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ON TENSOR PRODUCTS OF GROUP C∗-ALGEBRAS AND

RELATED TOPICS

CLAIRE ANANTHARAMAN-DELAROCHE

Abstract. We discuss properties and examples of discrete groups in connec-
tion with their operator algebras and related tensor products.
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1. Introduction

This exposition is an extended version of notes for a lecture presented at the
Centre Bernoulli in January 2007. Our purpose is to review three factorization
problems related with the biregular representation of an infinite countable discrete
group1 Γ.

Let λ and ρ be respectively the left and right regular representations of Γ.
The biregular representation is the representation λ · ρ : (s, t) 7→ λ(s)ρ(t) of Γ ×
Γ in the Hilbert space ℓ2(Γ). If C∗(Γ), C∗

λ(Γ), denote respectively the full and
reduced C∗-algebras associated with Γ, the biregular representation extends to
homomorphisms

λ · ρ : C∗(Γ) ⊗max C
∗(Γ) → B(ℓ2(Γ)),

(λ · ρ)r : C∗
λ(Γ) ⊗max C

∗
λ(Γ) → B(ℓ2(Γ)),

thanks to the universal property of the maximal tensor product. It is natural to
ask for which groups the homomorphisms (λ ·ρ)r or λ ·ρ can be factorized through
minimal tensor products:

C∗
λ(Γ) ⊗max C

∗
λ(Γ)

Pr

��

(λ·ρ)r

((QQQQQQQQQQQQ

C∗
λ(Γ) ⊗min C

∗
λ(Γ) // B(ℓ2(Γ)),

C∗(Γ) ⊗max C
∗(Γ)

P

��

λ·ρ

((QQQQQQQQQQQQQ

C∗(Γ) ⊗min C
∗(Γ) // B(ℓ2(Γ)).

In the reduced setting the answer is simple. This is recalled in section 2. The
three following conditions are equivalent:

(i) Γ is amenable;
(ii) Pr is an isomorphism;
(iii) (λ · ρ)r passes to quotient.

As always, it is much more difficult to deal with full C∗-algebras. Section 3 is
devoted to this situation which has been studied by Kirchberg. He defined Γ to
have the factorization property (F) if λ · ρ passes to quotient. Among his many
deep results are the following ones:

• Every residually finite2 group has property (F).
• The converse is true for groups having the Kazhdan property (T ).

The family of groups such that P is an isomorphism is contained in the class
of property (F) groups. It is still mysterious. Kirchberg proved that P is an
isomorphism if and only if C∗(Γ) has Lance’s weak expectation property (WEP).
One of the most important open problem is whether the full C∗-algebra of the free

1Unless stated otherwise, in this paper all groups are assumed to be infinite countable.
2We refer with the next sections for notions used and not defined in the introduction.
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group with infinitely many generators has the WEP. The answer to this question
would have important consequences in operator algebras theory.

Another important open problem concerning full C∗-algebras is whether the
exactness of C∗(Γ) implies the amenability of Γ. Kirchberg gave a positive answer
when assuming that Γ has property (F).

For this question also, the situation is nicer for reduced C∗-algebras: C∗
λ(Γ) is

exact if and only if Γ is boundary amenable. We introduce this latter notion in
Section 4. Our main purpose is to provide tools for the study of the Akemann-
Ostrand property in Section 5.

Let Γ be the free group with n ≥ 2 generators. Akemann and Ostrand proved
that, although (λ · ρ)r does not factorize via C∗

λ(Γ) ⊗min C
∗
λ(Γ), this is however

the case for its composition with the projection Q from B(ℓ2(Γ)) onto the Calkin
algebra Q(ℓ2(Γ)):

C∗
λ(Γ) ⊗max C

∗
λ(Γ)

Pr

��

Q◦(λ·ρ)r

**TTTTTTTTTTTTTTTT

C∗
λ(Γ) ⊗min C

∗
λ(Γ) // Q(ℓ2(Γ)),

When such a phenomenon occurs, one says that Γ has the Akemann-Ostrand
property (AO). We introduce two boundary amenability properties which imply
the (AO) property: property (H) due to Higson and the weaker condition (S) due
to Skandalis. Among the groups with property (AO) are the amenable groups and
Gromov hyperbolic groups.

Non-amenable groups with property (AO) have very remarkable features. We
mention two of them in Section 6. First the application due to Skandalis giving
examples of C∗-algebras not nuclear in K-theory. Second, the more recent result
of Ozawa who took advantage of property (AO) to give a simple proof that the
von Neumann algebra of the free group Fn, n ≥ 2, (and of many other groups) is
a prime factor.

Section 2 is devoted to basic preliminary results and definitions that we have
tried to make as condensed and complete as possible, for the reader’s convenience.

All along the text, our objective is to give precise definitions, sufficiently many
examples, and a choice of proofs we think to be representative and not too tech-
nical. We have tried to provide references for assertions stated without proof.

2. Preliminary background and notations

For fundamentals of C∗-algebras we refer to [20, 17, 49, 66].

2.1. Maximal and minimal tensor products. LetA andB be two C∗-algebras,
and denote by A ⊙ B their algebraic tensor product. A C∗-norm on A ⊙ B is a
norm of involutive algebra such that ‖x∗x‖ = ‖x‖2 for x ∈ A ⊙ B. There are
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two natural ways to define C∗-norms on the ∗-algebra A ⊙ B. Recall first that a
representation of a C∗-algebra in a Hilbert space H is a homomorphism3 from A
into the C∗-algebra B(H) of all bounded operators on H. An important fact to
keep in mind is that homomorphisms of C∗-algebras are automatically contractive
maps.

The maximal C∗-norm is defined by

‖x‖max = sup ‖π(x)‖

where π runs over all homomorphisms from A⊙B into some B(H) 4. The maximal
tensor product is the completion A⊗max B of A⊙B for this C∗-norm.

The minimal tensor product is defined by taking specific homomorphisms, namely
of the form π1 ⊗ π2 where π1 is a representation of A in some Hilbert space H1

and π2 is a representation of B in some H2. Thus we define

‖x‖min = sup ‖(π1 ⊗ π2)(x)‖

where π1, π2 run over all representations of A and B respectively. The minimal
tensor product is the completion A⊗min B of A⊙B for this C∗-norm. It is shown
that when π1 and π2 are faithful, we have

‖x‖min = ‖(π1 ⊗ π2)(x)‖.

Therefore, if A and B are concretely represented as C∗-subalgebras of B(H1) and
B(H2) respectively, then A⊗minB is the closure of A⊙B, viewed as a subalgebra
of B(H1 ⊗H2). It is why ‖ · ‖min is also called the spatial tensor product.

Proposition 2.1 ([66], Th. IV.4.19). Given two C∗-algebras A and B, then
‖·‖max and ‖·‖min are respectively the largest and the smallest C∗-norm on A⊙B.
Moreover, they are both cross-norms (i.e. the norm of a⊗ b is the product ‖a‖‖b‖
for a ∈ A and b ∈ B).

The possible existence of more than one C∗-norm on the algebraic tensor product
of two C∗-algebras was discovered by Takesaki in [65] (see Remark 2.16 below).
This motivated the introduction of the following well-behaved class of C∗-algebras.

2.2. Nuclear C∗-algebras.

Definition 2.2. A C∗-algebra A is said to be nuclear if for every C∗-algebra B,
there is only one C∗-norm on A⊙B, that is A⊗max B = A⊗min B.

This class of algebras has several important characterizations that we describe
now. First, let us observe that, given a C∗-algebra A ⊂ B(H), the ∗-algebra
Mn(A) = Mn(C) ⊙ A of n× n matrices with entries in A is closed in B(Cn ⊗H).
It follows that there is only one C∗-norm on Mn(A). In other terms we have

Mn(A) = Mn(C) ⊙A = Mn(C) ⊗min A = Mn(C) ⊗max A.

3Homomorphisms of involutive algebras are always assumed to preserve the involutions.
4It is easily shown that this supremum is actually finite.
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Given a bounded linear map T : A → B between C∗-algebras, let us denote by
Tn : Mn(A) → Mn(B) the map In ⊗ T , that is Tn([ai,j ]) = [T (ai,j)] for [ai,j ] ∈
Mn(A). Recall that a linear map T : A→ B is said to be positive if T (A+) ⊂ B+.
It is not true that Tn is then positive for all n. A good reference for this subject is
the book [56]. In particular, it is observed at the end of its first chapter that the
transposition on M2(C) is positive but T2 is not positive.

Definition 2.3. A linear map T : A→ B is said to be completely positive if Tn is
positive for all n ≥ 1.

Remarks 2.4. (1) Given a1, . . . , an ∈ A, the matrix [a∗i aj ] is a positive element
in Mn(A) and it is easily shown that every positive element in Mn(A) is a finite
sum of such matrices. It follows that T : A→ B is completely positive if and only
if for every a1, . . . , an ∈ A, then [T (a∗i aj)] ∈Mn(B)+.

(2) Every homomorphism is completely positive. Also, for a ∈ A, the map
x 7→ a∗xa is completely positive.

As it is shown now, completely positive maps have a very simple structure. We
only consider the case where A has a unit, for simplicity. We shall write u.c.p. for
unital completely positive.

Proposition 2.5 (Stinespring theorem, [56], Th. 4.1). Let T be a u.c.p. map
from a unital C∗-algebra A into B(H). There exist a Hilbert space K, a represen-
tation π : A → B(K) and an isometry V : H → K such that T (a) = V ∗π(a)V for
all a ∈ A.

Sketch of proof. We define on A⊙H the inner product

〈a1 ⊗ v1, a2 ⊗ v2〉 = 〈v1, T (a∗1a2)v2〉.

Let K be the Hilbert space obtained from A ⊙ H by separation and completion.
For x ∈ A ⊙ H, we denote by [x] its class in K. Then V : v 7→ [IA ⊗ v] is an
isometry from H into K. Let π be the representation from A into K defined by
π(a)[a1 ⊗ v] = [aa1 ⊗ v] for a, a1 ∈ A and v ∈ H. Then π and V fulfill the required
properties. �

Proposition 2.6 ([66], Prop. IV.4.23). Let Ti : Ai → Bi, i = 1, 2, be completely
positive maps between C∗-algebras.

(1) T1 ⊙ T2 extends to a completely positive map T1 ⊗min T2 : A1 ⊗min A2 →
B1 ⊗min B2 and ‖T1 ⊗min T2‖ ≤ ‖T1‖‖T2‖.

(2) The same result holds for the maximal tensor norm. More generally, if
T1 and T2 are two completely positive maps into a C∗-algebra B such that
T1(A1) and T2(A2) commute, then the map from A1 ⊙ A2 into B sending
a1 ⊗a2 to T1(a1)T2(a2) extends to a completely positive map from A1 ⊗max

A2 into B.
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Theorem 2.7 (Arveson’s extension theorem, [56], Th. 7.5). Let A be a C∗-
subalgebra of B(H) and T : A → B(K) a completely positive map. There exists a
completely positive map T : B(H) → B(K) which extends T .

Definition 2.8. A completely positive contraction T : A → B is said to be
nuclear if there exist a net (ni) of positive integers and nets of completely positive
contractions5 φi : A→Mni

(C), τi : Mni
(C) → B, such that for every a ∈ A,

lim
i
‖τi ◦ φi(a) − T (a)‖ = 0.

Theorem 2.9. Let A be a C∗-algebra. The following conditions are equivalent:

(i) The identity map of A is nuclear.
(ii) A is a nuclear C∗-algebra.
(iii) There exists a net (φi) of finite rank completely positive maps φi : A → A

converging to the identity map of A in the topology of pointwise convergence
in norm.

This is the Choi-Effros theorem 3.1 in [12]. The implication (ii) ⇒ (iii) is due
to Choi-Effros [12] and Kirchberg [41] independently. For a short proof of the
equivalence between (i) and (ii) we refer to [63, Prop. 1.2]. Let us just show the
easy direction.

Proof of (i) ⇒ (ii). Let T : A → A be a completely positive contraction of the
form T = τ ◦ φ where φ : A → Mn(C) and τ : Mn(C) → A are completely
positive contractions. Then the map T ⊗ IdB : A⊗max B → A⊗max B admits the
factorization

A⊗max B
θ
→ A⊗min B

φ⊗IdB−→ Mn(C) ⊗min B = Mn(C) ⊗max B
τ⊗IdB−→ A⊗max B,

where θ is the canonical homomorphism from A⊗maxB onto A⊗minB. In particular
the kernel of T ⊗ IdB : A ⊗max B → A ⊗max B contains the kernel of θ. Let now
(Ti = τi ◦ φi) be a net of completely positive contractions factorizable through
matrix algebras and converging to IdA. Then IdA⊗maxB is the norm pointwise
limit of Ti ⊗ IdB : A ⊗max B → A ⊗max B, and therefore its kernel contains the
kernel of θ. It follows that ker θ = {0}. �

2.3. The weak expectation property. We now introduce a notion weaker than
nuclearity which also plays an important role.

Definition 2.10 (Lance). A C∗-algebra A has the weak expectation property
(WEP in short) if for any (or some) embedding A ⊂ B(H) there is a completely
positive contraction T from B(H) onto the weak closure of A such that T (a) = a
for all a ∈ A. One says that T is a weak expectation.

Proposition 2.11. A nuclear C∗-algebra A has the WEP .

5When A and B have a unit and T is unital, one may chose φi and τi to be unital.
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Proof. Using the nuclearity of IdA, and the Arveson extension property for the
completely positive maps φi of definition 2.8, we see that there exists a net (Ti)
of completely positive contractions from B(H) into A such that limi Ti(a) = a for
every a ∈ A. We define T to be any limit point of (Ti) in the σ-weak pointwise
topology. �

For a C∗-algebra A, the opposite C∗-algebra A0 has the same involutive Banach
space structure but the reverse product. We mention the following nice result
of Kirchberg [43] in the “if” direction and Haagerup (unpublished) in the other
direction. A proof is available in [58, Th. 15.6].

Theorem 2.12. A C∗-algebra A has the WEP if and only if the canonical map
from A⊗max A

0 → A⊗min A
0 is injective.

Remark 2.13. A von Neumann M is said to be injective if for some (or any)
normal faithful representation in a Hilbert space H there exists a norm one pro-
jection6 from B(H) onto M . This property is equivalent to the WEP (see [58,
Rem 15.2]). On the other hand there exist separable C∗-algebras which have the
WEP but are not nuclear (see the remark following Corollary 3.5 in [43]). This is
to be compared with the equivalence (2) ⇔ (3) in Proposition 3.5.

2.4. Exact C∗-algebras. The class of nuclear C∗-algebras is stable by extension
and quotient. However a C∗-subalgebra of nuclear C∗algebra need not be nuclear
(see Remark 5.6).

Definition 2.14. A C∗-algebra A is said to be exact (or nuclearly embeddable) if
there exists a nuclear embedding A →֒ D into some C∗-algebra D. Since D may
be concretely embedded into some B(H), we may take D = B(H) if we wish.

Obviously, every C∗-subalgebra of an exact C∗-algebra is exact and in particular
every C∗-subalgebra of a nuclear C∗-algebra is exact. A celebrated (and deep)
result of Kirchberg-Phillips [47] says that, conversely, every separable exact C∗-
algebra is a C∗-subalgebra of a nuclear one.

The terminology comes from the following fundamental result, saying that A is
exact if and only if the functor B 7→ B ⊗min A preserves short exact sequences.
Indeed this was the original definition of exactness by Kirchberg.

Theorem 2.15 (Kirchberg). Let A be a C∗-algebra. The following conditions
are equivalent:

(i) A is nuclearly embeddable (or exact).
(ii) For every short exact sequence 0 → I → B → C → 0 of C∗-algebras, the

sequence

0 → I ⊗min A→ B ⊗min A→ C ⊗min A→ 0

is exact.

6It is automatically completely positive (see [67, 68]).
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Proof. (i) ⇒ (ii). Denote by q the canonical homomorphism from B onto C. The
only point is to show that I⊗minA is the kernel of q⊗ IdA : B⊗minA→ C⊗minA.
Let A →֒ D be a nuclear embedding and let (Ti) be net of finite rank completely
positive contractions Ti : A → D such that limi ‖Ti(a) − a‖ = 0 for every a ∈ A.
It is enough to prove that for x ∈ ker(q⊗ IdA), we have (IdB ⊗ Ti)(x) ∈ I ⊗min D.
Indeed, considering B ⊗min A as a C∗-subalgebra of B ⊗min D, we shall obtain

x ∈ (B ⊗min A) ∩ (I ⊗min D) = I ⊗min A,

since limi ‖x− (IdB ⊗ Ti)(x)‖ = 0.
Hence, what is left to prove is that for any finite rank completely positive map

T : A → D we have (IdB ⊗ T )(x) ∈ I ⊗min D. Since T has a finite rank, there
exist elements d1, . . . , dn ∈ D and bounded linear forms f1, . . . , fn on A such that
T (a) =

∑n
k=1 fk(a)dk for a ∈ A. For k = 1, . . . , n, denote by Rk the bounded linear

map from B⊗minA to B such that Rk(b⊗a) = fk(a)b for b⊗a ∈ B⊙A. It is easily
checked that Rk ◦(q⊗IdA) = q◦Rk and therefore we have Rk(ker(q⊗IdA)) ⊂ I. It
follows that (IdB ⊗ T )(x) =

∑n
k=1Rk(x)⊗ dk ∈ I ⊗min D and this ends the proof.

(ii) ⇒ (i) is a hard result due to Kirchberg (see [45, Th. 4.1] or [73, Theorem
7.3]). �

In the sequel, we shall study the properties just introduced, and some others,
for C∗-algebras arising from discrete groups.

2.5. Groups and operator algebras.

2.5.1. The reduced and full group C∗-algebras. Let Γ be a discrete group, and θ be
a unitary representation of Γ in a Hilbert space H. For c =

∑
t∈Γ ctt in the group

algebra7 C[Γ] we set θ(c) =
∑
ctθ(t). We get in such a way a homomorphism

from C[Γ] into B(H) such that ‖θ(c)‖ ≤
∑

|ct|. We shall denote by C∗
θ (Γ) the

C∗-subalgebra of B(H) generated by θ(Γ).
The most important representation of Γ is the left regular representation, that

is the representation λ in ℓ2(Γ) by left translations : λ(s)δt = δst (where δt is the
Dirac function at t). One may equivalently consider the right regular representation
ρ. We shall denote by ι the trivial representation8 of Γ.

Observe that λ defines an injective homomorphism from C[Γ] into B(ℓ2(Γ)).
Thus we may view any element c of C[Γ] as the convolution operator on ℓ2(Γ) by
the function t 7→ ct.

The reduced C∗-algebra C∗
λ(Γ) is the completion of C[Γ] for the norm ‖c‖r =

‖λ(c)‖. Equivalently, it is the closure of C[Γ] in B(ℓ2(Γ)), when C[Γ] is identified
with its image under the left regular representation. Then c =

∑
ctt ∈ C[Γ] will

also be written c =
∑
ctλ(t) ∈ C∗

λ(Γ).

7i.e. the ∗-algebra of formal sums
P

t∈Γ
ctt, where t 7→ ct is a finitely supported function from

Γ into C.
8In case of ambiguity, we shall write λΓ instead of λ and ιΓ for ι.
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The full C∗-algebra C∗(Γ) is the completion of C[Γ] for the norm ‖c‖ = supθ ‖θ(c)‖,
where θ ranges over all unitary representations of Γ. Obviously, there is a canon-
ical correspondence between unitary representations of Γ and representations of
C∗(Γ). We shall always use the same symbol to denote both of them.

Note that Γ is a subgroup of the unitary group of C∗(Γ). We shall denote by
s 7→ s this embedding and by s 7→ λ(s) the embedding of Γ into the unitary group
of C∗

λ(Γ). The surjective map from C∗(Γ) onto C∗
λ(Γ) is also denoted by λ.

Observe that if Jc is the complex conjugacy, then a 7→ Jca∗Jc is an isomorphim
from C∗

λ(Γ) onto its opposite algebra C∗
λ(Γ)0. Note also that the unitary operator

J̌ defined on ℓ2(Γ) by J̌ξ(t) = ξ(t−1) exchanges the left and right regular repre-
sentations, so that λ(t) 7→ ρ(t) = J̌λ(t)J̌ extends to an isomorphism from C∗

λ(Γ)
onto the C∗-algebra C∗

ρ(Γ) generated by ρ(Γ).
Let Γ1,Γ2 be two discrete groups. Then it is easily checked that

C∗(Γ1) ⊗max C
∗(Γ2) = C∗(Γ1 × Γ2),

C∗
λ(Γ1) ⊗min C

∗
λ(Γ2) = C∗

λ(Γ1 × Γ2).

We shall denote by λ ·ρ the biregular representation (s, t) 7→ λ(s)ρ(t) of Γ×Γ in
ℓ2(Γ) as well as its extension to C∗(Γ)⊗max C

∗(Γ). Due to the universal property
of the maximal tensor product, we also see that the canonical homomorphism
h : C∗

λ(Γ) ⊙ C∗
λ(Γ) → B(ℓ2(Γ)) defined by

h(λ(s) ⊗ λ(t)) = λ(s)J̌λ(t)J̌ = λ(s)ρ(t)

has a continuous extension to C∗
λ(Γ)⊗max C

∗
λ(Γ). It is denoted by (λ · ρ)r. We get

the following commutative diagram

C∗(Γ) ⊗max C
∗(Γ)

��

λ·ρ

**TTTTTTTTTTTTTTTT

C∗
λ(Γ) ⊗max C

∗
λ(Γ)

(λ·ρ)r

// B(ℓ2(Γ)).

Remark 2.16. The situation is quite different for the minimal tensor product.
In [65], Takesaki has proved that for the free group F2 with two generators, h :
C∗
λ(F2) ⊙ C∗

λ(F2) → B(ℓ2(F2)) is not continuous for the C∗-norm ‖·‖min therefore
giving an example where the minimal and maximal tensor products are not the
same. The continuity problem of h : C∗

λ(Γ) ⊙ C∗
λ(Γ) → B(ℓ2(Γ)) for ‖·‖min will be

studied in Proposition 3.5.

2.5.2. Group von Neumann algebras. Let Γ be a discrete group. The weak closure
L(Γ) of C∗

λ(Γ) in B(ℓ2(Γ)) is called the (left) von Neumann algebra of Γ. Its com-
mutant L(Γ)′ is the von Neumann algebra R(Γ) generated by ρ(Γ). The algebra
L(Γ) has a natural faithful trace tr defined by tr(a) = 〈δe, aδe〉.

This is a particular example of a von Neumann algebra M equipped with a
faithful tracial state tr. Let L2(M) be the completion of M for the scalar product
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〈m,n〉 = tr(m∗n) and let m 7→ m̂ be the embedding of M into its completion. As

usual, let J be the antilinear isometric involution of L2(M) defined by Jm̂ = m̂∗.
Recall that JMJ = M ′ and that L2(M) is a M -M -bimodule for the following
actions : m1m̂m2 = m̂1mm2, with m1,m,m2 ∈M 9.

2.5.3. Weak containment. Recall that a (diagonal) coefficient of a representation
(θ,H) of Γ is a function of the form s 7→ 〈ξ, θ(s)ξ〉, with ξ ∈ H.

Definition 2.17. Let π1 and π2 be two unitary representations of Γ. We say that
π1 is weakly contained into π2, and we write π1 ≺ π2, if every coefficient of π1 is
the pointwise limit of sums of coefficients of π2.

If ξ1 is a cyclic vector for the representation π1, it is enough to consider the
coefficient s 7→ 〈ξ1, π1(s)ξ1〉 of π1.

A useful equivalent definition is that π1 ≺ π2 if and only if the kernels of π1, π2,
viewed as representations of C∗(Γ), satisfy kerπ2 ⊂ kerπ1 (see [20, Prop. 18.1.4]).

Let us recall here the Fell absorption principle : for any unitary representation
(θ,H) of Γ, the tensor product representation λ ⊗ θ is unitary equivalent to the
multiple (dimH)λ of λ (via the unitary of ℓ2(Γ) ⊗ H sending f ⊗ ξ to the func-
tion s 7→ f(s)θ(s−1)ξ). This allows to extend the map λ(s) 7→ λ(s) ⊗ θ(s) to a
homomorphism from C∗

λ(Γ) to C∗
λ(Γ) ⊗min C

∗
θ (Γ).

Finally, we shall also need the following construction of C∗-algebras associated
with dynamical systems.

2.6. Crossed products. Let α : Γ y A be an action of Γ on a C∗-algebra
A. That is, α is a homomorphism from the group Γ into the group Aut(A) of
automorphisms of A. We denote by A[Γ] the ∗-algebra of formal sums a =

∑
att

where t 7→ at is a map from Γ into A with finite support and where the operations
are given by the following rules:

(at)(bs) = aαt(b) ts, (at)∗ = αt−1(a) t−1,

for a, b ∈ A and s, t ∈ Γ.
For such a non-commutative dynamical system, the notion of unitary repre-

sentation is replaced by that of covariant representation. A covariant representa-
tion of α : Γ y A is a pair (π, θ, ) where π and θ are respectively a representation
of A and a unitary representation of Γ in the same Hilbert space H satisfying the
covariance rule

∀a ∈ A, t ∈ Γ, θ(t)π(a)θ(t)∗ = π(αt(a)).

We define a homomorphism π × θ from A[Γ] into B(H) by

(π × θ)(
∑

at t) =
∑

π(at)θ(t).

9When M = L(Γ) we have L2(M) = ℓ2(Γ) and (Jξ)(t) = ξ(t−1).
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The full crossed product A⋊ Γ is the C∗-algebra obtained as the completion of
A[Γ] for the norm

‖a‖ = sup ‖(π × θ)(a)‖

where (π, θ) runs over all covariant representations of α : Γ y A. Every covariant
representation (π, θ) extends to a representation of A ⋊ Γ, denoted by π × θ.
Conversely, it is not difficult to see that every representation of A ⋊ Γ comes in
this way from a covariant representation. In other terms, A ⋊ Γ is the universal
C∗-algebra describing the covariant representations of α : Γ y A.

We now describe the analogues of the regular representation, the induced co-
variant representations. To any representation π of A in a Hilbert space H is
associated the following covariant representation (π̃, λ̃) of α : Γ y A, acting on
the Hilbert space ℓ2(Γ,H) = ℓ2(Γ) ⊗H:

• the representation π̃ of A is defined by π̃(a)ξ(t) = π(αt−1(a))ξ(t) for a ∈ A
and ξ ∈ ℓ2(Γ,H);

• the unitary representation λ̃ of Γ is t 7→ λ̃(t) = λ(t) ⊗ IdH.

The covariant representation (π̃, λ̃) is said to be induced by π.
The reduced crossed product A⋊rΓ is the C∗-algebra obtained as the completion

of A[Γ] for the norm

‖a‖r = sup ‖(π̃ × λ̃)(a)‖

where π runs over all representations of A.
When (π,H) is a faithful representation of A one has ‖a‖r = ‖(π̃ × λ̃)(a)‖ and

therefore A⋊r Γ is faithfully represented into ℓ2(Γ) ⊗H.
Note that A ⋊r Γ contains a copy of A, and that whenever A has a unit, then

A⋊r Γ also contains a copy of C∗
λ(Γ).

3. Amenable groups and their C∗-algebras

Let Γ be a discrete group. Recall that a complex valued function ϕ on Γ is said
to be positive definite (or of positive type) if for every n ≥ 1 and every t1, . . . , tn in
Γ the matrix [ϕ(t−1

i tj)] is positive. Given (θ,H, ξ) where ξ is a non-zero vector in
the Hilbert space H of the unitary representation θ of Γ, then the coefficient t 7→
〈ξ, θ(t)ξ〉 of θ is positive definite. The Gelfand-Naimark-Segal (GNS) construction
asserts that every positive definite function is of this form.

The relations between positive definite functions and completely positive maps
on C∗

λ(Γ) are described in the following lemma.

Lemma 3.1. Let Γ be a discrete group.

(i) Let ϕ be a positive definite function on Γ. Then

mϕ :
∑

ctλ(t) 7→
∑

ϕ(t)ctλ(t)

extends to a completely positive map φ from C∗
λ(Γ) into itself.
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(ii) Let φ : C∗
λ(Γ) → C∗

λ(Γ) be a completely positive map. For t ∈ Γ we set
ϕ(t) = 〈δe, φ(λ(t))λ(t)∗δe〉. Then ϕ is a positive definite function on Γ.

Proof. (i) Let (πϕ,Hϕ, ξϕ) be given by the GNS construction so that for t ∈ Γ one
has ϕ(t) = 〈ξϕ, πϕ(t)ξϕ〉. Let S from ℓ2(Γ) into ℓ2(Γ,Hϕ) defined by

(Sf)(t) = f(t)πϕ(t)∗ξϕ.

It is a bounded linear map and its adjoint S∗ satisfies S∗(F )(s) = 〈ξϕ, πϕ(s)F (s)〉
for F ∈ ℓ2(Γ,Hϕ). A straightforward computation shows that mϕc = S∗(c ⊗ 1)S
for c ∈ C[Γ]. It follows that mϕ extends to the completely positive map a 7→
S∗(a⊗ 1)S from C∗

λ(Γ) into itself.
(ii) follows from an easy computation. �

We shall denote by ℓ1(Γ)+1 the space of probability measures on Γ and by ℓ2(Γ)1
the unit sphere of ℓ2(Γ). For f : Γ → C and t ∈ Γ the function tf is defined by
(tf)(s) = f(t−1s). Recall that:

Definition 3.2 (-Proposition). Γ is amenable if and only if one of the four
following equivalent conditions holds:

(i) There exists an invariant state M on ℓ∞(Γ), that is such that M(tf) =
M(f) for t ∈ Γ and f ∈ ℓ∞(Γ).

(ii) For every ε > 0 and every finite subset F of Γ there exists f ∈ ℓ1(Γ)+1 such
that

max
t∈F

‖tf − f‖1 ≤ ε.

(iii) For every ε > 0 and every finite subset F of Γ there exists ξ ∈ ℓ2(Γ)1 such
that

max
t∈F

‖tξ − ξ‖2 ≤ ε.

(iv) For every ε > 0 and every finite subset F of Γ there exists a positive definite
function ϕ on Γ with finite support such that

max
t∈F

|1 − ϕ(t)| ≤ ε.

Condition (iii) above means that the left regular representation of Γ almost have
invariant vectors, or that the trivial representation ι of Γ is weakly contained into
λ.

Theorem 3.3 (Hulanicki). Γ is amenable if and only if λ : C∗(Γ) → C∗
λ(Γ) is

an isomorphism.

Proof. Obviously, if λ : C∗(Γ) → C∗
λ(Γ) is injective, ι is weakly contained in λ. For

the converse we refer to [20, §18] or [57, Th. 7.3.9]. �
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Remark 3.4. In the sequel, we shall denote by σ the conjugacy representation
s 7→ λ(s)ρ(s) of Γ. We shall use several times the following observation: since σ
has a non-zero invariant vector, namely δe, the discrete group Γ is amenable if and
only if σ is weakly contained into λ.

Proposition 3.5 (Lance, [48]). Let Γ be a discrete group. The following condi-
tions are equivalent:

(1) Γ is amenable.
(2) C∗

λ(Γ) is nuclear.
(3) C∗

λ(Γ) has the WEP.
(4) The homomorphism h : C∗

λ(Γ) ⊙ C∗
λ(Γ) → B(ℓ2(Γ) defined by

h(λ(s) ⊗ λ(t)) = λ(s)ρ(t)

extends to a continuous homomorphism (̃λ · ρ)r on C∗
λ(Γ) ⊗min C

∗
λ(Γ). In

other terms the representation (λ · ρ)r admits the factorization:

C∗
λ(Γ) ⊗max C

∗
λ(Γ)

Pr

��

(λ·ρ)r

++VVVVVVVVVVVVVVVVVVVVV

C∗
λ(Γ × Γ) = C∗

λ(Γ) ⊗min C
∗
λ(Γ)

(̃λ·ρ)r

// B(ℓ2(Γ)).

Proof. (1) ⇒ (2). Assume that Γ is amenable. Let (ϕi) be a net of positive definite
functions with finite support, normalized by ϕi(e) = 1, converging pointwise to 1.
Denote by mi the extension of mϕi

to C∗
λ(Γ). Then (mi) is a net of finite rank

completely positive contractions, converging pointwise to IdC∗

λ
(Γ). Hence, C∗

λ(Γ) is
nuclear.

(2) ⇒ (3) is obvious. Let us show that (3) ⇒ (1). Let T be a weak expectation
from B(ℓ2(Γ)) onto the weak closure of C∗

λ(Γ). For f ∈ ℓ∞(Γ), viewed as the
multiplication operator by f on ℓ2(Γ), we set M(f) = 〈δe, T (f)δe〉. Since T is the
identity on C∗

λ(Γ) one has T (axb) = aT (x)b for a, b ∈ C∗
λ(Γ) and x ∈ B(ℓ2(Γ)) (see

[56, Th. 3.18]). It follows that

M(tf) = 〈δe, λ(t)T (f)λ(t)∗δe〉

= 〈δt−1 , T (f)δt−1〉 = 〈ρ(t)δe, T (f)ρ(t)δe〉

= 〈δe, T (f)δe〉

since the range of T commutes with ρ(Γ).
Obviously (2) ⇒ (4) because the C∗-norms ‖·‖max and ‖·‖min are the same for

nuclear C∗-algebras.
(4) ⇒ (1). Let us assume the existence of a homomorphism

(̃λ · ρ)r : C∗
λ(Γ) ⊗min C

∗
λ(Γ) → B(ℓ2(Γ))
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sending λ(s) ⊗ λ(t) onto λ(s)ρ(t). Then the following diagram

C∗(Γ)

λ

wwnnnnnnnnnnnn

σ

**TTTTTTTTTTTTTTTTTT

C∗
λ(Γ) // C∗

λ(Γ) ⊗min C
∗
λ(Γ)

(̃λ·ρ)r

// B(ℓ2(Γ))

is commutative, where the left horizontal arrow is λ(s) 7→ λ(s) ⊗ λ(s). Therefore
the representation σ is weakly contained into λ and Γ is amenable. �

Remark 3.6. In particular, the canonical map

Pr : C∗
λ(Γ) ⊗max C

∗
λ(Γ) → C∗

λ(Γ) ⊗min C
∗
λ(Γ)

is injective if and only if the group Γ is amenable.

In the von Neumann setting we have that L(Γ) is injective (or hyperfinite by
Connes’ theorem) if and only Γ is amenable. The previous proposition is to be
compared with the following important theorem which combines results of Effros-
Lance and Connes.

Theorem 3.7 ([24, 15, 16]). Let M ⊂ B(H) be a von Neumann algebra and M ′

its commutant. The natural map h : M ⊙M ′ → B(H) sending m⊗m′ to mm′ is
continuous for the C∗-norm ‖·‖min if and only if M is an injective von Neumann
algebra.

Remark 3.8. In one of their first papers, Murray and von Neumann showed that,
when M is a factor 10, the homomorphism h : M⊙M ′ → B(H) is injective (see [66,
Prop. 4.20]). It follows from the minimality of the norm ‖·‖min that when M is
an injective factor, h extends to an isometry from M ⊗minM

′ onto the C∗-algebra
C∗(M,M ′) generated by M ∪M ′.

4. Kirchberg factorization property

In this section we are concerned with full group C∗-algebras and the much more
intricate factorization problem of the biregular representation λ · ρ. For the free
group F2, it was proved by S. Wassermann in [72] that the representation

λ · ρ : C∗(F2) ⊗max C
∗(F2) → B(ℓ2(F2))

passes to the quotient through C∗(F2) ⊗min C
∗(F2). Kirchberg has studied this

remarkable property for locally compact groups in a series a papers [42, 43, 44]
and named it property (F).

10i.e. its centre is reduced to the scalar operators
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Definition 4.1. We say that Γ has the factorization property (F) if the represen-

tation λ · ρ admits a factorization through C∗(Γ) ⊗min C
∗(Γ). We denote by λ̃ · ρ

the representation of C∗(Γ) ⊗min C
∗(Γ) obtained by passing to quotient:

C∗(Γ × Γ) = C∗(Γ) ⊗max C
∗(Γ)

P

��

λ·ρ

++VVVVVVVVVVVVVVVVVVVVV

C∗(Γ) ⊗min C
∗(Γ)

fλ·ρ

// B(ℓ2(Γ))

An important result of Kirchberg is that all residually finite groups have pro-
perty (F).

Definition 4.2. We say that Γ is residually finite if there exists a decreasing
sequence (Γn) of normal subgroups with finite index, such that ∩Γn = {e}.

We say that Γ is maximally almost periodic if there is a faithful homomorphism
from Γ into a compact group.

Of course a residually finite group is maximally almost periodic. Using the fact
that a compact group has sufficiently many finite dimensional unitary representa-
tions, we see that any maximally almost periodic group is a subgroup of

∏
n≥1 U(n)

where U(n) is the group of unitary n× n matrices.
We denote, as usually, by R the unique type II1 hyperfinite (= injective) von

Neumann factor. It is easily seen that
∏
n≥1 U(n) is embeddable as a subgroup of

the unitary group U(R) of R.

Theorem 4.3 (Kirchberg, [44]). Let Γ be a discrete group such that there exists
an injective homomorphism i from Γ into the unitary group U(R) of the type II1
hyperfinite factor R. Then Γ has property (F).

Proof. We use the notations of subsection 2.5.2. Let ̺ and ̺′ be the representations
of Γ such that ̺(s) = i(s) and ̺′(s) = Ji(s)J respectively, for all s ∈ Γ. We define
a representation of Γ × Γ into the C∗-algebra C∗(R,R′) generated by R ∪R′ by

(̺ · ̺′)(s, t) = ̺(s)̺′(t).

We have

tr(i(st−1)) =
〈
1̂, (̺ · ̺′)(s, t))1̂

〉
L2(R)

(4.1)

for all s, t.
Setting ϕ(s, t) = tr(i(st−1)), we see that ̺ ·̺′ is the GNS representation of Γ×Γ

associated with the positive definite function ϕ. But since R is an injective factor,
the map h : R⊙R′ → C∗(R,R′) sending a⊗a′ onto aa′ extends to an isomorphism
from R ⊗min R

′ onto C∗(R,R′). It follows that the representation ̺ · ̺′ admits a
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factorization through C∗(Γ) ⊗min C
∗(Γ):

C∗(Γ) ⊗max C
∗(Γ)

P

��

̺·̺′

++WWWWWWWWWWWWWWWWWWWW

C∗(Γ) ⊗min C
∗(Γ)

̺⊗̺′
// R⊗min R

′ ≈ C∗(R,R′).

Given n ≥ 1, we have a faithful homomorphism s 7→ i(s)⊗n from Γ into the
unitary group of the von Neumann tensor power R⊗n. Since R⊗n is isomorphic
to R, there is an embedding s 7→ i(s)⊗n ∈ U(R) and we see similarly that the
representation of Γ × Γ defined by ϕn(s, t) = [tr(i(st−1))]n admits a factorization
through C∗(Γ) ⊗min C

∗(Γ).
Another crucial observation is that we can choose i such that |tr(i(s))| < 1 when

s 6= e. Indeed, for s 6= e, the equality |tr(i(s))| = 1 implies i(s) = c1 where c is a
complex number with |c| = 1 and c 6= 1 since i is faithful. Therefore, it suffices to

replace i by the embedding s 7→

(
i(s) 0
0 1

)
into the unitary group of M2(R) ≈ R.

It follows that for s, t ∈ Γ, we have limn ϕn(s, t) = δs,t = 〈δe, λ(s)ρ(t)δe〉. We
conclude that kerP ⊂ ker(λ · ρ) (see 2.5.3). �

Examples of residually finite groups include:

◮ Free groups (see for instance [73, Lemma 3.6])11.
◮ Finitely generated subgroups of GLn(C), by Malcev’s theorem (see [4]).

Other examples of groups with property (F) are:

◮ of course all amenable groups12.
◮ all groups admitting an injective homomorphism into an almost connected

locally compact group13 (see [43, Lemma 7.3 (iii)]).

The following remarkable result of Kirchberg says that for groups with Kazh-
dan property (T ), having property (F) is exactly the same as being residually
finite. Recall the Γ is said to have Kazhdan property (T ) if every unitary rep-
resentation (θ,H) almost having invariant vectors (in the sense that for every
ε > 0 and every finite subset F of Γ there exists a norm one vector ξ ∈ H with
maxs∈F ‖θ(s)ξ − ξ‖ ≤ ε) actually has a non-zero invariant vector.

Theorem 4.4 (Kirchberg, [44]). A discrete group Γ with Kirchberg property (F)
and Kazhdan property (T ) is residually finite.

11It is still an open problem whether all hyperbolic groups are residually finite (see [9,
page 512]).

12Among them, there are non-residually finite ICC amenable groups (see 6.7 below for the
definition of ICC and [44, 60, Remarks] for examples). They have of course a faithful unitary
representation in the hyperfinite factor R, since R is isomorphic to L(Γ) for any ICC amenable
group Γ.

13The image need not be closed!
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For a short proof, we refer to [73, th. 3.18].

Remarks 4.5. (1) There exist groups with property (T ) which are not residually
finite. Indeed Gromov [28] has stated the existence of simple infinite property (T )
groups. Recently, even finitely presented such groups have been constructed [10].

(2) Let us mention the following related result of Robertson [60] stating that a
Kazhdan group Γ having a faithful unitary representation into the factor L(F∞)
of the free group on countably many generators, is residually finite. Note that
the hyperfinite II1 factor R is a subfactor of any type II1 factor and therefore of
L(F∞).

Remark 4.6. Of course, the factorization property holds whenever the canonical
surjection from C∗(Γ)⊗max C

∗(Γ) onto C∗(Γ)⊗min C
∗(Γ) is injective. Very few is

known about the class of groups satisfying this latter property. In particular, one
of the most important open problems is whether F∞ is in this class. Kirchberg
has proved the equivalence between a positive answer to this question and positive
answers to several other fundamental questions, and among them

• Connes’ problem asking whether every separable type II1 factor is a sub-
factor of the ultraproduct Rω of the hyperfinite II1 factor R;

• whether C∗(F∞) has the WEP (see [43, §8]).

Proposition 4.7 (Kirchberg, [43], Prop. 7.1). Let Γ be a discrete group with
the factorization property (F). Then Γ is amenable if and only if C∗(Γ) is exact.

Proof. Assume that C∗(Γ) is exact. Let I be the kernel of λ : C∗(Γ) → C∗
λ(Γ).

We consider the following commutative diagram, where the second row is an exact
sequence:

C∗(Γ)

∆min

��

λ
// C∗
λ(Γ)

ψ

��

0 // I ⊗min C
∗(Γ) // C∗(Γ) ⊗min C

∗(Γ)

fλ·ρ
��

λ⊗Id
// C∗
λ(Γ) ⊗min C

∗(Γ)

π
uu

// 0

B(ℓ2(Γ))

The vertical map ∆min is given by s 7→ s ⊗ s which, after composition with λ̃ · ρ,
gives the conjugacy representation s 7→ σ(s) = λ(s)ρ(s). On the other hand,
ψ : C∗

λ(Γ) → C∗
λ(Γ)⊗minC

∗(Γ) is given by λ(s) 7→ λ(s)⊗ s. The homomorphism π

is obtained from λ̃ · ρ by passing to quotient, since I ⊗min C
∗(Γ) ⊂ ker λ̃ · ρ. From

the commutativity of the diagram, we see that the representation σ is weakly
contained into the regular representation λ of Γ. The trivial representation is
therefore weakly contained into λ and thus, Γ is amenable. �
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Problem : Are there non-amenable discrete groups Γ for which the full C∗-algebra
C∗(Γ) is exact ?

We shall now see that the reduced C∗-algebras of most of the usual discrete
groups are known to be exact.

5. Amenable dynamical systems

Let X be a locally compact space and (t, x) 7→ tx be a left action of Γ on X
by homeomorphisms. The space ℓ1(Γ)+1 of probability measures on Γ is equipped
with the topology of pointwise convergence, which is the same here that the norm
topology.

5.1. Definition and basic results.

Definition 5.1. We say that the action Γ y X is amenable is there exists a net
(fi) of continuous maps x 7→ fxi from X into ℓ1(Γ)+1 such that for every t ∈ Γ :

lim
i

∥∥tfxi − f txi
∥∥

1
= 0

uniformly on compact subsets of X.
Precisely, we have

∑
s∈Γ f

x
i (s) = 1 for x ∈ X and every i and

∀t, lim
i

∑

s∈Γ

∣∣f txi (ts) − fxi (s)
∣∣ = 0, uniformly on compact subsets of X.

Such a net (fi) is called an approximate invariant continuous mean (a.i.c.m. for
short).

This is the version with parameter of (ii) in definition 3.2. One has also the
analogue of statements (iii) and (iv) of definition 3.2 as equivalent definitions for
amenable actions (see [7, Prop. 2.2 and Prop. 2.5] for details).

Examples 5.2. (1) If Γ is an amenable group, every action Γ y X is amenable.
Indeed, given an approximate invariant net (fi)i∈I in ℓ1(Γ)+1 , arising from definition

3.2 (ii), we define f̃i to be the constant map on X whose value is fi. Then (f̃i)i∈I
is an a.i.c.m.

Note that if Γ y X is amenable and if X has a Γ-invariant probability measure
µ, then Γ is an amenable group. Indeed, let us consider an a.i.c.m. (fi)i∈I and set
ki(t) =

∫
fxi (t)dµ(x). Then (ki)i∈I is an approximate invariant net in ℓ1(Γ)+1 and

therefore Γ is amenable.
(2) For every group Γ, its left action on itself is amenable. Indeed, x ∈ Γ 7→ fx =

δx is invariant : tfx = f tx for every t, x ∈ Γ. Such an action, having a continuous
invariant system of probability measures, is called proper. This is equivalent to
the usual properness of the map (t, x) 7→ (tx, x) from Γ ×X into X ×X (see [6,
Cor. 2.1.17]).
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(3) Let F2 be the free group with two generators a and b. The boundary ∂F2

is the set of all infinite reduced words ω = a1a2 . . . an . . . in the alphabet S =
{a, a−1, b, b−1}. It is equipped with the topology induced by the product topology
on SN∗

. The group F2 acts continuously to the left by concatenation on the
Cantor discontinuum ∂F2. This action is amenable. Indeed, for n ≥ 1 and ω =
a1a2 . . . an . . . , define

fωn (t) =
1

n
if t = a1 . . . ak, k ≤

1

n
,

= 0 otherwise.

Then (fn)n≥1 is an a.i.c.m.
(4) Another convenient way to show that group actions are amenable is to use

the invariance of this notion by Morita equivalence [6, Th. 2.2.17]. Let us consider
for instance a locally compact group G, an amenable closed subgroup H and a
discrete subgroup Γ. Then the left Γ-action on G/H is amenable.

Theorem 5.3. Let Γ y X be an action of a discrete group on a locally compact
space X. The two following conditions are equivalent:

(i) The action is amenable.
(ii) The reduced cross product C0(X) ⋊r Γ is a nuclear C∗algebra.

Proof. For (i) ⇒ (ii), one may proceed in two different ways. It is possible to
construct explicitely a net of finite rank completely positive contractions from
C0(X) ⋊r Γ into itself, approximating the identity map (see [7, Prop. 8.2]). It is
also not too difficult to show directly the statement of definition 2.2 (see [5, Th.
3.4]). We also refer to [5, Th. 3.4] for the converse. �

Proposition 5.4. Let Γ y X be an amenable action. The canonical surjection
from C0(X) ⋊ Γ onto C0(X) ⋊r Γ is an isomorphism.

For the proof, see [5, Th. 3.4] or [7, Th. 5.3].

Problem: Is the converse true ?

5.2. Boundary amenability.

Definition 5.5. We say that a discrete group Γ is boundary amenable or amenable
at infinity if it has an amenable action on a compact space.

Remark 5.6. This is a very useful property. Indeed, when X is compact, C∗
λ(Γ) is

a subalgebra of C(X)⋊rΓ. Therefore, if Γ y X is amenable, C∗
λ(Γ) is a subalgebra

of the nuclear C∗-algebra C(X)⋊Γ and therefore is exact. This applies for instance
to Γ = F2 and X = ∂F2.

The converse is true:

Theorem 5.7 ([51, 34, 5, 7]). Let Γ be a discrete group. The following conditions
are equivalent:
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(i) There exists an amenable action Γ y X on a compact space X.
(ii) C∗

λ(Γ) is exact.

For that reason, boundary amenable groups are also called exact groups.
We shall need later the following lemma.

Lemma 5.8. The following conditions are equivalent:

(i) Γ is exact.
(ii) The natural left action of Γ on the Stone-Čech compactification βΓ of Γ is

amenable14.
(iii) The natural left action of Γ on the state space SΓ of ℓ∞(Γ), equipped with

weak*-topology is amenable.

Proof. (i) ⇒ (ii). Let X be a compact space on which Γ acts amenably. We
choose x0 ∈ X. The map s 7→ sx0 from Γ to X extends to a continuous map
p : βΓ → X, by the universal property of the Stone-Čech compactification. Since

p is Γ-equivariant, given an a.i.c.m (fi) for Γ y X, the net of maps y 7→ f
p(y)
i

defines an a.i.c.m. for Γ y βΓ.
(ii) ⇒ (iii). Let (fi) be an a.i.c.m. for Γ y βΓ. For t ∈ Γ, the function

f �

i(t) : x ∈ Γ 7→ fxi (t) is in ℓ∞(Γ). Given ϕ ∈ SΓ, we define fϕi ∈ ℓ1(Γ)+1 by

fϕi (t) =
〈
ϕ, f �

i(t)
〉
.

A straightforward computation shows that (fϕi ) is an a.i.c.m. for Γ y SΓ.
Finally, (iii) ⇒ (i) is obvious since SΓ is compact. �

Let us mention that exact groups have characterizations similar to the charac-
terizations of amenable groups given in proposition 3.2.

Proposition 5.9. Let Γ be a discrete group. The following conditions are equiv-
alent:

(i) Γ is boundary amenable.
(ii) For every ε > 0 and every finite subset F ⊂ Γ, there exists a function

f : s 7→ fs from Γ to ℓ1(Γ)+1 and a finite subset F ′ of Γ such that
(a) ‖fs − ft‖1 ≤ ε whenever s−1t ∈ F ;
(b) supp(fs) ⊂ sF ′ for all s ∈ Γ.

(iii) For every ε > 0 and every finite subset F ⊂ Γ, there exists a function
ξ : s→ ξs from Γ to ℓ2(Γ)1 and a finite subset F ′ of Γ such that
(a) ‖ξs − ξt‖2 ≤ ε whenever s−1t ∈ F ;
(b) supp(ξs) ⊂ sF ′ for all s ∈ Γ.

(iv) For every ε > 0 and every finite subset F ⊂ Γ, there exists a bounded
positive definite kernel k on Γ × Γ and a finite subset F ′ of Γ such that

14We endow the universal compactification βΓ of the discrete space Γ with the continuous
extension of the left action Γ y Γ. Recall that βΓ is the spectrum of the C∗-algebra ℓ∞(Γ), so
that ℓ∞(Γ) = C(β(Γ)
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(a) |1 − k(s, t)| ≤ ε whenever s−1t ∈ F ;
(b) supp(k) ⊂ {(s, t), s−1t ∈ F ′}.

For the proof, we refer to [5, Prop. 4.4].

If Γ is finitely generated and ℓ is the length function associated to any choice
of generators, one infers from the above proposition that boundary amenability is
a metric property. It is very striking that it is equivalent to the analytic property
described in theorem 5.7. One easily shows (see [5, Prop. 4.9] for a proof) that the
above condition (iii) implies that Γ, equipped with the metric d(s, t) = ℓ(s−1t),
is uniformly (or coarsely) embeddable into a Hilbert space in the sense of Gromov
[29].

Remark 5.10. A Følner type version of condition (ii) in proposition 5.9 was
introduced by Yu in [74], under the name of property (A), for any discrete metric
space. Higson and Roe proved [39] that for the length metric on finitely generated
groups, this condition is equivalent to the boundary amenability of the group.

A remarkable result of Yu’s [74] states that a group Γ with such a simple con-
dition as uniform embeddability into a Hilbert space, and in particular bound-
ary amenability (with a slight restriction removed later in [38, 64]), satisfies the
Novikov conjecture. This raised the question whether every finitely generated
group is boundary amenable, or at least can be embedded uniformly into a Hilbert
space.

Boundary amenability has now been established for a long list of groups (see
[55] for more details). Among them we mention

◮ amenable groups;
◮ hyperbolic groups [1, 27], hyperbolic groups relative to a family of exact

subgroups ([54, 18]);
◮ Coxeter groups [21];
◮ linear groups [33];
◮ countable subgroups of almost connected Lie groups [33];
◮ discrete subgroups of almost connected groups (use (4) in Examples 5.2).

This class of boundary amenable groups is stable by extension [46], amalgamated
free products and HNN -extensions [22, 69].

There exist finitely presented groups which are not uniformly embeddable into
a Hilbert space, and a fortiori not boundary amenable [31].

Problem: Does uniform embeddability into a Hilbert space implies boundary ame-
nability ?

The Thompson group F is uniformly embeddable into a Hilbert space [25], but
at the time of writing, it is an open question whether this group is boundary
amenable.
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5.3. Amenable actions on universal compactifications. Let Γ be a discrete
group acting on an infinite countable set D. This action extends to an action on
the Stone-Čech compactification βD. We denote by ∂βD the corona βD \ D. It
is very useful to have criteria ensuring that Γ y ∂βD is an amenable action. A
necessary condition is of course the exactness of Γ.

Proposition 5.11 (Ozawa, [53]). Let Γ y D as above and let αD be the induced
unitary representation in ℓ2(D). The following conditions are equivalent:

(1) there exists a map x 7→ ξx from D into the unit sphere of ℓ2(Γ) such that

∀s ∈ Γ, lim
x→∞

‖sξx − ξsx‖2 = 0;

(2) there exists an isometry U : ℓ2(D) → ℓ2(Γ) such that

∀s ∈ Γ, U∗λ(s)U − αD(s) ∈ K(ℓ2(D));

(3) there exists a completely positive map Φ : C∗
λ(Γ) → B(ℓ2(D)) such that

∀s ∈ Γ, Φ(λ(s)) − αD(s) ∈ K(ℓ2(D)).

Proof. (1) ⇒ (3). Assume the existence of ξ. We define an isometry V and
operators T (s), s ∈ Γ, from ℓ2(D) into ℓ2(Γ) ⊗ ℓ2(D) by

∀x ∈ D, V (δx) = ξx ⊗ δx,

T (s) =
(
λ(s) ⊗ αD(s)

)
V − V αD(s).

We have
T (s)δx = (sξx − ξsx) ⊗ δsx

Since T (s)∗T (s)δx = ‖sξx − ξsx‖
2
2δx and limx→∞ ‖sξx − ξsx‖2 = 0, we see that

T (s) is a compact operator.
If we define the unitary operator W on ℓ2(Γ) ⊗ ℓ2(D) by WF (t, x) = f(t, tx),

we have
W

(
λ(s) ⊗ αD(s)

)
W ∗ = λ(s) ⊗ Idℓ2(D).

For a ∈ C∗
λ(Γ) we set Φ(a) = V ∗W ∗(a⊗ Idℓ2(D))WV . Obviously, Φ is a u.c.p. map

satisfying the required condition.
(3) ⇒ (2). Let Φ be a u.c.p. map as in (3). Observe that C∗

λ(Γ)∩K(ℓ2(Γ)) = {0}.
Indeed, otherwise there would exist a non-zero finite rank projection in C∗

λ(Γ), and
also such a projection in the C∗-algebra C∗

ρ(Γ) of the right regular representation.
Therefore λ would have a finite dimensional invariant subspace, in contradiction
with the fact that Γ is infinite.

Now the conclusion is a consequence of the following result of Voiculescu.

Theorem 5.12 (Voiculescu, [71]). Let H and K be two Hilbert spaces, and Φ
be a u.c.p. map from a separable C∗-subalgebra A of B(H) into B(K) such that
Φ(A∩K(H)) = 0. There exists an isometry U : K → H such that Φ(a)−U∗aU ∈
K(ℓ2(D)) for every a ∈ A.
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For a proof, we refer to [17, Th. II.5.3]. In fact Voiculescu’s result is stronger:
it asserts the existence of a sequence (Un) of isometries from H into K such that
Φ(a) − U∗

naUn ∈ K(ℓ2(D)) for every n and a ∈ A, and limn ‖Φ(a) − U∗
naUn‖ = 0

for all a.

(2) ⇒ (1). We set ξx = Uδx. Then we have

‖sξx − ξsx‖
2
2 = ‖λ(s)Uδx − Uδsx‖

2
2

= 2(1 − Re〈U∗λ(s)Uδx, δsx〉) = 2Re〈kδx, δsx〉,

where k = αD(s) − U∗λ(s)U ∈ K(ℓ2(D)). It follows that limx→∞ ‖sξx − ξsx‖2 =
0. �

In the sequel Q will be the canonical homomorphism from B(ℓ2(Γ)) onto the
Calkin algebra Q(ℓ2(D)) = B(ℓ2(D))/K(ℓ2(D)).

Proposition 5.13 (Ozawa, [53], Prop. 4.1). Let Γ and D as above. The following
conditions are equivalent:

(1) The action Γ y ∂βD is amenable.
(2) Γ is exact and there exists a nuclear homomorphism κ : C∗

λ(Γ) → Q(ℓ2(D))
such that κ(λ(s)) = Q(αD(s)) for all s ∈ Γ.

(3) Γ is exact and there exists a map x 7→ ξx from D into the unit sphere of
ℓ2(Γ) such that

∀s ∈ Γ, lim
x→∞

‖sξx − ξsx‖2 = 0.

Proof. (3) ⇒ (1). Setting µx = |ξx|
2, we have

∀s ∈ Γ, lim
x→∞

‖sµx − µsx‖1 = 0. (5.1)

We extend µ to a continuous map from βD into the state space SΓ of ℓ∞(Γ), and
we denote by µ̃ its restriction to ∂βD. This map is Γ-equivariant, as a consequence
of (5.1). Since Γ is exact, the action Γ y SΓ is amenable by Lemma 5.8. It follows
that Γ y ∂βD is also amenable, because any a.i.c.m. for Γ y SΓ may be lifted to
an a.i.c.m. for Γ y ∂βD, via µ̃.

(1) ⇒ (2). Assume that Γ y ∂βD is an amenable action. Since ∂βD is compact,
the group Γ is exact. Observe first that C(∂βD) ⋊ Γ = C(∂βD) ⋊r Γ and that it
is a nuclear C∗-algebra. We define a covariant representation (π, θ) of Γ y ∂βD
into Q(ℓ2(D)) as follows. For f ∈ ℓ∞(D) = C(βD), let mf be the operator of
multiplication by f into ℓ2(D). Then π([f ]) is Q(mf ), where [f ] is the class of f

in C(∂βD) = ℓ∞(D)/c0(D). We set θ = Q ◦ αD. The universal property of the
full crossed product gives a homomorphism from C(∂βD) ⋊ Γ into Q(ℓ2(D)) and,
by restriction, since the full and reduced crossed products are the same here, a
homomorphism κ from C∗

λ(Γ) into Q(ℓ2(D)). This homomorphism κ is nuclear
since the crossed product is nuclear and moreover κ(λ(s)) = θ(s) = Q(αD(s)).
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(2) ⇒ (3). Given κ as in the statement, the Choi-Effros lifting theorem for u.c.p.
nuclear maps ([11, Th. 3.10], or [73, §6.3] for a short proof) implies the existence
of a u.c.p. map Φ from C∗

λ(Γ) into B(ℓ2(Γ)) such that Q ◦Φ = κ. We conclude by
observing that Φ satisfies condition (3) of Proposition 5.11. �

6. The Akemann-Ostrand property (AO) and related notions

We have seen in section 2 that

(λ · ρ)r : C∗
λ(Γ) ⊗max C

∗
λ(Γ) → B(ℓ2(Γ))

defined by

(λ · ρ)r(
∑

ai ⊗ bi) =
∑

aiJ̌biJ̌

passes to quotient through C∗
λ(Γ)⊗minC

∗
λ(Γ) if and only if Γ is amenable. However,

for free groups, Akemann and Ostrand have discovered in [2] the following very
striking property: the homomorphism

∑
ai ⊗ bi 7→ Q(

∑
aiJ̌biJ̌)

from C∗
λ(F2) ⊙ C∗

λ(F2) into the Calkin algebra Q(ℓ2(F2)) is continuous for the
minimal tensor norm.

Definition 6.1. We say that a discrete group Γ has the Akemann-Ostrand property
(AO) if

∑
ai⊗ bi 7→ Q(

∑
aiJ̌biJ̌) from C∗

λ(Γ)⊙C∗
λ(Γ) into Q(ℓ2(Γ)) is continuous

for the minimal tensor norm. Hence there is a homomorphism κ which makes the
following diagram commutative (where Pr is the canonical surjection):

C∗
λ(Γ) ⊗max C

∗
λ(Γ)

Pr

��

(λ·ρ)r
// B(ℓ2(Γ))

Q

��

C∗
λ(Γ) ⊗min C

∗
λ(Γ)

κ
// Q(ℓ2(Γ))

Amenable actions on appropriate boundaries are very useful tools to establish
the (AO) property. We now introduce two boundary amenability conditions which
imply this property.

6.1. Property (S). This property was used by G. Skandalis [63] to show that
discrete subgroups of rank one connected simple Lie groups have property (AO).

We let Γ×Γ act on Γ by (s, t) ·x = sxt−1. The corresponding representation of
Γ × Γ on ℓ2(Γ) is λ · ρ.

Definition 6.2. We say that Γ has property (S) if Γ × Γ y ∂βΓ is amenable.

Proposition 6.3. Property (S) implies property (AO).

Proof. This is a particular case of Proposition 5.13, where D = Γ with the above
action of the group Γ × Γ, so that αD = λ · ρ. �
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Remark 6.4. Observe that here the homomorphism κ of definition 6.1 is nuclear.

The class of groups with property (S) is stable under free products with amal-
gamation on finite subgroups [53] but it is not stable under ordinary products.
Indeed the following proposition shows in particular that the product Γ1 × Γ2 of
an infinite group by a non-amenable group has not the Akemann-Ostrand pro-
perty. In particular we see that property (S) is strictly stronger than exactness:
for instance F2 × F2 is exact but has not property (S).

Proposition 6.5 (Skandalis, [63], Rem. 4.6). Let Γ be a discrete group with the
(AO) property. Let Γ1 be an infinite subgroup of Γ. Then its centraliser Γ2 is an
amenable group.

Proof. Let us introduce first some notation. We denote by ∆2,max the homo-
morphism from C∗(Γ2) into C∗

λ(Γ2) ⊗max C
∗
λ(Γ2) sending s onto λΓ2

(s) ⊗ λΓ2
(s).

Similarly we define ∆2,min : C∗(Γ2) → C∗
λ(Γ2) ⊗min C

∗
λ(Γ2).

Let σ2 be the representation of Γ2 into ℓ2(Γ) defined by σ2(s)ξ(t) = ξ(s−1ts).
We consider the following commutative diagram (where α, PΓ, PΓ2

, QΓ are the
canonical maps):

C∗(Γ2)

∆2,max

��

∆2,min

**TTTTTTTTTTTTTTTTT

C∗
λ(Γ2) ⊗max C

∗
λ(Γ2)

α

��

PΓ2
// C∗
λ(Γ2) ⊗min C

∗
λ(Γ2)

��

C∗
λ(Γ) ⊗max C

∗
λ(Γ)

(λ·ρ)r

��

PΓ
// C∗
λ(Γ) ⊗min C

∗
λ(Γ)

κ

��

B(ℓ2(Γ))
QΓ

// Q(ℓ2(Γ))

Assume that Γ2 is not amenable. Then, there exists x ∈ C∗(Γ2) with λΓ2
(x) = 0

and ιΓ2
(x) = 1. Since the restriction of σ2(x) to the infinite dimensional Hilbert

space ℓ2(Γ1) is the identity operator, we see that σ2(x) 6∈ K(ℓ2(Γ)). The represen-
tation ∆2,min is equivalent to a multiple of the regular representation λΓ2

by Fell
absorption principle. Thus, we have PΓ2

◦∆2,max(x) = ∆2,min(x) = 0 and therefore
PΓ ◦ α ◦ ∆2,max(x) = 0. Observe now that

σ2(x) = (λ · ρ)r ◦ α ◦ ∆2,max(x).

Set y = α ◦∆2,max(x). We have QΓ ◦ (λ · ρ)r(y) = QΓ(σ2(x)) 6= 0 on one hand and
QΓ ◦ (λ · ρ)r(y) = κ ◦ PΓ(y) = 0 on the other hand, hence the contradiction. �

Remark 6.6. As already mentioned, Skandalis has proved in [63] that discrete
subgroups of rank one connected simple Lie groups have property (S). He also
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observed that this is not true in higher rank by giving the example of SL4(Z).
One deduces from the above proposition that this group has not property (AO).

Indeed Γ1 =

(
SL2(Z) 0

0 1

)
has

(
1 0
0 SL2(Z)

)
in its centralizer.

We end this section by an observation, due to Ozawa, relating inner amenability
and property (S).

Definition 6.7. We say that a group Γ has infinite conjugacy classes (or is ICC)
if it has only infinite conjugacy classes except the trivial one.

We say that Γ is inner amenable if there exists a state m on ℓ∞(Γ) such that
m(δe) = 0 and m ◦ σ(s) = m for every s ∈ Γ, where σ(s)(f)(x) = f(s−1xs).

For example the group of all finite permutations of an infinite countable set
is amenable and ICC. Free groups of two or more generators are ICC. More
generally torsion free non-elementary15 hyperbolic groups are ICC. For more
examples we refer to [37, Cor. 12].

Proposition 6.8. Let Γ be an inner amenable ICC group satisfying the property
(S). Then Γ is amenable.

Proof. Indeed, since Γ is ICC, the state m has c0(Γ) in its kernel, and therefore
there is a probability measure ν on ∂βΓ such as ν ◦ σ(s) = ν, s ∈ Γ. Moreover,
since Γ × Γ y ∂βΓ is amenable, its restriction σ to Γ (embedded diagonally) is
still amenable. Now the conclusion follows from 5.2 (1). �

In particular, we recover the fact that torsion free non-elementary hyperbolic
groups are not inner amenable [36] since they are ICC, non-amenable with property
(S) (see Examples 6.16).

6.2. Property (H). The possibility for a group to act amenably on some specific
compact spaces may contain very useful additional informations, as we already
saw above. We now consider compactifications K of Γ such that the left action
of Γ onto itself extends to an amenable action on ∂KΓ = K \ Γ. As emphasized
by Ozawa in [55], the smaller is the compactification, the stronger is the property
inherited by Γ.

Definition 6.9. A compactification of a discrete group Γ is a compact (Hausdorff)
topological space K which contains Γ as a discrete open dense subset. The corona
K \ Γ will be denoted by ∂KΓ.

We say that the compactification is left (resp. right) equivariant if the left (resp.
right) translations on Γ extend continuously as homeomorphisms of K.

Given two compactifications K1 and K2 of Γ, we say that K1 is smaller than
K2 if the identical map of Γ extends to a continuous map from K2 onto K1.

15i.e. not almost cyclic
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The Stone-Čech compactification βΓ is the largest compactification. The small-
est one is the one-point compactification Γ̂. Both of them are left and right equi-
variant. The group Γ is exact if and only if Γ y ∂βΓ is amenable, and Γ is
amenable if and only if Γ y Γ̂ \ Γ is so.

An interesting intermediate compactification is the Higson compactification that
we describe below.

Remark 6.10. Using the Gelfand representation theorem, these definitions may
be expressed in terms of abelian C∗-algebras:

• K is a compactification of Γ if and only if

c0(Γ) ⊂ C(K) ⊂ ℓ∞(Γ) = C(βΓ).

• K is left equivariant if and only if C(K) is invariant under left translations,
that is sf ∈ C(K) for all s ∈ Γ and f ∈ C(K), where sf(x) = f(s−1x).
Similarly, K is right equivariant if and only if fs ∈ C(K) for all s ∈ Γ and
f ∈ C(K), where fs(x) = f(xs−1)

The subset of ℓ∞(Γ) consisting of all f such that f − fs ∈ c0(Γ) for s ∈ Γ is a
C∗-subalgebra containing c0(Γ) and invariant under left and right translations. So
it is of the form C(H(Γ)).

Definition 6.11. The compact space H(Γ) is called the Higson compactification
of Γ. The Higson corona is ∂HΓ = H(Γ) \ Γ.

Definition 6.12. We say that a compactification K of Γ is small at infinity if it is
left and right equivariant and if the restriction to ∂KΓ of the right action is trivial.

This means that for every net (si) in Γ such that limi si = x ∈ ∂KΓ, then
limi sit = x for every t ∈ Γ.

Remark 6.13. One easily checks that the Higson compactification H(Γ) is small
at infinity and that it is the largest one with this property.

This compactification was introduced for metric spaces by Higson in connection
with Roe’s index theorem for non-compact Riemannian manifolds. For a proper
metric space16 X, it was reformulated by Roe [61] in the following way. Given a
continuous function f : X → C and r > 0, define

Vr(f)(x) = sup {|f(y) − f(x)| : y ∈ Br(x)}.

Let Ch(X) be the space of all bounded continuous functions f : X → C such that
for each r > 0, Vr(f) goes to 0 at infinity. Then Ch(X) is a C∗-algebra containing
C0(X). Its spectrum is, by definition, the Higson compactification of X. When
X is a finitely generated group Γ, endowed with a length metric, one immediately
sees that Ch(Γ) = C(H(Γ)).

16i.e. the balls Br(x) are relatively compact
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Definition 6.14. We say that Γ has property (H) if Γ y ∂HΓ is amenable.
Equivalently, Γ has property (H) if there exists a compactification K of Γ which
is small at infinity and such that Γ y ∂KΓ is amenable.

Lemma 6.15. Property (H) implies property (S).

Proof. Let K be a small at infinity compactification of Γ such Γ y ∂KΓ is
amenable. We let Γ × Γ act on K ×K by

(s1, s2) · (k1, k2) = (s1k1s
−1
2 , s2k2s

−1
1 ).

Note that this action is amenable on ∂KΓ × ∂KΓ since, for k1, k2 ∈ ∂KΓ,

(s1, s2) · (k1, k2) = (s1k1, s2k2).

The embedding of Γ into Γ × Γ by s 7→ (s, s−1) is Γ × Γ-equivariant when Γ is
equipped with the bilateral action (s1, s2) · x = s1xs

−1
2 and Γ × Γ with the above

defined action. It provides a Γ × Γ-equivariant embedding of Γ into K ×K.

Let Γ
K×K

denote the closure of Γ into K ×K. The Γ × Γ action on Γ
K×K

\ Γ
is still amenable, being the restriction of its action on ∂KΓ × ∂KΓ.

By the universal property of the compactification βΓ we get a Γ×Γ-equivariant
commutative diagram

βΓ

q

��

Γ

77ppppppppppppppp
//
Γ
K×K

Since q sends ∂βΓ into Γ
K×K

\ Γ, we see that Γ has property (S) �

Examples 6.16. We have already mentioned that the origin of property (AO) is
the Akemann-Ostrand result stating that free groups Fn have this property. Their
proof uses explicit computations of norms in C∗

λ·ρ(Fn × Fn). Another nice way to

show this result is to observe that free groups have property (H).
Indeed, we have seen in 5.2 (3) that the action Fn y ∂Fn is amenable. Moreover

the compactification Fn ∪ ∂Fn is small at infinity since, given a sequence (xk) in
Fn such that limk xk = ω ∈ ∂Fn, then, obviously, for any t ∈ Fn we still have
limk xkt = ω.

Similarly, one shows that hyperbolic groups have property (H). Ozawa has
extended this result to the class of groups that are hyperbolic relative to a family
of amenable subgroups [54, Prop.12].

6.3. The C∗-algebra of the biregular representation. Let Γ be a discrete
group. The C∗-algebra of the biregular representation is the C∗-subalgebra of
B(ℓ2(Γ)) generated by λ(Γ)∪ρ(Γ). We denote it by C∗

λ,ρ(Γ) instead of C∗
λ·ρ(Γ×Γ).

We have
C∗
σ(Γ) ⊂ C∗

λ,ρ(Γ) ⊂ C∗(L(Γ), R(Γ))
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where C∗
σ(Γ) is the C∗-algebra generated by the conjugacy representation σ, and

C∗(L(Γ), R(Γ)) is the C∗-algebra generated by L(Γ) ∪ R(Γ). We discuss now the
position of these three algebras with respect to K(ℓ2(Γ)).

Recall first that in their study of type II1 factors [50], Murray and von Neumann
have introduced an invariant to distinguish between them, they named property
Gamma. They proved that the hyperfinite II1 factor has this property but not
L(Fn), n ≥ 2. We shall not recall Murray-von Neumann’s original definition (see
[19, p. 283]) but instead give two remarkable equivalent characterizations. In the
next theorem, part (1) was established by Connes and Sakai [14, 62], and part (2)
by Connes [15, Th. 2.1].

Let M be a type II1 factor. We provide the group Aut(M) of automorphisms
of M with the topology of pointwise convergence in norm relative to its action on
the predual M∗ of M . We denote by C∗(M,M ′) the C∗-subalgebra of B(L2(M))
generated by M and its commutant.

Theorem 6.17. M has property Gamma if and only if one of the two following
equivalent conditions hold:

(1) The subgroup of inner automorphisms is not closed in Aut(M).
(2) C∗(M,M ′) ∩ K(L2(M)) = {0}.

SinceM is a factor, the only operators commuting with C∗(M,M ′) are the scalar
ones. It follows from [20, Cor. 4.1.10] that we have either K(ℓ2(Γ)) ⊂ C∗(M,M ′)
or C∗(M,M ′) ∩ K(ℓ2(Γ)) = {0}.

The hyperfinite type II1 factor R has property Gamma and therefore

C∗(R,R′) ∩ K(ℓ2(R)) = {0}.

Note that by Remark 3.8, the C∗-algebra C∗(R,R′) and R⊗minR
′ are canonically

isomorphic. In addition, since a type II1 factor is a simple algebra (see [40, Prop.
A.3.1]) and since the minimal tensor product of two simple C∗-algebras is simple
(see [66, Cor. 4.21]), we see that C∗(R,R′) is simple.

Let us come back to the case of M = L(Γ). It is easily seen that Γ is ICC
if and only if L(Γ) is a von Neumann factor (see for instance [40, Prop. 1.4.1]).
In this situation, although L(Γ) is simple, it is not always the case for its weak*
dense C∗-subalgebra C∗

λ(Γ). The simplicity of C∗
λ(Γ) implies that Γ is ICC and

non-amenable (see [37]). Powers proved [59] that C∗
λ(Fn), n ≥ 2, is simple. This

is still true for torsion free non-elementary hyperbolic groups and for large classes
of groups appearing naturally in geometry. We refer to the survey [37].

Let Γ be an ICC amenable group. We have

C∗
λ(Γ) ⊗min C

∗
ρ(Γ) ⊂ L(Γ) ⊗min L(Γ)′ = R⊗min R

′.

After identification of C∗
ρ(Γ) with C∗

λ(Γ), and using the above remarks, the res-
triction to C∗

λ(Γ) ⊗min C
∗
ρ(Γ) of the isomorphism from R ⊗min R

′ onto C∗(R,R′)
gives:
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Proposition 6.18. Let Γ be an amenable ICC group. Then (̃λ · ρ)r is an isomor-
phism from C∗

λ(Γ) ⊗min C
∗
λ(Γ) onto C∗

λ,ρ(Γ). Moreover, C∗
λ,ρ(Γ) is not simple and

C∗
λ,ρ(Γ) ∩ K(ℓ2(Γ)) = {0}

Note that when Γ is ICC, C∗
λ,ρ(Γ) behaves as C∗(L(Γ), R(Γ)), since its commu-

tant is still reduced to the scalar operators: either C∗
λ,ρ(Γ) ∩ K(ℓ2(Γ)) = {0} or

K(ℓ2(Γ)) ⊂ C∗
λ,ρ(Γ). In their paper [2], Akemann and Ostrand proved that the

latter inclusion holds for free groups with n ≥ 2 generators. This is still true for
any ICC non-amenable group with property (AO) :

Proposition 6.19 (Skandalis, [63]). Let Γ be a non-amenable group with the
(AO) property. Then K(ℓ2(Γ)) ∩ C∗

λ,ρ(Γ) 6= {0}. If moreover Γ is ICC, then

K(ℓ2(Γ)) is an ideal of C∗
λ,ρ(Γ) and λ(s)⊗ λ(t) 7→ Q(λ(s)ρ(t)) induces an isomor-

phism κ between C∗
λ(Γ) ⊗min C

∗
λ(Γ) and C∗

λ,ρ(Γ)/K(ℓ2(Γ)).

Proof. Since Γ is not amenable, the conjugacy representation σ is not weakly
contained into the regular representation λ. Therefore there exists x ∈ C∗(Γ) such
that σ(x) 6= 0 and λ(x) = 0.

Let us consider the commutative diagram:

C∗(Γ)

∆max

��

0 // I

��

// C∗
λ(Γ) ⊗max C

∗
λ(Γ)

(λ·ρ)r

��

Pr
// C∗
λ(Γ) ⊗min C

∗
λ(Γ) //

κ

��

0

0 // K(ℓ2(Γ)) // B(ℓ2(Γ))
Q

// Q(ℓ2(Γ)) // 0

where I = kerPr.
For s ∈ Γ, we have Pr ◦ ∆max(s) = λ(s) ⊗ λ(s), and since the representation

λ⊗ λ is equivalent to a multiple of λ, we see that Pr ◦ ∆max(x) = 0.
Then

(λ · ρ)r ◦ ∆max(x) = σ(x) 6= 0 and Q ◦ σ(x) = κ ◦ Pr ◦ ∆max(x) = 0,

and therefore, σ(x) is a nonzero element in C∗
λ,ρ(Γ) ∩ K(ℓ2(Γ)).

Assuming now, in addition, that Γ is ICC, we get the inclusion K(ℓ2(Γ)) ⊂
C∗
λ,ρ(Γ). Let us show that κ : C∗

λ(Γ) ⊗min C
∗
λ(Γ) → C∗

λ,ρ(Γ)/K(ℓ2(Γ)) is injective.

Set M = L(Γ). For ai, bi ∈M , i = 1, . . . , n, define

N (
∑

ai ⊗ bi) =
∥∥∥Q(

∑
aiJ̌biJ̌

∥∥∥.

Observe that N is a C∗-norm on M ⊙M . Indeed, IM = {x ∈M ⊙M : N (x) = 0}
is an ideal of M ⊙M , and its norm closure is an ideal of M ⊗min M . But this
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C∗-algebra is simple since M is simple. Therefore IM = 0. It follows that for
ai, bi ∈ C∗

λ(Γ), i = 1, . . . , n, we have
∥∥∥
∑

ai ⊗ bi

∥∥∥
min

≤
∥∥∥Q(

∑
aiJ̌biJ̌)

∥∥∥,

and we conclude that
∑
ai ⊗ bi 7→ Q(

∑
aiJ̌biJ̌) is isometric. �

Corollary 6.20. Let Γ be a non-amenable group with property (AO), such that
C∗
λ(Γ) is simple (for instance a torsion free non-elementary hyperbolic group).

Then K(ℓ2(Γ)) is the only closed ideal of C∗
λ,ρ(Γ).

For free groups this is a result of Akemann-Ostrand [2].

Corollary 6.21. Let Γ be a non-amenable ICC group with property (AO). Then
L(Γ) does not have Murray-von Neumann property Gamma.

Proof. Combine Connes’ theorem 6.17 (2) and Proposition 6.19. �

Let us come back now to inner amenability. As for amenability, there are several
equivalent definitions of this notion (see [8, Th. 1]). Among them is the weak con-
tainment of the conjugacy representation σ into the regular one λ and the following
characterization: if Pδe denotes the rank one projection on the line generated by
δe ∈ ℓ2(Γ), then Γ is inner amenable if and only if Pδe /∈ C∗

σ(Γ). In particular, if
Γ is ICC and if L(Γ) has property Gamma, then C∗(L(Γ), R(Γ))∩K(ℓ2(Γ)) = {0}
and therefore Γ is inner amenable. An elementary proof of this fact is due to
Effros [23]. The notion of inner amenability was introduced in Effros’ paper. The
motivation was to give a characterization of property Gamma uniquely in terms of
group properties, and without the use of its associated operator algebras. However
the following question is still open:

Problem : If Γ is ICC and inner amenable, does it imply that L(Γ) has property
Gamma ?

Problem : Let Γ be ICC, non-amenable with property (AO). Can we conclude
that Γ is not inner amenable ?

We remind the reader that an ICC, non-amenable group with property (S) is
not inner amenable (Proposition 6.8). It seems difficult to find examples of groups
having property (AO) but not property (S). In view of the following proposition,
it is conceivable that every boundary amenable group with property (AO) has
property (S).

Proposition 6.22. Let Γ be an ICC group. The two following conditions are
equivalent:

(1) Γ has property (S).
(2) Γ has property (AO), and the quotient map κ is nuclear.
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Proof. For (1) ⇒ (2) see Proposition 6.3 and Remark 6.4. Let us prove the con-
verse. Since κ is injective and nuclear, we see that C∗

λ(Γ×Γ) = C∗
λ(Γ)⊗min C

∗
λ(Γ)

is exact. The conclusion follows from Propositions 5.13 applied to the group Γ×Γ
acting on D = Γ. �

7. Applications of property (AO)

Non-amenable groups with property (AO) give rise to very interesting operator
algebras. We mention below two remarkable applications due to Skandalis and
Ozawa respectively.

7.1. Non-nuclearity in K-theory. When Γ is a non-amenable group, we have
seen that the canonical map Pr : C∗

λ(Γ) ⊗max C
∗
λ(Γ) → C∗

λ(Γ) ⊗min C
∗
λ(Γ) is not

injective. If Γ if an infinite group and has Kazdhan property (T ) it is easy to find
a non-zero element in KerPr.

Recall that one of the characterizations of property (T ) is the existence of a
central projection p ∈ C∗(Γ) such that ̺(p) is the projection on the space of ̺(Γ)-
invariant vectors, for every representation ̺ (see [3, Lemma 2] or for instance [70,
Prop. 2]).

Assume that Γ has property (T ). Since ∆max : C∗(Γ) → C∗
λ⊗maxC

∗
λ is injective

(see [58, Th. 8.2]), q = ∆max(p) is a non-zero projection. On the other hand, the
representation s 7→ Pr ◦ ∆max(s), which is equivalent to a multiple of the regular
representation λ, has no non-trivial invariant vector. It follows that Pr(q) = 0.

When, in addition Γ has the Akemann-Ostrand property, then q is even non-
trivial in K-theory.

Proposition 7.1 (Skandalis, [63], Cor. 4.5). Let Γ be an infinite discrete group
with both properties (T ) and (AO). The K-theory class [q] of the above projection
q ∈ C∗

λ(Γ) ⊗max C
∗
λ(Γ) is a non-zero element of the kernel of

(Pr)∗ : K0(C
∗
λ(Γ) ⊗max C

∗
λ(Γ)) → K0(C

∗
λ(Γ) ⊗min C

∗
λ(Γ)).

In particular, the homomorphism Pr is not invertible in K-theory.

Proof. Since σ = (λ · ρ)r ◦ ∆max has the non-zero invariant vector δe, we see that
σ(p) = (λ ·ρ)r(q) 6= 0, whereas Q◦ (λ ·ρ)r(q) = κ◦Pr(q) = 0 (see the commutative
diagram introduced in the proof of proposition 6.19). It follows that (λ · ρ)r(q) is
a non-zero finite rank projection. It is still non-zero in K0(K(ℓ2(Γ)), and therefore
we also have [q] 6= 0. �

Remark 7.2. G. Skandalis proved this proposition in [63] in order to obtain
examples of C∗-algebras which are not nuclear in K-theory (see [63], Definition
3.1). Indeed, by [63, Prop. 3.5], the reduced C∗-algebra of any infinite dimensional
discrete group having properties (T ) and (AO) is not nuclear in K-theory.
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7.2. Solid von Neumann algebras. Ozawa has proved in [52] the analogue of
Proposition 6.5 for type II1 factors L(Γ) associated with ICC exact groups Γ
having the (AO) property (and in particular ICC groups with property (S)).

Definition 7.3. A von Neumann algebra M is solid if for any diffuse17 von Neu-
mann subalgebra N of L(Γ), the relative commutant N ′ ∩L(Γ) is an injective von
Neumann algebra.

Theorem 7.4 (Ozawa, [52], Th. 1). L(Γ) is solid whenever Γ is an ICC exact
group with property (AO).

As a consequence, when in addition L(Γ) is not injective (i.e. Γ is not amenable),
it follows that L(Γ) is prime, that is L(Γ) cannot by decomposed as a tensor pro-
duct of two infinite dimensional type II1 factors. This gives a wealth of examples
of prime type II1 factors, including free group factors. This latter result was first
obtained by Ge [26] as an application of free entropy.

More generally, Ozawa has defined the Akemann-Ostrand property for any type
II1 factor (and even, any finite von Neumann algebra) in such a way that L(Γ)
has this property whenever Γ is exact and has the (AO) property. He proved that
such finite von Neumann algebras are solid.
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l’Enseignement Mathématiques 36, Geneva 2000.

[7] C. Anantharaman-Delaroche: Amenability and exactness for dynamical systems and their

C∗-algebras, Trans. Amer. Math. Soc., 354 (2002), 4153-4178 (extended version of [5]).
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