Power of double-sampling tests for general linear hypotheses
Résumé
In this paper, testing procedures based on double-sampling are proposed that yield gains in terms of power for the tests of General Linear Hypotheses. The distribution of a test statistic, involving both the measurements of the outcome on the smaller sample and of the covariates on the wider sample, is first derived. Then, approximations are provided in order to allow for a formal comparison between the powers of double-sampling and single-sampling strategies. Furthermore, it is shown how to allocate the measurements of the outcome and the covariates in order to maximize the power of the tests for a given experimental cost.