the conditions of step 1 by a function in C∞

0 ; and since the support is
compact, we can suppose that the sign of the function changes only a finite
number of time.
(2) Assume now that b verifies all the previous assumptions. We define
V (x) =

∫ x

−∞
u(t, y)dy. Since u belongs to L1, V is well defined and belongs

to L∞ and ‖V ‖∞ ≤ ‖b‖1. Moreover, since
∫

R
b = 0 and we have mass

conservation, we have that V ∈ C∞
0 . In search of estimates on V , we consider

an equation verified by V :

∂tV + ∂uf(0, x)∂xV + F (∂xV, x) = ∂2
xV. (20)

Let θ : x 7→ θ(x) from R to R be a positive function (which will be specified
later). Multiplying by θV and integrating in space, we obtain:

d

dt

∫

1

2
θV 2 +

∫

θ|∂xV |2 = −
∫

θV F (∂xV, x) +

∫

V 2

2

(

∂x(θ∂uf(0, x))∂2
xθ
)

.

Besides, we have the inequality: |F (∂xV, x)| ≤ |∂xV |2

2
sup |∂2

uF |. We deduce
the estimate:

d

dt

(
∫

θV 2

)

≤ −
∫

θ|∂xV |2 +

∫

V 2
(

∂x(θ∂uf(0, x)) + ∂2
xθ
)

.

Now we choose θ to obtain an estimate on
∫

θV 2. We impose:

• θ > α > 0 so that V 7→
∫

θV 2 is a norm on L2.

• ∂x(θ∂uf(0, x)) + ∂2
xθ = 0.

Actually, we only need that ∂x(θ∂uf(0, x)) + ∂2
xθ ≤ 0.

The following lemma ensures the existence of such a θ:

Lemma 2. There exists θ > 0 in H1
per(Y ) such that

∂x(θ∂uf(0, x)) + ∂2
xθ = 0.

15



Proof. We focus on the equation:

∂tw − ∂x(f(w, x)) = ∂2
xw.

Theorem 3 ensures the existence of a periodic stationary solution w̃p of space
average p and this one verifies: ∂pw̃p > 0. Moreover, the function defined by
θ ≡ ∂pw̃p|p=0 is Y -periodic, in H1 and verifies the following equation:

∂x(θ∂vf(w̃0, x)) + ∂2
xθ = 0.

We remark that ∂xf(0, x) = 0 = ∂2
x0. Since w̃0 is the unique function such

that ∂2
xw̃0 = −∂xf(w̃0, x) and 〈w̃0〉Y = 0, we have w̃0 ≡ 0.

The definition of θ ensures the inequality:

d

dt

(
∫

θV 2

)

≤ −
∫

θ|∂xV |2.

Since θ belongs to H1
per(Y ) ⊂ C(R), there exists c > 0 such that c < θ.

Hence, we deduce that V is bounded in L2(R):

c

∫

|V |2(t) ≤
∫

θ|V |2(t) ≤
∫

θ|V |2(0). (21)

We also have an estimate on ‖u‖2. Indeed, we proved in section 4 the dis-
persion inequality (11) for u:

(
∫

R

|u(x, t)|2dx

)

≤ C1
‖b‖2

1

t1/2
.

We deduce that
lim
t→∞

‖u(t)‖2 = 0. (22)

We can now prove an estimate on ‖V ‖∞. We have

V 2(x, t) = 2

∫ x

−∞

u(y, t)V (y, t)dy ≤ 2‖u(·, t)‖2‖V (·, t)‖2.

From equations (22) and (21), we deduce:

lim
t→∞

‖u(·, t)‖2 = 0, ‖V (·, t)‖2 uniformly bounded in t.
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Consequently lim
t→∞

‖V (·, t)‖∞ = 0.

(3) We now need an estimate on the number of sign changes of the solution
u. To obtain it, we refer to the article of Matano [4] in which an estimate on
the lap number of a solution of a parabolic problem is proved.
Let g : R → R be a continuous function. We define its lap number l as the
supremum of 0 and all k ∈ N with the property that there exist k + 1 points
x0 < · · · < xk such that

∀0 < i < k, (g(xi+1) − g(xi))(g(xi) − g(xi−1)) < 0.

We adapt the lemma of Matano [4] to get:

Lemma 3. For any bounded solution V : [0,∞) × R → R of (20):

∂tV + ∂uf(0, x)∂xV + F (∂xV, x) = ∂2
xV

with V (0, ·) ∈ C∞
0 (R) having a finite lap number, the lap number of V (t, ·) is

uniformly bounded for all t ≥ 0.

To do that, we just have to notice that F (∂xV, x) = F̃ (∂xV, x)∂xV with
F̃ (∂xV, x).
Since the number of sign changes of b is finite, V (0, x) has a finite lap number.
The lemma of Matano proves that ∀t, ∃ξt

1, . . . , ξ
t
m such that V is monotone

on ] − ∞ = ξt
0; ξ

t
1[, . . . , ]ξt

m; ξt
m+1 = ∞[. Therefore, the sign of u does not

change on the same intervals. We deduce:

‖u(·, t)‖1 =
∑m

i=0

∣

∣

∣

∫ ξt
i+1

ξt
i

u(x, t)dx
∣

∣

∣
=

∑m
i=0 |V (ξt

i+1, t) − V (ξt
i , t)|

≤ 2(m + 1)‖V (t)‖∞ → 0.

Therefore the theorem is proved under the assumptions:

max{‖wp+‖∞, ‖wp−‖∞} < r, ‖b‖1 sup
[−r,r]

|∂2
uF | ≤ 1

with
p+ = min{p : b ≤ wp}, p− = max{p : b ≥ wp}.

(4) Next, we show how to remove these assumptions. We define

Ap =
{

b ∈ L1(R) :

∫ ∞

−∞

b = 0 et ∀x, w−p(x) ≤ b(x) ≤ wp(x)
}

.
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We note Mp = max{‖w−p‖∞, ‖wp‖∞}. Hence, we have

sup
[−Mp,Mp]

|∂2
uF | < ∞.

Let now b ∈ Ap et n = 2‖b‖1 sup[−Mp,Mp] |∂2
vF |. Using w−p ≤ 0 ≤ wp, we

have b/n ∈ Ap et ∀k ∈ {1, . . . , n}, kb
n
∈ Ap. The properties of the nonlinear

semigroup show that Ap is stable under St, so we have for all t, St(kb
n

) ∈ Ap.
By induction on k, we can prove the theorem for kb

n
. Let Pk the property:

Pk : lim
t→∞

∥

∥

∥
St
(kb

n

)
∥

∥

∥

1
= 0

P1: We have b/n ∈ Ap, ‖ b
n
‖1 sup[−Mp,Mp] |∂2

uF | = 1
2

< 1. Using step 3, we

deduce: limt→∞

∥

∥

∥
St
(

b
n

)
∥

∥

∥

1
= 0.

Pk: Let assume that Pk with k < n is true and let prove Pk+1. We have
St((k + 1) b

n
) ∈ Ap. Moreover, the L1-contraction property gives:

∥

∥

∥

∥

St

(

(k + 1)
b

n

)

− St

(

kb

n

)
∥

∥

∥

∥

1

≤
∥

∥

∥

∥

b

n

∥

∥

∥

∥

1

.

We deduce:

‖St((k + 1)
b

n
)‖1 ≤ ‖St(

kb

n
)‖1 + ‖ b

n
‖1.

Since

lim
t→∞

∥

∥

∥

∥

St

(

kb

n

)
∥

∥

∥

∥

1

= 0,

we have

‖St((k + 1)
b

n
)‖1 sup

[−Mp,Mp]

|∂2
uF | < 1

for t large enough. Furthermore, St((k + 1) b
n
) ∈ Ap. Hence, we can use the

conclusion of step 3 again to conclude the proof.

5 Perspectives

In this paper we have proved the L1-stability of the periodic stationary so-
lutions of (1) in the one-dimensional space case. The proof uses a dispersion
inequality which is also verified in the multidimension space case and the

18



lemma of Matano (lemma 3) about the number of sign changes of the so-
lution of (1). But in the multidimension space case, the lemma of Matano
has no more sense. An idea to bypass it is to use Duhamel’s formula, as
done by Serre in [9]. In this purpose, we consider the linearized operator
L = ∆ − div(∂uf(0, x)·), and we write the equation in the form:

(∂t − L)u = − div(F (u, x))

with F (u, x) = f(u, x) − ∂uf(0, x)u. We note K̃t the kernel of the operator
L so that we obtain Duhamel’s formula:

u(t) = K̃t ∗ b −
∫ t

0

∇xK̃
t−s ∗ F (u(s, ·), ·)ds.

Taking L1-norms:

u(t) ≤ ‖K̃t ∗ b‖1 +

∫ t

0

‖∇xK̃
t−s‖1‖F (u(s, ·), ·)‖1ds. (23)

Moreover, we have ∂uF (0, ·) ≡ 0, so we obtain |F (u, ·)| ≤ |u|2. Hence,
dispersion inequality (11) gives:

‖F (u(s, ·), ·)‖1 ≤ C2
d

‖b‖2
1

sd/2
.

To obtain an L1-convergence theorem similar to theorem 2, we can use
estimates on the kernel K̃t and its derivative ∇xK̃

t. Some results on this
kernel are given by Oh and Zumbrun in [5] and [6] when the space dimension
is one. When the space dimension d is larger than 2, we can refer to [7] and
[8] in which they obtain large-time estimates in Lq where q ≥ 2, and when
f is periodic in only one direction. But, until now, we have not large-time
L1-estimates for d ≥ 2.

To conclude, we can see how estimates can give a theorem: if we obtain
suitable estimates, we can bound all the term in (23) by ‖b‖2

1 as in [9] and
conclude as Serre does by continuity of the limit: l0(b) = lim

t→∞
‖Stb‖1.
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