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Energy decay for solutions of the wave equation with general memory boundary conditions

We consider the wave equation in a smooth domain subject to Dirichlet boundary conditions on one part of the boundary and dissipative boundary conditions of memory-delay type on the remainder part of the boundary, where a general borelian measure is involved. Under quite weak assumptions on this measure, using the multiplier method and a standard integral inequality we show the exponential stability of the system. Some examples of measures satisfying our hypotheses are given, recovering and extending some of the results from the literature.

Introduction

We consider the wave equation subject to Dirichlet boundary conditions on one part of the boundary and dissipative boundary conditions of memory-delay type on the remainder part of the boundary. More precisely, let Ω be a bounded open connected set of R n (n ≥ 2) such that, in the sense of Nečas ([8]), its boundary ∂Ω is of class C 2 . Throughout the paper, I denotes the n × n identity matrix, while A s denotes the symmetric part of a matrix A. Let m be a C 1 vector field on Ω such that

inf Ω div(m) > sup Ω (div(m) -2λ m ) (1) 
where λ m (x) is the smallest eigenvalue function of the real symmetric matrix ∇m(x) s .

Remark 1

The set of all C 1 vector fields on Ω such that [START_REF] Aasila | Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[END_REF] holds is an open cone. If m is in this set, we denote

c(m) = 1 2 inf Ω div(m) -sup Ω (div(m) -2λ m ) .
Example 1

• An affine example is given by

m(x) = (A 1 + A 2 )(x -x 0 ),
where A 1 is a definite positive matrix, A 2 a skew-symmetric matrix and x 0 any point in R n .

• A non linear example is

m(x) = (dI + A)(x -x 0 ) + F (x)
where d > 0, A is a skew-symmetric matrix, x 0 any point in R n and F is a C 1 vector field on Ω such that sup

x∈ Ω (∇F (x)) s < d n ( • stands for the usual 2-norm of matrices).

We define a partition of ∂Ω in the following way. Denoting by ν(x) the normal unit vector pointing outward of Ω at a point x ∈ ∂Ω , we consider a partition (∂Ω N , ∂Ω D ) of the boundary such that the measure of ∂Ω D is positive and that

∂Ω N ⊂ {x ∈ ∂Ω, m(x) • ν(x) 0}, ∂Ω D ⊂ {x ∈ ∂Ω, m(x) • ν(x) 0}.
(2)

Furthermore, we assume

∂Ω D ∩ ∂Ω N = ∅ or m • n ≤ 0 on ∂Ω D ∩ ∂Ω N (3) 
where n stands for the normal unit vector pointing outward of ∂Ω N when considering ∂Ω N as a submanifold of ∂Ω.

On this domain, we consider the following delayed wave problem:

(S)

             u ′′ -∆u = 0 u = 0 ∂ ν u + m • ν µ 0 u ′ (t) + t 0 u ′ (t -s)dµ(s) = 0 u(0) = u 0 u ′ (0) = u 1 in R * + × Ω , on R * + × ∂Ω D , on R * + × ∂Ω N , in Ω , in Ω ,
where u ′ (resp. u ′′ ) is the first (resp. second) time-derivative of u, ∂ ν u = ∇u • ν is the normal outward derivative of u on ∂Ω. Moreover µ 0 is some positive constant and µ is a borelian measure on R + .

The above problem covers the case of a problem with memory type as studied for instance in [START_REF] Aasila | Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[END_REF][START_REF] Cavalcanti | General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type[END_REF][START_REF] Guesmia | Stabilisation de l'équation des ondes avec conditions aux limites de type mémoire[END_REF][START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF], when the measure µ is given by dµ(s) = k(s)ds,

where ds stands for the Lebesgue measure and k is non negative kernel. But it also covers the case of a problem with a delay as studied for instance in [START_REF] Nicaise | Stability and unstability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks[END_REF], when the measure µ is given by

µ = µ 1 δ τ , (5) 
where µ 1 is a non negative constant and τ > 0 represents the delay. An intermediate case treated in [START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF] is the case when

dµ(s) = k(s)χ [τ1,τ2] (s)ds, (6) 
where 0

≤ τ 1 < τ 2 , χ [τ1,τ2] is the characteristic equation of the interval [τ 1 , τ 2 ] and k is a non negative function in L ∞ ([τ 1 , τ 2 ]).
A closer look at the decay results obtained in these references shows that there are different ways to quantify the energy of (S). More precisely for the measure of the form (4), the exponential or polynomial decay of an appropriated energy is proved in [START_REF] Aasila | Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[END_REF][START_REF] Cavalcanti | General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type[END_REF][START_REF] Guesmia | Stabilisation de l'équation des ondes avec conditions aux limites de type mémoire[END_REF][START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF], by combining the multiplier method (or differential geometry arguments) with the use of suitable Lyapounov functionals (or integral inequalities) under the assumptions that the kernel k is sufficiently smooth and has a certain decay at infinity. On the other hand for a measure of delay type like [START_REF] Guesmia | Stabilisation de l'équation des ondes avec conditions aux limites de type mémoire[END_REF] or [START_REF] Komornik | Exact controllability and stabilization ; the multiplier method[END_REF], the exponential stability of the system was proved in [START_REF] Nicaise | Stability and unstability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks[END_REF] by proving an observability estimate obtained by assuming that the term t 0 u ′ (ts)dµ(s) is sufficiently small with respect to µ 0 u ′ (t). Consequently, our goal is here to obtain some uniform decay results in the general context described above with a similar assumptions than in [START_REF] Nicaise | Stability and unstability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks[END_REF]. More precisely, we will show in this paper that if there exists α > 0 such that

µ tot := +∞ 0 e αs d|µ|(s) < µ 0 ( 7 
)
where |µ| is the absolute value of the measure µ, then the above problem (S) is exponentially stable. The paper is organized as follows: in the first two sections, we explain how to define an energy using some basic measure theory. Using well-known results, we obtain the existence of energy solutions. In this setting we present and prove our stabilization result in the third section. Examples of measures µ satisfying our hypotheses are given in the end of the paper, where we show that we recover and extend some of the results from the references cited above.

Finally in the whole paper we use the notation A B for the estimate A ≤ CB with some constant C that only depends on Ω, m or µ.

First results

In this section we show that the assumption [START_REF] Lasiecka | Inverse/observability estimates for second order hyperbolic equations with variable coefficients[END_REF] implies the existence of some borelian finite measure λ such that

λ(R + ) < µ 0 , |µ| ≤ λ (8) 
(in the sense that, for every measurable set B, |µ|(B) ≤ λ(B)) and for all measurable set B,

B λ([s, +∞))ds ≤ α -1 λ(B) (9) 
Indeed we show the following equivalence:

Proposition 1 Let µ be a borelian positive measure on R + and µ 0 some positive constant. The following properties are equivalent:

• ∃α > 0 such that +∞ 0 e αs dµ(s) < µ 0 .

• There exists a borelian measure λ on R + such that λ(R + ) < µ 0 , µ ≤ λ and, for some constant β > 0, for all measurable set B,

B λ([s, +∞))ds ≤ β -1 λ(B).
Proof We introduce the application T from the set of positive borelian measures into itself as follows: if µ is some positive borelian measure, we define a positive borelian measure T (µ) by

T (µ)(B) = B µ([s, +∞))ds,
if B is any measurable set. (⇐) If λ fulfills the second property, then it immediately follows that

∀n ∈ N, β n T n (µ) ≤ λ,
where as usual T n is the composition

T • T • • • • T n-times. A summation consequently gives, for any r ∈ (0, 1), ∞ n=0 (rβ) n T n (µ) ≤ ∞ n=0 r n λ = (1 -r) -1 λ.
Using Fubini theorem, we can now compute

T n (µ)(R + ) = +∞ 0 +∞ sn+1 • • • +∞ s3 +∞ s2 dµ(s 1 ) ds 2 • • • ds n ds n+1 = +∞ 0 s1 0 • • • sn 0 ds n+1 • • • ds 2 dµ(s 1 ) = +∞ 0 s n 1 n! dµ(s 1 )
so that, using monotone convergence theorem, one can obtain +∞ 0 e rβs dµ(s) ≤ (1r) -1 λ(R + ) and our proof ends using that (1r) -1 λ(R + ) < µ 0 for sufficiently small r.

(⇒) For any measurable set B, we define

λ(B) = ∞ n=0 α n T n (µ)(B).
It is clear that λ is a borelian measure such that µ ≤ λ. Moreover, if B is a measurable set, one has, thanks to monotone convergence theorem

T (λ)(B) = B λ([s, +∞))ds = ∞ n=0 α n B T n (µ)([s, +∞))ds ≤ α -1 ∞ n=0 α n+1 T n+1 (µ)(B), that is, T (λ) ≤ α -1 λ.
Finally, another use of monotone convergence theorem gives

λ(R + ) = +∞ 0 e αs dµ(s) < µ 0 .
Remark 2

• If µ satisfies our first property, one can choose β = α in our second property.

• If µ is supported in (0, τ ], it is straightforward to see that, for some small enough constant c, dλ(s) = dµ(s) + c χ [0,τ ] (s)ds fulfills [START_REF] Lasiecka | Inverse/observability estimates for second order hyperbolic equations with variable coefficients[END_REF]. This observation allows us to recover the choices of energy in [START_REF] Nicaise | Stability and unstability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF].

In the sequel, we can thus consider the measure λ obtained by the application of Proposition 1 to |µ|.

2 Well-posedness

General results

Defining

H 1 D (Ω) := {u ∈ H 1 (Ω); u = 0 on ∂Ω D } and H 1 0 (Ω) := {u ∈ H 1 (Ω); u = 0 on ∂Ω},
we here present an application of Theorem 4.4 of Propst and Prüss paper (see [START_REF] Propst | On wave equations with boundary dissipation of memory type[END_REF]) in the framework of hypothesis (3).

Theorem 1 Suppose u 0 ∈ H 1 D (Ω), u 1 ∈ L 2 (Ω). Then (S) admits a unique solution u ∈ C(R + , H 1 (Ω)) ∩ C 1 (R + , L 2 (Ω)) in the weak sense of Propst and Prüss. Moreover, if u 0 ∈ H 2 (Ω) ∩ H 1 D (Ω), u 1 ∈ H 1 0 (Ω), then u ∈ C 1 (R + , H 1 (Ω)) ∩ C 2 (R + , L 2 (Ω)) and the additional results hold ∀t ≥ 0, ∆u(t) ∈ L 2 (Ω) ∂ ν u(t) |∂ΩN ∈ H 1/2 (∂Ω N ).
Proof The proof is the one proposed in [START_REF] Propst | On wave equations with boundary dissipation of memory type[END_REF], Theorem 4.4 except that, for smoother data, we can not use elliptic result in the general context of (3) to get more regularity.

Inspired by [START_REF] Nicaise | Stability and unstability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF], we now define the energy of the solution of (S) at any positive time t by the following formula:

E(t) = 1 2 Ω (u ′ (t, x)) 2 + |∇u(t, x)| 2 dx + 1 2 ∂ΩN m • ν t 0 s 0 (u ′ (t -r, x)) 2 dr dλ(s)dσ + 1 2 ∂ΩN m • ν ∞ t s 0 (u ′ (s -r, x)) 2 dr dλ(s)dσ.
Remark 3

• In the definition of energy, the measure λ can be replaced by any positive borelian measure ν such that ν ≤ λ such as, for instance, |µ|. In fact, we will see later that conditions ( 8) and ( 9) are only here to ensure that the corresponding energy E λ is non increasing, but the decay of another energy E ν is implied by the decay of E λ .

• If µ is compactly supported in [0, τ ], for times greater than τ , one can recover the energies from [START_REF] Nicaise | Stability and unstability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF] by choosing the measure λ supported in [0, τ ] given by Remark 2. Indeed, the last term in the energy is null for t > τ , and the second term is reduced to

1 2 ∂ΩN m • ν τ 0 s 0 (u ′ (t -r, x)) 2 dr dλ(s)dσ.
We now identify our energy space.

Proposition 2 If u 0 ∈ H 2 (Ω) ∩ H 1 D (Ω), u 1 ∈ H 1 0 (Ω), then u ′ ∈ L ∞ (R + , H 1 (Ω)).
Consequently, for such initial conditions, the energy E(t) is well defined for any t > 0 and it uniformly depends continuously on the initial data.

Proof Let us first pick some solution of (S) with

u 0 ∈ H 2 (Ω) ∩ H 1 D (Ω), u 1 ∈ H 1 D (Ω).
We define the standard energy as

E 0 (t) = 1 2 Ω (u ′ (t, x)) 2 + |∇u(t, x)| 2 dx.
As in [START_REF] Komornik | Exact controllability and stabilization ; the multiplier method[END_REF], it is classical that

E 0 (0) -E 0 (T ) = - T 0 ∂ΩN ∂ ν uu ′ dσdt.
Using the form of our boundary condition and Young inequality, one gets, for any ǫ > 0,

E 0 (0) -E 0 (T ) = T 0 ∂ΩN (m • ν) µ 0 u ′ (t) 2 + u ′ (t) t 0 u ′ (t -s)dµ(s) dσdt ≥ T 0 ∂ΩN (m • ν) µ 0 - ǫ 2 u ′ (t) 2 - 1 2ǫ t 0 u ′ (t -s)dµ(s) 2 dσ
Using that µ ≤ |µ| and Cauchy-Schwarz inequality consequently give us

E 0 (0) -E 0 (T ) ≥ ∂ΩN (m • ν) µ 0 - ǫ 2 T 0 u ′ (t) 2 dt - µ tot 2ǫ T 0 t 0 (u ′ (t -s)) 2 d|µ|(s) dσ.
Using now Fubini theorem two times, one can obtain the following identities

T 0 t 0 (u ′ (t -s)) 2 d|µ|(s)dt = T 0 T s u ′ (t -s) 2 dt d|µ|(s) = T 0 T -s 0 u ′ (t) 2 dt d|µ|(s) = T 0 T -t 0 d|µ|(s) u ′ (t) 2 dt so that, using |µ|([0, T -t]) ≤ µ 0 , E 0 (0) -E 0 (T ) ≥ ∂ΩN (m • ν) µ 0 - ǫ 2 - µ 2 tot 2ǫ T 0 u ′ (t) 2 dt dσ.
The choice of ǫ = µ tot finally gives us that E 0 (T ) is bounded. Using the density of

H 2 (Ω)∩H 1 D (Ω)×H 1 D (Ω) in H 1 D (Ω) × L 2 (Ω),
we get the boundedness of E 0 for solutions with initial data

u 0 ∈ H 1 D (Ω), u 1 ∈ L 2 (Ω). In particular, if u 0 ∈ H 1 D (Ω), u 1 ∈ L 2 (Ω), we obtain that u ∈ L ∞ (R + , H 1 (Ω)). Let now u be a solution of (S) with u 0 ∈ H 2 (Ω) ∩ H 1 D (Ω), u 1 ∈ H 1 0 (Ω).
Using Theorem 1, one can define the limit in L 2 (Ω) u 2 of u ′′ (t) as t → 0 and in this situation, as in [START_REF] Propst | On wave equations with boundary dissipation of memory type[END_REF], it is easy to see that u ′ is solution of (S) with initial data u 1 ∈ H 1 D (Ω) and u 2 ∈ L 2 (Ω). Indeed, one can see that Fubini's theorem gives

t 0 u ′ (t -s)dµ(s) = t 0 s 0 u ′′ (s -r)dµ(r) ds, provided u 1 = 0 on ∂Ω N , so that d dt t 0 u ′ (t -s)dµ(s) = t 0 u ′′ (t -s)dµ(s).
Using the proof above, one concludes that u ′ ∈ L ∞ (R + , H 1 (Ω)) which, thanks to a classical trace result, give that u ′ ∈ L ∞ (R + , L 2 (∂Ω)).

The first three terms of the energy E(t) are consequently defined for any time t > 0. We only need to take a look at the last one to achieve our result. Using Fubini theorem again, one has

+∞ t s 0 (u ′ (t -r)) 2 dr dλ(s) = +∞ 0 u ′ (r) 2 +∞ max(r,t)
dλ(s) dr so that, using [START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF],

∂ΩN m • ν ∞ t s 0 (u ′ (s -r, x)) 2 dr dλ(s)dσ ≤ m ∞ u ′ L ∞ (L 2 (∂Ω)) +∞ 0 λ([r, +∞))dr ≤ α -1 m ∞ λ(R + ) u ′ L ∞ (L 2 (∂Ω)) .

Compactly supported measure and semigroup approach

In this second approach, we assume that µ is supported in [0, τ ] and that ∂Ω D ∩ ∂Ω N = ∅. We here simply follow the result obtained by Nicaise-Pignotti ( [START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF]). First, observe that, for t > τ , (S) is reduced to

           u ′′ -∆u = 0 u = 0 ∂ ν u + m • ν µ 0 u ′ (t) + τ 0 u ′ (t -s)dµ(s) = 0 u(0) = u 0 u ′ (0) = u 1 in (τ, +∞) × Ω , on (τ, +∞) × ∂Ω D , on (τ, +∞) × ∂Ω N , in Ω , in Ω .
We define X τ = L 2 (∂Ω N × (0, 1) × (0, τ ), dσdρsdµ(s))) and Y τ = L 2 (∂Ω N × (0, τ ); H 1 (0, 1), dσsdµ(s)). One can use the same strategy as in the proof of Theorem 2.1 in [START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF] to get

Theorem 2 • If u(τ ) ∈ H 1 D (Ω), u ′ (τ ) ∈ L 2 (Ω) and u ′ (τ -ρs, x) ∈ X τ , (S) has a unique solution u ∈ C([τ, +∞), H 1 D (Ω)) ∩ C 1 ([τ, +∞), L 2 (Ω)). Moreover, if u(τ ) ∈ H 2 (Ω) ∩ H 1 D (Ω), u ′ (τ ) ∈ H 1 (Ω) and u ′ (τ -ρs, x) ∈ Y τ , then u ∈ C 1 ([τ, +∞), H 1 D (Ω)) ∩ C([τ, +∞), H 2 (Ω)); t → su ′′ (t -ρs, x) ∈ C([τ, +∞), X τ ). • If (u n τ (x), v n τ (x), g n (s, ρ, x)) → (u(τ, x), u ′ (τ, x), u ′ (τ -ρs, x)) in H 1 D (Ω) × L 2 (Ω) × X τ , then the solution u n of                u ′′ -∆u = 0 u = 0 ∂ ν u + m • ν µ 0 u ′ (t) + τ 0 u ′ (t -s)dµ(s) = 0 u(τ ) = u n τ u ′ (τ ) = u n τ u ′ (x, τ -ρs) = g n (x, s, ρ) in (τ, +∞) × Ω , on (τ, +∞) × ∂Ω D , on (τ, +∞) × ∂Ω N , in Ω , in Ω , in Ω N × (0, τ ) × (0, 1)
is such that E(u n ) converges uniformly with respect to time towards E(u).

Proof We define z(x, ρ, s, t) = u ′ (t -ρs, x) for x ∈ ∂Ω N , t > τ , s ∈ (0, τ ), ρ ∈ (0, 1). Problem (S) is then equivalent to u ′′ -∆u = 0 sz t (x, ρ, s, t) + z ρ (x, ρ, s, t) = 0 u = 0 ∂ ν u + m • ν(µ 0 u ′ (t) + τ 0 u ′ (t -s)dµ(s)) = 0 u(τ ) = u(τ ) u ′ (τ ) = u(τ ) z(x, 0, t, s) = u ′ (t, x) z(x, ρ, τ, s) = f 0 (x, ρ, s) in (τ, +∞) × Ω , in ∂Ω N × (0, 1) × (0, τ ) × (τ, +∞), on (τ, +∞) × ∂Ω D , on (τ, +∞) × ∂Ω N , in Ω , in Ω , on ∂Ω N × (τ, +∞) × (0, τ ), on ∂Ω N × (0, 1) × (0, τ ),
where f 0 (x, ρ, s) = u ′ (τρs, x). Consequently, (S) can be rewritten as

U ′ = AU U (τ ) = (u(τ ), u ′ (τ ), f 0 ) T
where the operator is defined by

A   u v z   =   v ∆u -s -1 z ρ   with domain D(A) = { (u, v, z) T ∈ H 1 D (Ω) × L 2 (Ω) × Y τ ; ∆u ∈ L 2 (Ω), ∂ ν u(x) = -(m • ν) µ 0 v(t) + τ 0 z(x, 1, s)dµ(s) on ∂Ω N , v(x) = z(x, 0, s) on ∂Ω N × (0, τ ) } .
The proof of Theorem 2.1 in [START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF] shows us that A is a maximal monotone operator on the Hilbert space H := H 1 D (Ω) × L 2 (Ω) × X τ endowed with the product topology. It consequently generates a contraction semigroup on H. Moreover, if (u(τ, x), u ′ (τ, x), u ′ (τρs, x)) ∈ D(A), one gets that

u ∈ C 1 ([τ, +∞), H 1 D (Ω)) ∩ C([τ, +∞), H 2 (Ω)); t → su ′′ (t -ρs, x) ∈ C([τ, +∞), X τ ).
This ends the proof.

We can consequently deduce another way to obtain solutions:

Corollary 1 Suppose that u 0 ∈ H 2 (Ω) ∩ H 1 D (Ω), u 1 ∈ H 1 0 (Ω), then (S) has a unique solution u ∈ C([τ, +∞), H 1 D (Ω)) ∩ C 1 ([τ, +∞), L 2 (Ω)).
Proof Thanks to Theorem 1, one only needs to check that if u ∈ C 1 ([0, τ ], H 1 D (Ω)) then u ′ (x, τ -ρs) ∈ X τ ; and this is straightforward using Fubini theorem.

Linear stabilization

We begin with a classical elementary result due to Komornik [6]:

Lemma 1 Let E : [0, +∞[→ R + be a non-decreasing function that fulfils: ∀t ≥ 0, ∞ t E(s)ds ≤ T E(t),
for some T > 0. Then, one has: ∀t T, E(t) ≤ E(0) exp 1 -t T .

We will now show the following stabilization result:

Theorem 3 Assume ( 1)- [START_REF] Lasiecka | Inverse/observability estimates for second order hyperbolic equations with variable coefficients[END_REF]. Then, if

u 0 ∈ H 2 (Ω) ∩ H 1 D (Ω), u 1 ∈ H 1 0 (Ω)
, there exists T > 0 such that the energy E(t) of the solution u of (S) satisfies:

∀t T, E(t) ≤ E(0) exp 1 - t T .
Proof Our goal is to perform the multiplier method and to deal with the delay terms to show that one can apply Lemma 1 to the energy.

Lemma 2 There exists C > 0, such that, for any solution u of (S) and any S ≤ T ,

E(S) -E(T ) C T S ∂ΩN (m • ν) (u ′ (t)) 2 + t 0 (u ′ (t -s)) 2 dλ(s) dσdt.
In particular, the energy is a non-increasing function of time.

Proof We start from the classical result that

E 0 (S) -E 0 (T ) = - T S ∂Ω ∂ ν uu ′ dσdt.
As above, one gets, for any ǫ > 0,

E 0 (S) -E 0 (T ) ≥ T S ∂ΩN (m • ν) µ 0 - ǫ 2 u ′ (t) 2 - µ tot 2ǫ T 0 t 0 (u ′ (t -s)) 2 d|µ|(s) dσdt
We will now split E -E 0 in two terms:

[E -E 0 ] T S = - 1 2 ∂ΩN (m • ν)[f (t, x) -g(t, x)] T S dσ ,
where

f (t, x) = t 0 s 0 (u ′ (t -r)) 2 dr dλ(s), g(t, x) = t 0 s 0 u ′ (r) 2 dr dλ(s).
A change of variable allows us to get

f (t, x) = t 0 t 0 u ′ (r) 2 drdλ(s) - t 0 t-s 0 u ′ (r) 2 drdλ(s).
An application of Fubini theorem consequently gives us

f (t, x) -g(t, x) = t 0 u ′ (r) 2 λ([0, r])dr - t 0 t-s 0 u ′ (r) 2 drdλ(s)
and, as above, one can use Fubini theorem to deduce that

T S t 0 (u ′ (t -s)) 2 dλ(s)dt = t 0 t-s 0 u ′ (r) 2 drdλ(s) T S . One now uses λ([0, r]) λ(R + ) to conclude that [E -E 0 ] T S ≥ 1 2 T S ∂ΩN m • ν t 0 (u ′ (t -s)) 2 dλ(s) -λ(R + )u ′ (t) 2 dσdt.
Summing up and using that |µ| ≤ λ, we have obtained that

E(S) -E(T ) T S ∂ΩN (m • ν) µ 0 - λ(R + ) + ǫ 2 u ′ (t) 2 + 1 2 1 - µ tot ǫ t 0 (u ′ (t -s)) 2 dλ(s) dσdt.
We finally chose ǫ = µ 0 which gives us our result since λ(R + ) < µ 0 .

In the multiplier method, one may use Rellich's relation, especially in the context of singularities. In our framework (3), the following Rellich inequality (see the proof of Theorem 4 in [START_REF] Cornilleau | Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers[END_REF] or Proposition 4 in [START_REF] Bey | Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation[END_REF]) is useful

Proposition 3 For any u ∈ H 1 (Ω) such that ∆u ∈ L 2 (Ω), u |∂ΩD ∈ H 3 2 (∂Ω D ) and ∂ ν u |∂ΩN ∈ H 1 2 (∂Ω N ). Then it satisfies 2∂ ν u(m.∇u) -(m • ν)|∇u| 2 ∈ L 1 (

∂Ω) and we have the following inequality

2 Ω △u(m.∇u)dx ≤ Ω (div(m)I -2(∇m) s )(∇u, ∇u)dx + ∂Ω (2∂ ν u(m.∇u) -(m • ν)|∇u| 2 )dσ.
With this result, we can prove the following multiplier estimate:

Lemma 3 Let M u = 2m.∇u + a 0 u, where a 0 := 1 2 (inf Ω div(m)) + supΩ (div(m) -2λ m ) .
Then under the assumptions of Theorem 3, the following inequality holds true:

c(m) T S Ω (u ′ ) 2 + |∇u| 2 dxdt ≤ -[ Ω u ′ M u] T S + T S ∂ΩN M u∂ ν u + (m • ν)((u ′ ) 2 -|∇u| 2 )dσdt.
Proof Firstly, we consider M = 2m • ∇u + au where a will be fixed later. Using the fact that u is a regular solution of (S) and noting that u ′′ M u = (u ′ M u) ′u ′ M u ′ , an integration by parts gives:

0 = T S Ω (u ′′ -△u)M udxdt = Ω u ′ M udx T S - T S Ω (u ′ M u ′ + △uM u)dxdt.
Now, thanks to Proposition 3, we have :

Ω △uM udx ≤ a Ω △uudx + Ω (div(m)I -2(∇m) s )(∇u, ∇u)dx + ∂Ω (2∂ ν u(m.∇u) -(m.ν)|∇u| 2 )dσ.
Consequently, Green-Riemann formula leads to:

Ω △uM udx = Ω ((div(m) -a)I -2(∇m) s )(∇u, ∇u)dx + ∂Ω (∂ ν uM u -(m • ν)|∇u| 2 )dσ.
Using the fact that ∇u = ∂ ν uν on ∂Ω D and m • ν 0 on ∂Ω D , we have then:

Ω △uM udx ≤ Ω ((div(m) -a)I -2(∇m) s )(∇u, ∇u)dx + ∂ΩN (∂ ν uM u -(m • ν)|∇u| 2 )dσ.
On the other hand, another use of Green formula gives us: 

Ω u ′ M u ′ dx = Ω (a -div(m))(u ′ ) 2 dx + ∂ΩN (m • ν)|u ′ | 2 dσ.
∂ ν uM u + (m • ν)((u ′ ) 2 -|∇u| 2 )dσdt.
Our goal is now to find a such that div(m)a and (adiv(m))I + 2(∇m) s are uniformly minorized on Ω. One has to find a such that, uniformly on Ω,

div(m) -a ≥ c 2λ m + (a -div(m)) ≥ c (10) 
for some positive constant c. The latter condition is then equivalent to find a which fulfills

inf Ω div(m) > a > sup Ω (div(m) -2λ m ) ,
and its existence is now guaranteed by [START_REF] Aasila | Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[END_REF]. Moreover, it is straightforward to see that the greatest value of c such that [START_REF] Nicaise | Stability and unstability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] holds is

c(m) = 1 2 inf Ω div(m) -sup Ω (div(m) -2λ m )
and is obtained for a = a 0 . This ends the proof.

Consequently, the following result holds Lemma 4 For every τ ≤ S < T < ∞, the following inequality holds true:

T S Ω (u ′ ) 2 + |∇u| 2 dxdt E(S).
Proof We start from Lemma 3. First of all, Young and Poincaré inequalities give

| Ω u ′ M udx| E(t), so that - Ω u ′ M udx T S E(S) + E(T ) CE(S).
Now, from the boundary condition, one has

M u∂ ν u + (m • ν)((u ′ ) 2 -|∇u| 2 ) = (m • ν) µ 0 u ′ + t 0 u ′ (t -s)dµ(s) M u + (u ′ ) 2 -|∇u| 2 .
Using the definition of M u and Young inequality, we get for any ǫ > 0

M u∂ ν u+(m•ν)((u ′ ) 2 -|∇u| 2 ) (m•ν) 1 + m 2 ∞ + µ 2 0 a 2 0 2ǫ (u ′ ) 2 + a 2 0 2ǫ t 0 u ′ (t -s)dµ(s) 2 + ǫu 2 .
Another use of Poincaré inequality consequently allow us to choose ǫ > 0 such that

ǫ ∂ΩN (m • ν)u 2 dσ c(m) 2 Ω |∇u| 2 dx.
Cauchy-Schwarz inequality consequently leads to To conclude we need to absorb the two last integral terms for which we use the following result.

c(m) 2 T S Ω (u ′ ) 2 + |∇u| 2 dxdt E(S) + T S ∂ΩN (m • ν) u ′ (t) 2 + t 0 (u ′ (t -s)) 2 d|µ|(s) dσdt

Lemma 5

• For any solution u and any S < T ,

T S ∂ΩN m • ν t 0 s 0 (u ′ (t -r, x)) 2 dr dλ(s)dσdt T S ∂ΩN m • ν t 0 (u ′ (t -s, x)) 2 dλ(s)dσdt.
• For any solution u and any S < T ,

T S ∂ΩN m • ν +∞ t s 0 (u ′ (s -r, x)) 2 dr dλ(s)dσdt T S ∂ΩN m • ν t 0 (u ′ (t -s, x)) 2 dλ(s)dσdt + +∞ S ∂ΩN m • ν u ′2 dσdt.

Proof

• We start from the left hand side term. We fix x ∈ ∂Ω N , t ∈ [S, T ] and we use Fubini theorem to estimate integrals with respect to time:

t 0 s 0 (u ′ (t -r, x)) 2 dr dλ(s) = t 0 (u ′ (t -r, x)) 2 λ([r, t])dr ≤ t 0 (u ′ (t -r, x)) 2 λ([r, +∞))dr ≤ α -1 t 0 (u ′ (t -r, x)) 2 dλ(r)
which gives the required result after an integration with respect to t and x.

• As above, fixing x ∈ ∂Ω N , we obtain Since for all r ≤ t, λ([t, +∞) ≤ λ([r, +∞)), we first have

T S t 0 (u ′ (t -r, x)) 2 drλ([t, +∞))dt ≤ T S t 0 (u ′ (t -r, x)) 2 λ([r, +∞))drdt ≤ α -1 T S t 0 (u ′ (t -r, x)) 2 dλ(r)dt.
On the other hand, Fubini theorem gives us

T S +∞ t (u ′ (r, x)) 2 λ([r, +∞))dr dt = +∞ S u ′ (r) 2 λ([r, +∞))(min(T, r) -S)dr.
We now note that

rλ([r, +∞)) ≤ +∞ r sdλ(s) ≤ +∞ 0 sdλ(s) and +∞ 0 sdλ(s) = +∞ 0 λ([t, +∞))dt ≤ α -1 λ(R + ).
We consequently obtain Up to now, we have proven that

T S E(t)dt E(S) + T S ∂ΩN m • ν t 0 (u ′ (t -s, x)) 2 dλ(s)dσdt + +∞ S ∂ΩN m • ν u ′2 dσdt.
Lemma 2 allows us to conclude since it gives

+∞ S ∂ΩN m • ν u ′2 dσdt E(S)
and

T S ∂ΩN m • ν t 0 (u ′ (t -s, x)) 2 dλ(s)dσdt E(S).
Remark 4 In the case of some compactly supported measure µ, one can also obtain exponential decay result for the following problem

           u ′′ -∆u = 0 u = 0 ∂ ν u + µ 0 u ′ (t) + t 0 u ′ (t -s)dµ(s) = 0 u(0) = u 0 u ′ (0) = u 1 in R * + × R * + , on R * + × ∂Ω D , on R * + × ∂Ω N , in Ω , in Ω ,
as it was done in [START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF] using the work of Lasiecka-Triggiani-Yao [START_REF] Lasiecka | Inverse/observability estimates for second order hyperbolic equations with variable coefficients[END_REF] and since the system is time invariant for t ≫ 1.

Moreover, a careful attention shows that our proof allows us to obtain decay for this system without assumption on the support of µ provided that inf ∂ΩN m • ν > 0.

Examples

We start with two general results and then particularize them to recover results from the literature.

Example 2 If µ is some borelian measure such that |µ|(R + ) < µ 0 and +∞ 0 e βs d|µ|(s) < +∞ for some β > 0, then µ fulfils the assumption [START_REF] Lasiecka | Inverse/observability estimates for second order hyperbolic equations with variable coefficients[END_REF] for an appropriate α. Indeed for any 0 ≤ α ≤ β, the expression Consequently by the assumption |µ|(R + ) < µ 0 , we get [START_REF] Lasiecka | Inverse/observability estimates for second order hyperbolic equations with variable coefficients[END_REF] for α small enough. for some β > 0. Then as a consequence of Example 2, we get an exponential decay rate for the system (S) under the (very weak) condition above, in particular we do not need any differentiability assumptions on k, nor uniform exponential decay of k at infinity as in [START_REF] Aasila | Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[END_REF][START_REF] Cavalcanti | General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type[END_REF][START_REF] Guesmia | Stabilisation de l'équation des ondes avec conditions aux limites de type mémoire[END_REF][START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF]. then we get an exponential decay for the system (S) as a consequence of Example 2 because the second assumption trivially holds. In that case we extend the results of [START_REF] Nicaise | Stabilization of the wave equation with boundary or distibuted delay[END_REF] to a larger class of kernels k, for instance in the class of bounded variations functions.

Example 6 Take µ(s) = µ 1 δ τ (s),

where µ 1 is a constant and τ > 0 represents the delay satisfying

|µ 1 | < µ 0 ,
then we recover the decay results from [START_REF] Nicaise | Stability and unstability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks[END_REF].

  m)a)(u ′ ) 2 + ((adiv(m))I + 2(∇m) s )(∇u,

) 2 +

 2 and, since |µ| ≤ λ, Lemma 2 gives us the desired result: |∇u| 2 dxdt E(S).

  (sr, x) 2 dr dλ(s)dt = (r, x)) 2 λ([max(r, t), +∞])drdt = (tr, x)) 2 drλ([t, +∞))dt + T S +∞ t (u ′ (r, x)) 2 λ([r, +∞))dr dt.

  (r, x)) 2 λ([r, +∞))dr dt +∞ S u ′2 ,which give the required result after an integration over ∂Ω N .

+∞ 0 e

 0 αs d|µ|(s) is finite and by the dominated convergence Theorem of Lebesgue we have +∞ 0 e αs d|µ|(s) → |µ|(R + ) as α → 0.

Example 3 Example 4

 34 One can choose µ = ∞ i=1 µ i δ τi , where (τ i ) ∞ i=1 , (µ i ) ∞ i=1 are some families such that τ i > 0 and are two by two disjoint, and ∞ i=1 |µ i |e ατi < µ 0 for some α > 0. If we choose dµ(s) = k(s)ds where k is a kernel satisfying +∞ 0 |k(s)|ds < µ 0 and +∞ 0 |k(s)|e βs ds < ∞

Example 5

 5 Choose dµ(s) = k(s)χ [τ1,τ2] (s)ds,where k is an integrable function in [τ 1 , τ 2 ] such that τ2 τ1 |k(s)|ds < µ 0 ,