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In 1967, Ross and Strömberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G onto (G, ρ), where ρ is the right Haar measure. In this paper, we study the same kind of problem, but more generally for left actions of G onto any measured space (X, µ), which leaves the σ-finite measure µ relatively invariant, in the sense that sµ = ∆(s)µ for every s ∈ G, where ∆ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin, relative to one-parameter groups of measure preserving transformations.

The original motivation for the circle of questions treated here dates back to classical problems concerning pointwise convergence of Riemann sums relative to Lebesgue integrable functions.

Introduction

The study of almost everywhere convergence of Riemann sums is an old problem, with many ramifications (see [START_REF] Ruch | On Riemann sums[END_REF] for a recent survey). Let us consider the interval [0, 1[, identified with the torus T = R/(2πZ), and let ρ be the normalized Lebesgue measure on T. Let f : [0, 1[→ C be a measurable function. For n ∈ N * and x ∈ T, the corresponding Riemann sum of f is defined by

R n f (x) = 1 n n-1 j=0 f x + j n .
When f is Riemann integrable, for any x ∈ T we have

lim n R n (f )(x) = 1 0 f (t)dρ(t). (1.1)
When f is Lebesgue integrable, it is easily seen that (R n (f )) converges in mean to 1 0 f dρ (see for instance [START_REF] Ruch | On Riemann sums[END_REF]§2]). On the other hand, the study of almost everywhere convergence is much more subtle. The first result on this subject seems to date back to the paper [START_REF] Jessen | On the approximation of Lebesgue integrals by Riemann sums[END_REF] of Jessen. Jessen's theorem states that if (n k ) is a sequence of positive integers such that n k divides n k+1 for every k then, for any f ∈ L 1 (T), we have, for almost every x ∈ T,

lim k R n k f (x) = 1 0 f (t)dρ(t).
(1.2) Soon after, Marcinkiewicz and Zygmund [START_REF] Marcinkiewicz | Mean values of trigonometrical polynomials[END_REF] on one hand, and Ursell [START_REF] Ursell | On the behaviour of a certain sequence of functions derived from a given one[END_REF] independently, gave examples of functions f ∈ L 1 (T) for which (1.1) fails almost everywhere. For instance, given 1 2 < δ < 1, f : x ∈]0, 1] → |x| -δ , is such an example (see [START_REF] Ursell | On the behaviour of a certain sequence of functions derived from a given one[END_REF][START_REF] Rudin | An arithmetic property of Riemann sums[END_REF]). Later, Rudin [START_REF] Rudin | An arithmetic property of Riemann sums[END_REF] was even able to provide many examples of bounded measurable functions f (characteristic functions indeed) such that, for almost every x ∈ T, the sequence (R n f (x)) diverges. Moreover, Rudin's paper highlighted deep connections between pointwise convergence of Riemann sums along a given subsequence (n k ) of integers and arithmetical properties of the subsequence, a question now widely developed. The following different important question has also been considered by many authors : under which kind of regularity conditions on f does the associated sequence (R n (f )) of Riemann sums converges a.e. (see [START_REF] Ruch | On Riemann sums[END_REF] for these questions and many related ones).

In this paper, we deal with another sort of problem, namely we study possible extensions of Jessen's result to general locally compact groups and dynamical systems.

Let us first come back to Jessen's theorem and give another formulation of this result. Denote by G the group T and set G k = Z/(n k Z). Then (G k ) is an increasing sequence of closed subgroups of G, whose union is dense in G. If ρ k is the Haar probability measure on G k , Jessen's result reads as follows : for every f ∈ L 1 (T),

lim k→∞ G k f (t + x)dρ k (t) = G f dρ a.e.
Under this form, this theorem has been extended by Ross and Strömberg to locally compact groups. An assumption about the behaviour of the modular functions of the subgroups is needed. It is automatically satisfied in the abelian case (see [START_REF] Ross | Jessen's theorem on Riemann sums for locally compact groups[END_REF] and Corollary 3.12 below).

More generally, we are interested in this paper by the following questions. Let G (X, µ) be an action of a locally compact group G on a measured space (X, µ), where µ is σ-finite, and let (G n ) n∈N be an increasing sequence of closed subgroups of G, with dense union :

(i) find conditions on the action and on the (right) Haar measures ρ n of G n , ρ of G, so that for every f ∈ L 1 (X, µ) and every n, t ∈ G n → f (tx) is ρ n -integrable for almost every x ∈ X ;

(ii) if (i) holds, study the pointwise convergence of the sequence of orbital integrals Gn f (tx)dρ n (t).

(iii) identify the pointwise limit, in case it exists.

A necessary condition for (i) to be satisfied is that, for every Borel subset B of X with µ(B) < +∞, for every n ∈ N, and for almost every x ∈ X,

ρ n ( t ∈ G n ; x ∈ t -1 B ) = Gn 1 B (tx)dρ n (t) < +∞.
When µ is finite, say a probability measure, condition (i) implies that the groups G n are compact. If we normalize their Haar measures by ρ n (G n ) = 1, the reversed martingale theorem implies that, for f ∈ L 1 (X, µ), the sequence of orbital integrals converges pointwise and in mean (see [START_REF] Tempelman | Ergodic theorems for group actions[END_REF]Cor. 3.5, page 219] and Proposition 3.1 below). This fact is well-known. Moreover, the limit is the conditional expectation of f with respect to the σ-field of G-invariant Borel subsets of X. Of course, Jessen's theorem is a particular case.

When µ is only σ-finite, we cannot use the reversed martingale theorem any longer and we shall need other arguments. As already said, Ross and Strömberg studied the case of the left action G (G, ρ). They normalized the right Haar measures ρ n and ρ in such a way that for every f ∈ C c (G) (the space of continuous functions with compact support on G), we have lim n ρ n (f ) = ρ(f ). This is always possible, due to a result of Fell (see [Bou63, Chap. VIII, §5], and [START_REF] Ross | Jessen's theorem on Riemann sums for locally compact groups[END_REF] for more references). Morever, Ross and Strömberg assumed that for every n, the modular function of G n is the restriction of the modular function of G. We shall name this property the modular condition (MC). Under these assumptions, Ross and Strömberg proved that for every f ∈ L 1 (G, ρ), one has, for almost every x ∈ G,

lim n Gn f (tx)dρ n (t) = G f (tx)dρ(t) = G f (t)dρ(t) 1 .
Later, Ross and Willis [START_REF] Ross | Riemann sums and modular functions on locally compact groups[END_REF] provided an example showing that the modular condition does not always hold. They also proved that the Ross-Strömberg theorem always fails when the modular condition is not satisfied.

Therefore, in our paper we shall always assume that the increasing sequence (G n ) of closed subgroups of G has a dense union and satisfies the modular condition (MC). We shall denote by ∆ the modular function of G, so that λ = ∆ρ, where λ is the left Haar measure of G. We also assume that G acts on (X, µ) in such a way 1 In this paper we adopt the following convention : each time we write an integral R f , either f is non-negative, or it is implicitely contained in the statement that f is integrable.

that µ is ∆-relatively invariant under the action, in the sense that sµ = ∆(s)µ for s ∈ G. An important example is the left action G (G, ρ).

Under these assumptions, we give a necessary and sufficient condition for the pointwise limit theorem to be satisfied.

Theorem (3.13). The two following properties are equivalent :

(a) X is a countable union of Borel subsets B k of finite measure, such that for every k and almost every x ∈ X, we have

ρ( t ∈ G ; x ∈ t -1 B k ) = G 1 B k (tx)dρ(t) < +∞.
(b) For every f ∈ L 1 (X, µ) and for almost every x ∈ X,

lim n Gn f (tx)dρ n (t) = G f (tx)dρ(t).
A crucial intermediate step is the above mentioned Ross-Strömberg theorem. For completeness, we provide a proof of this result, partly based on one of the ideas contained in [START_REF] Ross | Jessen's theorem on Riemann sums for locally compact groups[END_REF].

We give examples where our theorem 3.13 applies. In particular, as an easy consequence we get our second main result :

Theorem (3.18). Consider G (X, µ)
, where now the σ-finite measure µ is invariant. Let (G n ) n∈N be an increasing sequence of lattices in G, whose union is dense. We fix a Borel fundamental domain D for G 0 and we normalize ρ by ρ(D) = 12 . Then, for every G 0 -invariant function f ∈ L 1 (X, µ) and for almost every x ∈ X, we have

lim n 1 |G n ∩ D| t∈Gn∩D f (tx) = D f (tx)dρ(t),
where

|G n ∩ D| is the cardinal of G n ∩ D.
This gives a simple way to extend a result of Civin [START_REF] Civin | Abstract Riemann sums[END_REF], which treated the case G = R by a different method, apparently not directly adaptable to more general locally compact groups G.

Notation and conventions

In this paper, locally compact spaces are implicitely assumed to be Hausdorff and σ-compact. A measured space (X, µ) is a Borel standard space equipped with a (non-negative) σ-finite measure µ.

Let G be a locally compact group. We denote by ∆ its modular function, and by λ and ρ respectively its left and right Haar measures, so that λ = ∆ρ. By an action of G on a measured space (X, µ) we mean a Borel map G × X → X, (t, x) → tx, which is a left action and leaves µ quasi-invariant. In fact we shall need the following stronger property : Definition 2.1. Given an action G (X, µ), we say that µ is ∆-relatively invariant if sµ = ∆(s)µ for all s ∈ G.

Note that this property is satisfied for the left action G (G, ρ).

In all our statements, we shall consider an increasing sequence (G n ) of closed subgroups of G with dense union. Then ∆ n , ρ n , λ n = ∆ n ρ n will be the modular function and Haar measures of G n , respectively. We shall have to choose appropriate normalizations of ρ and ρ n , n ∈ N. For a compact group, we usually choose its Haar measure to have total mass one (but see remark 2.3 below).

As already mentioned in the introduction, there is also a natural normalization of the Haar measures as follows (see [Bou63, Chap. VIII, §5], and [START_REF] Ross | Jessen's theorem on Riemann sums for locally compact groups[END_REF]).

Definition 2.2. Let G be a locally compact group and ρ a right Haar measure on G. Let (G n ) be an increasing sequence of closed subgroups, whose union is dense in G. There is an essentially unique normalization of the right Haar measures ρ n of the G n such that, for every continuous function f on G with compact support, we have lim n ρ n (f ) = ρ(f ). In this case, we shall say that the sequence (ρ n ) of right Haar measures is normalized with respect to ρ. We shall also say that it is a Fell normalization.

Remark 2.3. When G is compact, the Fell normalization is the classical normalization, where the Haar measures are probability measures. On the other hand, when the G n are compact whereas G is not, it is easily seen that the Fell normalization implies that lim n ρ n (G n ) = +∞. For instance, let G be a countable discrete group which is the union of an increasing sequence (G n ) of finite subgroups (e.g. the group S ∞ of finite permutations of the integers). Then, if ρ is the counting measure on G, the normalization of the sequence ρ n with respect to ρ is the sequence of counting measures, for which we have

ρ n (G n ) = |G n |, the cardinal of G n .
Finally, another property of the sequence (G n ) will be fundamental in this paper. It was already present in the work of Ross and Strömberg [START_REF] Ross | Jessen's theorem on Riemann sums for locally compact groups[END_REF] and later shown to be crucial (see [START_REF] Ross | Riemann sums and modular functions on locally compact groups[END_REF]).

Definition 2.4. Let G be a locally compact group and (G n ) an increasing sequence of closed subgroups of G. We say that (G n ) satisfies the modular condition (MC) if, for every n, the modular function ∆ n of G n is the restriction to G n of the modular function ∆ of G.

Let us explain the interest of this condition. Given an action G (X, µ) leaving ∆-relatively invariant the measure µ, the following property of the action holds : for every Borel function f :

X × G → R * + (or any µ ⊗ λ-integrable function f : X × G → C), we have X×G f (tx, t)dµ(x)dρ(t) = X×G f (x, t)dµ(x)dλ(t) = X×G f (x, t -1 )dµ(x)dρ(t).
(2.1) This property will be essential throughout this paper, and we shall need it to remain satisfied for all the restricted actions G n (X, µ). This requires that the restriction of ∆ to G n is the modular function of G n .

Limit theorems

3.1. Compacity assumptions. In this section, the Haar measure of every compact group will have total mass one.

Proposition 3.1. Let G be a locally compact group, acting in a measure preserving way on a probability space (X, µ). Let (G n ) be an increasing sequence of compact subgroups of G, whose union is dense in G. Let f ∈ L 1 (X, µ).

(a) For a.e. x ∈ X, we have lim n→∞ Gn f (tx)dρ n (t) = E(f |I)(x), where E(f |I) is the conditional expectation of f with respect to the σ-field

I of G-invariant Borel subsets of X. (b) If morever G is compact, then E(f |I)(x) = G f (tx)dρ(t) for almost every x ∈ X. Proof. (a) Observe first that t ∈ G n → f (tx) is ρ n -integrable for almost every x, since X Gn |f (tx)|dρ n (t) dµ(x) = X |f (x)|dµ(x) < +∞. We set R n (f )(x) = Gn f (tx)dρ n (x). Obviously, this function is G n -invariant and it is µ-integrable. Moreover, let A be a G n -invariant Borel subset of X. Then we have A R n (f )(x)dµ(x) = X×Gn 1 A (x)f (tx)dµ(x)dρ n (t) = X×Gn 1 A (t -1 x)f (x)dµ(x)dρ n (t) = A f (x)dµ(x), since A is G n -invariant. Therefore R n (f )
is the conditional expectation of f with respect to the σ-field B n of Borel G n -invariant subsets of X. The sequence (B n ) of σ-fields is decreasing. The reversed martingale theorem [Nev72, page 119] states that the sequence (R n (f )) converges µ-a.e. and in mean to the conditional expectation of f with respect to the σ-field

B ∞ = ∩ n B n of (∪ n G n )-invariant Borel subsets of X. Since ∪ n G n is dense in G and µ is finite, B ∞ is also the σ-field of G-invariant Borel subsets of X.
The proof of (b) is straightforward.

Remark 3.2. Let µ be a σ-finite measure on a Borel space (X, B), and let (B n ) be a decreasing sequence of σ-fields. Assume that (X, B n , µ) is σ-finite for every n.

For f ∈ L 1 (X, B, µ), the conditional expectation E(f |B n ) is well defined, as a Radon-Nikodým derivative. In [Jer59], Jerison has proved that lim n→∞ E(f |B n )(x) exists almost everywhere. Moreover, if (X, B ∞ , µ) is σ-finite, the limit is E(f |B ∞ ).
Otherwise, one may write X as the disjoint union of two elements V, W of B ∞ , where V is a countable union of elements of B ∞ of finite measure while any subset of

W that belongs to B ∞ has measure 0 or ∞. By [Jer59, §2.6], lim n→∞ E(f |B n )(x) = 0 a.e. on W .
This observation can be used to prove that proposition 3.1 still holds under the weaker assumption that µ is σ-finite. Indeed, it is enough to prove that when H is any compact group acting in measure preserving way on a σ-finite measured space (X, B, µ), then (X, B H , µ) is still σ-finite, where B H is the σ-field of Borel H-invariant subsets. To show this fact, consider a strictly positive function f ∈ L 1 (X, B, µ). As seen in the proof of proposition 3.1, the function x → R(f )(x) = H f (tx)dρ(t) is H-invariant and µ-integrable and we deduce that (X, B H , µ) is σ-finite from the fact that R(f ) is strictly positive everywhere. Finally, for every f ∈ L 1 (X, B, µ), the conditional expectation E(f |B H ) may be defined and we have obviously R(f

)(x) = E(f |B H ).
We shall give another proof of proposition 3.1 (b), for a compact group G and a σ-finite measure µ, in corollary 3.14.

In the rest of the paper we are interested in the more general situation where µ is a σ-finite measure on X, and where the subgroups G n are not assumed to be compact. In particular G is not always unimodular.

3.2. General case : local results. Let G (X, µ) be a measured G-space. When the measure µ is not finite, it may be useful to study the restriction of the action to every Borel subset B of X such that µ(B) < ∞, even if B is not G-invariant3 . We extend to X every function defined on B, by giving it the value 0 on X \ B. In particular, we have L 1 (B, µ) ⊂ L 1 (X, µ).

Note that Borel functions of the form

x → ρ({t ∈ G ; tx ∈ B}) = G 1 B (tx)dρ(t)
are G-invariant. This crucial fact will be used repeatedly and without mention in the sequel.

Theorem 3.3. Let (G n ) be an increasing sequence of closed subgroups of a locally compact group G, with dense union and satisfying condition (MC). Let G (X, µ) be an action leaving the measure ∆-relatively invariant. Let B be a Borel subset of X with µ(B) < +∞. For a.e. x ∈ B and every n ∈ N, we assume that 0 < ρ n ({t ∈ G n ; tx ∈ B}) < +∞, where ρ n is a right Haar measure on G n . Then, for every f ∈ L 1 (B, µ), the averaging sequence of functions

x ∈ B → 1 ρ n ({t ∈ G n ; tx ∈ B}) Gn f (tx)dρ n (t)
converges, almost everywhere on B and in L 1 norm, to an element of L 1 (B, µ).

Proof. We first check that for every n and almost every x ∈ B, the function t ∈ G n → f (tx) is ρ n -integrable. This is a consequence of the following computation (where we use equality (2.1)) :

B 1 ρ n ({s ∈ G n ; sx ∈ B}) Gn |f (tx)|dρ n (t) dµ(x) = X×Gn 1 B (x) |f (tx)| ρ n ({s ∈ G n ; sx ∈ B}) dµ(x)dρ n (t) = X×Gn 1 B (tx) |f (x)| ρ n ({s ∈ G n ; sx ∈ B}) dµ(x)dρ n (t) = B |f (x)| 1 ρ n ({s ∈ G n ; sx ∈ B}) Gn 1 B (tx)dρ n (t) dµ(x) = B |f (x)|dµ(x) < +∞.
In addition, we see that

x ∈ B → Gn f (tx)dρ n (t) ρ n ({s ∈ G n ; sx ∈ B}) is µ-integrable on B.
Denote by R n (f ) this function defined on B.

Let O n (B) be the equivalence relation on B induced by the G n -action : for x, y ∈ B, x ∼ On(B) y if there exists t ∈ G n with x = ty. We denote by B n (B) the σ-field of Borel subsets of B invariant under this equivalence relation. Observe that R n (f ) is invariant under O n (B). It is also straightforward to check that R n (f ) is the conditional expectation of f with respect to B n (B). Then, again the conclusion follows from the reversed martingale theorem.

Now let us consider

B k \A 1 ρ({s ∈ G ; sx ∈ B k }) G f (tx)dρ(t) dµ(x). This in- tegral is equal to X×G 1 B k \A (x) 1 ρ({s ∈ G ; sx ∈ B k }) f (tx)dµ(x)dρ(t) = X×G 1 B k \A (tx) 1 ρ({s ∈ G ; sx ∈ B k }) f (x)dµ(x)dρ(t) = X\A f (x) G 1 B k \A (tx) ρ({s ∈ G ; sx ∈ B k }) dρ(t) dµ(x) ≤ X\A f (x)dµ(x) < +∞, since, for every x such that tx ∈ B k \ A we have x ∈ G(B k \ A) = GB k \ A, and G 1 B k \A (tx)dρ(t) ≤ G 1 B k (tx)dρ(t) = ρ({s ∈ G ; sx ∈ B k }), with 0 < ρ({s ∈ G ; sx ∈ B k }) < +∞ a.e. on X \ A.
It follows that G f (tx)dρ(t) < +∞ for amost every x ∈ B k \ A.

Remark 3.6. The assumption of this lemma holds for instance when G acts on (X, µ), where µ is a ∆-relatively invariant Radon measure on a locally compact space X, the action being continuous with closed orbits and compact stabilizers. Indeed, in this situation, for x ∈ X, the natural map G/G x → Gx, where G x is the stabilizer of x, is an homeomorphism. Then if B is an open relatively compact subset of X, the set {t ∈ G ; tx ∈ B} is open and relatively compact in G and the conclusion follows. Particular cases are proper actions, and more generally integrable actions [START_REF] Rieffel | Integrable and proper actions on C * -algebras, and square-integrable representations of groups[END_REF].

We shall now give a condition sufficient to guarantee the pointwise convergence of sequences of orbital integrals for every f ∈ L 1 (X, µ). Note that the integrability of the functions appearing in the statement below follows from lemma 3.5. Theorem 3.7. Let (G n ) be an increasing sequence of closed subgroups in G, with dense union and satisfying condition (MC). Let G (X, µ) be an action leaving the measure ∆-relatively invariant. We assume that X = ∪X k where (X k ) is an increasing sequence of Borel subspaces, such that for all k,

(i) µ(X k ) < +∞ ; (ii) ρ n ({t ∈ G n ; tx ∈ X k }) > 0 for almost every x ∈ X k and every n ; (iii) there exists c k > 0 such that for almost every x ∈ X, sup n ρ n ({t ∈ G n ; tx ∈ X k }) ≤ c k .
The following conditions are equivalent :

(a) for every k, lim n ρ n ({t ∈ G n ; tx ∈ X k }) exists for a.e. x ∈ X k ; (b) the pointwise limit lim n Gn f (tx)dρ n (t) exists a.e. on X, for every f ∈ L 1 (X, µ) ; (c) there exists a dense subset D of L 1 (X, µ) such that the pointwise limit lim n Gn f (tx)dρ n (t) exists a.e. on X, for every f in D.

Remark 3.8. Assume that for every x ∈ X k and every n,

ρ n ({t ∈ G n ; tx ∈ X k }) ≤ c k . (3.1)
Then, assumption (iii) of the above theorem is fulfilled. Indeed, by invariance, if (3.1) holds for x ∈ X k , it also holds for

x ∈ G n X k . On the other hand, if x / ∈ G n X k then {t ∈ G n ; tx ∈ X k } = ∅ , and therefore ρ n ({t ∈ G n ; tx ∈ X k }) = 0 ≤ c k .
For the proof of theorem 3.7, we need the following lemma which repeats arguments from [RS67, Lemma 3]. Lemma 3.9. Let (G n ) be an increasing sequence of closed subgroups in G, with dense union and satisfying condition (MC). Let G (X, µ) be an action leaving the measure ∆-relatively invariant. Let X k ⊂ X satisfying conditions (i) and (iii) of the previous theorem and let f : X → R + be a Borel function. For x ∈ X, set

f ⋆ (x) = sup n Gn f (tx)dρ n (t),
and for α > 0, set

Q α = {x ∈ X ; f ⋆ (x) > α}. Then we have αµ(Q α ∩ X k ) ≤ c k Qα f dµ. (3.2)
Proof. For n ∈ N, we set φ n (x) = Gn f (tx)dρ n (t) and we introduce the subsets

E n = {x ∈ X ; φ n (x) > α} D n = x ∈ X ; sup 1≤l≤n φ l (x) > α .
We fix an in integer N . It is enough to show that

αµ(D N ∩ X k ) ≤ c k D N f dµ since Q α is the increasing union of the sets D N , N ≥ 1.
We decompose D N as the union ∪ N n=1 F n , where the subsets F n are mutually disjoint, and defined by

F n = E n ∩ ( N l=n+1 E c l ).
Observe that G n E n = E n , and therefore G n F n = F n for every n. We have

αµ(F n ∩ X k ) ≤ Fn∩X k φ n (x)dµ(x) ≤ X×Gn 1 Fn∩X k (x)f (tx)dµ(x)dρ n (t) ≤ X×Gn 1 Fn∩X k (tx)f (x)dµ(x)dρ n (t) ≤ X f (x) Gn 1 Fn∩X k (tx)dρ n (t) dµ(x).
For

1 Fn∩X k (tx) to be non-zero, it is necessary that x ∈ G n (X k ∩ F n ) = G n X k ∩ F n . It follows that αµ(F n ∩ X k ) ≤ Fn f (x) Gn 1 Fn∩X k (tx)dρ n (t) dµ(x) ≤ c k Fn f (x)dµ(x).
The conclusion is then an immediate consequence of the fact that D N is the union of the mutually disjoint subsets F n , 1 ≤ n ≤ N .

Remark 3.10. As a particular case, we shall use the following assertion. Let G (X, µ) be a G-action such that µ is ∆-relatively invariant. Let X k be a Borel subset of X with µ(X k ) < +∞. Assume the existence of c k such that for almost every

x ∈ X, ρ({t ∈ G ; tx ∈ X k }) ≤ c k . Let f : X → R + be a Borel function. For α > 0, set Qα = {x ∈ X ; G f (tx)dρ(t) > α}. Then, we have αµ( Qα ∩ X k ) ≤ c k Qα f dµ. Proof of theorem 3.7. (b) ⇒ (a) is obvious. Let us show that (a) ⇒ (c). Let f ∈ L 1 (X, µ), null outside X k . Fix p > k. By theorem 3.3, we know that lim n Gn f (tx)dρ n (t) ρ n ({s ∈ G n ; sx ∈ X p })
exists a.e. on X p .

If (a) holds, we immediately get the existence of lim n Gn f (tx)dρ n (t) almost everywhere on X p and therefore on the union X of the X p . Now, observe that such functions f , supported in some X k , form a dense subspace of L 1 (X, µ).

Finally, let us prove that (c) implies (b). We introduce

Λ(f )(x) = lim N →+∞ sup n,m≥N |φ n (f )(x) -φ m (f )(x)| .
We fix an integer p, and we shall show that Λ(f )(x) = 0 for almost every x ∈ X p . This will end the proof. Take g ∈ D. We have Λ(g) = 0 a.e. on X and

Λ(f ) = Λ(f ) -Λ(g) ≤ Λ(f -g) ≤ 2|f -g| ⋆ .
Given α > 0, it follows from lemma 3.9, that

µ({x ∈ X p ; ∆(f )(x) > α}) ≤ µ({x ∈ X p ; |f -g| ⋆ > α/2}) ≤ 2c p α f -g 1 .
Since we can choose g so that fg 1 is as close to 0 as we wish, we see that µ({x ∈ X p ; ∆(f )(x) > α}) = 0, from which we get µ({x

∈ X p ; ∆(f )(x) > 0}) = 0.
We apply theorem 3.7 to the following situation where, in addition, it is possible to identify the limit.

Theorem 3.11. Let G act properly on a locally compact σ-compact space X and let µ be a ∆-relatively invariant Radon measure on X. Let (G n ) be an increasing sequence of closed subgroups, whose union is dense in G and which satisfies the modular condition (MC). We assume that the sequence (ρ n ) of Haar measures is normalized with respect to ρ. Then, for every f ∈ L 1 (X, µ), we have, for a.e.

x ∈ X,

lim n→∞ Gn f (tx)dρ n (t) = G f (tx)dρ(t).
(3.3)

Proof. Let (X k ) be an increasing sequence of open relatively compact subspaces of X, with X = ∪X k . Of course, since the action is proper, we have

0 < ρ n ({t ∈ G n ; tx ∈ X k }) < +∞ for every x ∈ X k . Let us show that condition (iii) of theorem 3.7 is also fulfilled. Set K k = {t ∈ G ; tX k ∩ X k = ∅}.
This set is relatively compact. We choose a continuous function ϕ on G, with compact support, such that 1 K k ≤ ϕ. We have

∀n ∈ N, ∀x ∈ X k , ρ n ({t ∈ G n ; tx ∈ X k }) ≤ ρ n (ϕ).
Since lim n ρ n (ϕ) = ρ(ϕ) < +∞, we obtain the existence of a constant c k such that

∀n ∈ N, ∀x ∈ X k , ρ n ({t ∈ G n ; tx ∈ X k }) ≤ c k .
Now (iii) of theorem 3.7 is satisfied, by remark 3.8. Clearly, we may also choose c k such that, as well,

ρ({t ∈ G ; tx ∈ X k }) ≤ c k for all x ∈ X.
The required integrability conditions for (3.3) follow from lemma 3.5. The existence of the limit is an immediate consequence of theorem 3.7, applied to the space D = C c (X) of continuous functions with compact support in X. We use the fact that for every x ∈ X and f ∈ C c (X), the function t → f (tx) is continuous with compact support. Hence, by the normalization of the ρ n , we have the existence of lim n Gn f (tx)dρ n (t). Here, we even know that the limit is G f (tx)dρ(t), for every x.

It remains to identify the limit for every f ∈ L 1 (X, µ). We set

Λ(f )(x) = lim N →∞ sup n≥N Gn f (tx)dρ n (t) - G f (tx)dρ(t) .
As in the proof of theorem 3.7, we fix p, and we only need to show that Λ(f )(x) = 0 for almost every x ∈ X p . Let g be a continuous function with compact support on X. We have

Λ(f )(x) = Λ(f )(x) -Λ(g)(x) ≤ Λ(f -g)(x) ≤ lim N sup n≥N Gn (f (tx) -g(tx))dρ n (t) + G (f (tx) -g(tx))dρ(t) ≤ |f -g| ⋆ + G |f (tx) -g(tx)|dρ(t).
Given α > 0, we have

µ( x ∈ X p ; Λ(f )(x) > α ) ≤µ({x ∈ X p ; |f -g| ⋆ > α/2}) + µ( x ∈ X p ; G |f (tx) -g(tx)|dρ(t) > α/2 ) ≤ 4c p α f -g 1 .
The last inequality follows from lemma 3.9 and remark 3.10. Now, we approximate f by a sequence (f n ) of continuous functions with compact support. This gives µ( x ∈ X p ; Λ(f )(x) > α ) = 0. The conclusion is obtained by letting α go to 0.

As a particular case, we obtain the following result of Ross and Strömberg. In contrast to their proof, we do not use the theorem of Edwards and Hewitt ([EH65, Theorem 1.6]) on pointwise limits of sublinear operators whose ranges are families of measurable functions.

Corollary 3.12 ([RS67]). Let G be a locally compact group, and (G n ) be an increasing sequence of closed subgroups, whose union is dense in G and which satisfies the modular condition (MC). We assume that the sequence (ρ n ) of Haar measures is normalized with respect to ρ. Then, for every f ∈ L 1 (G, ρ), we have

lim n Gn f (tx)dρ n (t) = G f (t)dρ(t), a.e.
Proof. We apply theorem 3.11 to G (G, ρ).

We can now state our main theorem.

Theorem 3.13. Let G (X, µ) be an action on a measured space, leaving the measure ∆-relatively invariant. Let (G n ) be an increasing sequence of closed subgroups, whose union is dense in G and which satisfies the modular condition (MC). We assume that the sequence (ρ n ) of Haar measures is normalized with respect to ρ. The two following properties are equivalent :

(a) X is a countable union of Borel subsets B k of finite measure, such that for every k and almost every x ∈ X, we have

ρ({t ∈ G ; tx ∈ B k }) = G 1 B k (tx)dρ(t) < +∞. (3.4) (b)
For every f ∈ L 1 (X, µ) and for almost every x ∈ X,

lim n Gn f (tx)dρ n (t) = G f (tx)dρ(t).
Proof. Assumption (b) contains the assertion that for every f ∈ L 1 (X, µ) and almost every x ∈ X, the function f x : t → f (tx) is ρ-integrable. Thus, obviously (b) implies (a).

Let us show that (a) implies (b). Let f ∈ L 1 (X, µ). By lemma 3.5, there exists a conull subset E ⊂ X, such that for every x ∈ E, the function f x : t → f (tx) is in L 1 (G, ρ). We apply to f x the previous corollary. There exists a conull subset A x in G, such that for every s ∈ A x :

(i) for n ∈ N, t ∈ G n → f x (ts) in ρ n -integrable ; (ii) lim n Gn f x (ts)dρ n (t) = G f x (t)dρ(t).
Denote by D the set of all (s, x) ∈ G × X for which

• t ∈ G n → f (tsx) = f x (ts) is ρ n -integrable for all n, • t ∈ G → f (tsx) = f x (ts) is ρ-integrable, • lim Gn f (tsx)dρ n (t)) = G f (tsx)dρ(t). Then D is a Borel subset of G × X. Moreover, D ⊃ {(s, x) ; x ∈ E, s ∈ A x }.
It follows, by using twice the Fubini-Tonelli theorem, that D is conull, and that for almost every s ∈ G, we have, for almost x ∈ X :

(1) f sx is ρ n -integrable for n ∈ N, and is ρ-integrable ;

(2) lim n Gn f (tsx)dρ n (t) = G f (tx)dρ(t). Choose such a s and let C(s) be a conull subset of X for which (1) and (2) occur. Then for any y ∈ sC(s), which is also conull, we have the required properties.

Corollary 3.14. Let G be a compact group acting on a measured space (X, µ) in such a way that the σ-finite measure µ is invariant. Let (G n ) be an increasing sequence of closed subgroups of G, whose union is dense in G. We choose the Haar measures to have total mass 1. Then for every f ∈ L 1 (X, µ) we have

lim n→+∞ Gn f (tx)dρ n (t) = G f (tx)dρ(t).
Theorem 3.13 also applies to several other situations. We have already mentioned in remark 3.6 the case of continuous actions with closed orbits and compact stabilizers. We now give another example of application.

Corollary 3.15. Let G be a locally compact group acting on a measured space (X, µ) is such a way that the σ-finite measure µ is invariant. Let (G n ) be an increasing sequence of closed subgroups of G, whose union is dense in G and which satisfies the modular condition (MC). We assume that the sequence (ρ n ) of Haar measures is normalized with respect to ρ. Let f ∈ L 1 (G × X, ρ ⊗ µ). Then for ρ ⊗ µ almost every (s, x) ∈ G × X, we have

lim n→∞ G f (ts, tx)dρ n (t) = G f (ts, tx)dρ(t).
Proof. We apply theorem 3.13 to B k = U k × V k , where (U k ) k is a sequence of relatively compact open subsets of G with ∪U k = G, and where (V k ) k is a sequence of Borel subsets of X, of finite measure, with ∪V k = X. It suffices to observe that

{t ∈ G ; t(s, x) ∈ U k × V k } ⊂ {t ∈ G ; ts ∈ U k }, and ρ({t ∈ G, t(s, x) ∈ B k }) ≤ ρ({t ∈ G ; ts ∈ U k }) < +∞.
Corollary 3.16. Let G (X, µ) and (G n ) be as in the previous corollary. Let h ∈ L 1 (X, µ) and let E be a Borel subset of G with ρ(E) < ∞. Then, for almost every s ∈ G, we have

lim n→∞ Es∩Gn h(tx)dρ n (t) = Es h(tx)dρ(t).
Proof. We apply the previous corollary with f (t, x) = 1 E (t)f (x).

Example 3.17. Let G = R, acting on R be left translations, and for n ∈ N, take G n = Z/(2 n Z). The Haar measure on G n is normalized by giving the weight 1/(2 n ) to each point and we take for µ the Lebesgue measure ρ on R, normalized by ρ([0, 1]) = 1. Let E be a Borel subset of R such that ρ(E) < +∞. The previous corollary gives that for every f ∈ L 1 (R, ρ) and for almost every s ∈ R, we have Let us take E = Q for example. For every s irrational, the above equality holds (both sides are 0). On the other hand, for s ∈ Q, and f = 1 [0,1] , this equality is false for every x.

3.4. An extension of a theorem of Civin. We are now interested by the following problem : let G (X, µ) as before, that is, the σ-finite measure µ is ∆-relatively invariant. We are given an increasing sequence of closed subgroups of G, with dense union, and satisfying the modular condition. Let E be a Borel subset of X with ρ(E) < ∞, and let f ∈ L 1 (X, µ). Find conditions under which In [START_REF] Civin | Abstract Riemann sums[END_REF], Civin has considered the particular case where G = R, G n = Z/(2 n Z) as in example 3.17. Let (t, x) → t + x be a measure preserving action of R onto a measured space (X, µ). Civin's result states that for every f ∈ L 1 (X, µ) such that f (1 + x) = f (x) a.e., then for almost every x ∈ X,

lim n→∞ Gn∩[0,1[ f (t + x)dρ n (t) = lim n→∞ 1 2 n 2 n k=1 f ( k 2 n + x) = 1 0 f (t + x)dρ(t).
More generally, we have :

Theorem 3.18. Let (G n ) n∈N be an increasing sequence of lattices of G (therefore G is unimodular), with dense union, and let D be a fundamental domain for G 0 . Let G (X, µ) be a measure preserving action. We assume that the Haar measure of G is normalized so that the volume of D is 1. Let f ∈ L 1 (X, µ) be such that, for every t ∈ G 0 , f (tx) = f (x) almost everywhere. Then 

  E+sf (t + x)dρ(t) a.e.

lim n 1

 1 |G n ∩ D| t∈Gn∩D f (tx) = D f (tx)dρ(t)for a.e. x ∈ X.Proof. We normalize the Haar measure on G n by giving to each point the measure 1/|G n ∩ D|. This gives a normalized sequence of Haar measures with respect to ρ. Corollary 3.16 gives that, for almost every s ∈ G, we havelim n 1 |G n ∩ Ds| t∈Gn∩Ds f (tx) = Ds f (tx)dρ(t).For every t ∈ G n ∩ Ds, there exists a unique g ∈ G 0 such that gt ∈ D. Due to the G 0 -invariance of f , we have f (tx) = f (gtx) and therefore1 |G n ∩ Ds| t∈Gn∩Ds f (tx) = 1 |G n ∩ D| t∈Gn∩D f (tx).On the other hand, by [Bou63, Corollaire, Page 69], the G 0 -invariance of f implies that the integral Ds f (tx)dρ(t) does not depend on the choice of the fundamental domain : we have Ds f (tx)dρ(t) = D f (tx)dρ(t). Laboratoire de Mathématiques et Applications, Physique Mathématique d'Orléans (MAPMO -UMR6628), Fédération Denis Poisson (FDP -FR2964), CNRS/Université d'Orléans, B. P. 6759, F-45067 Orléans Cedex 2 E-mail address: claire.anantharaman@univ-orleans.fr

Note that our assumptions imply the unimodularity of G.

The restriction of µ to the Borel subspace B will be denoted by the same letter.

Concerning the pointwise convergence of sequences of orbital integrals, we immediately get : Corollary 3.4. Under the assumptions of the previous theorem, the following conditions are equivalent :

3.3. General case : global results. In order to study the problem globally, we shall need the following lemma, insuring the integrability of orbital functions.

Lemma 3.5. Let G (X, µ) be an action leaving the measure ∆-relatively invariant. The two following conditions are equivalent :

Proof. (ii) ⇒ (i) is obvious : write X as a countable union of Borel subsets B k of finite measure and take f = 1 B k .

(i) ⇒ (ii). Let f ∈ L 1 (X, µ) + . It suffices to show that for every k and a.e. x ∈ B k , the function t → f (tx) is ρ-integrable. We set

We first check that for a.e. x ∈ B k ∩ A, we have G f (tx)dρ(t) = 0. Indeed,

The first equality uses relation (2.1) and the last one follows from the observation that 1 B k ∩A (tx) = 0 implies x ∈ A since A is G-invariant. Hence, we get G f (tx)dρ(t) = 0 a.e. on B k ∩ A.