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The characterization of bounded roughened surfaces before applying adhesive joint, in order to
detect poor cohesive and adhesive properties, remains difficult. Earlier studies based on analysis of
surface wave �Rayleigh waves or Scholte waves� are not really adapted to the characterization of
such surfaces. Guided acoustic waves, i.e., Lamb waves, turn out to be the best adapted kind of
waves to characterize this roughness when plates are bounded together. It is the aim of this paper to
provide analytical and experimental approaches to analyze the behavior of Lamb waves propagating
inside plates with a rough surface �small perturbations�. First, experimental results of the attenuation
effects are given on roughened glass plates. Second, the attenuation factor of the Lamb wave in an
anisotropic rough solid plate is calculated through a complex analytical model of the dispersion
equation which accounts for the effect of the power spectrum density of the rough profile �including
the effect of the statistical roughness parameters�. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2979850�

I. INTRODUCTION

Nowadays, the characterization of bounded roughened
surfaces before applying adhesive joint, in order to detect
poor cohesive and adhesive properties, remains very
difficult1 although it was the subject of studies presented in
the literature.2–8 In order to improve the bonding quality, the
bonding surfaces are usually roughened before applying ad-
hesive joints. Despite the extensive use of ultrasonic waves
in other areas of nondestructive testing, a relatively small
number of studies have been reported on the measurement of
the influence of the surface roughness on the propagation of
waves. Moreover, in order to characterize the interfaces,
these studies usually lie on the analysis of surface waves
�Rayleigh waves or Scholte waves�.8–12 The characterization
of the quality of adhesive joints cannot be carried out with
this kind of surface waves because the joint is inside the
plates bounded together. For this reason, the guided acoustic
waves �Lamb waves� turn out to be the best adapted kind of
wave to characterize the adhesive properties. Consequently,
the characterization of the roughness of the plates before
applying adhesive joints �essential for the prediction of the
adhesive properties�, by making use of the same kind of
waves, is quite obvious.

The interaction of bulk acoustic guided waves with
rough surfaces, owing to their interest in many works, has
been dedicated to several applications, especially in optics,

electromagnetism, and acoustics. The diffraction of acoustic
waves by a periodically or randomly corrugated surface has
been a hot topic for many years. More specifically, the deri-
vation of the characteristics of elastic Lamb waves propagat-
ing in solid plates with rough surfaces, making use of phase
screen approximation or using the random process theory �in
the frame of a small perturbation approximation�, has been
published during the last decade. The phase screen
approximation13–15 permits to explain the attenuation phe-
nomenon of Lamb waves when propagating along the plate,
but it assumes that the roughness can be characterized only
by average parameters, neglecting the important effects due
to the spatial periods �which always appear in the roughness
profile, even if this profile is “randomly” created�. The ran-
dom process theory �assuming a small perturbation
approximation�16,17 involves scattering amplitude matrices
�taking into account the shape profile by means of statistical
averaged profile periods�. It leads to a complex formulation,
which would need to be made more tractable so that the
comparison between the theoretical and experimental results
could become more accessible. Therefore, analytical model
concerning only the propagation of guided, compressional
acoustic waves,18 or Finite Element Method �FEM� simula-
tion of Lamb waves in plates with periodic triangular
corrugations19,20 have been carried out, and the results have
been compared with experimental one.

In many respects, the work presented in the present pa-
per is an extension of the results contained in Refs. 13–20
and communications linked to them,21,22 leading to compari-
sons between analytical and experimental results. It is con-
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cerned with both experimental effects of surface roughness
on the propagation of Lamb waves in a corrugated plate
�Sec. II� and an analytical model of the dispersion equation
leading to results for the attenuation factor when Lamb
waves propagate in an anisotropic rough plate. This model
takes into account the effect of the power spectrum density
�PSD� of the rough profile and includes the effect of the
statistical roughness parameters �Secs. III and IV�.

II. EXPERIMENTS

Four glass plates with different kinds of roughness on
only one side are experimentally investigated. First, the ex-
perimental setup used is presented �Sec. II A�. Then the dif-
ferent samples are described, highlighting the spatial periods
of the rough profile �Sec. II B�. Finally, experimental Lamb
wave characteristics are extracted from measured signals
�Sec. II C�.

A. Experimental setup

The experimental setup is reported in Fig. 1. A pulse
generator delivers a very short pulse voltage �about 300 V
during 300 ns� to an emitting contact piezocomposite trans-
ducer �central frequency equal to 2.25 MHz�. Lamb waves
are generated in a plate by the wedge method.23 The receiv-
ing transducer is an air-coupling piezoelectric transducer
�central frequency equal to 2 MHz, bandwidth about 700
kHz at −3 dB�. The emitting and receiving transducers are
both set on the nonrough side of the plate �Fig. 1�b��. The
emitting transducer remains unmoved while the receiving
transducer is translated along the propagation direction �x1�
of Lamb waves. The displacement amplitudes are collected
from x1=10 mm to x1=90 mm by 0.1 mm step �the origin
x1=0 corresponds to the wedge position�. For each position
of the air-coupling transducer, a 200 �s signal is acquired
on 10 000 points by 0.02 �s step. In order to improve the
signal to noise ratio, an average of 1000 successive shots is
performed.

B. Spatial periods of the rough profile

The studied samples are four isotropic glass plates with
200 mm sides and 5 mm thickness. The glass density � and
the longitudinal and shear velocities �VL and VT, respec-
tively� are reported in Table I. Three plates are processed in
order to obtain a rough surface on one side only. The fourth
plate is not processed and thus is used as a reference plate.

Two quite different techniques are used to create surface
roughness: sanding and shot blasting. The plate surface to-
pographies are obtained by means of an optical surface pro-
filer. To evaluate the roughness amplitude, statistic param-
eters Ra �roughness average� and Rq �root mean square
roughness� are used.24 Their mathematical expression is de-
fined as follows:

Ra =
1

MN
�
j=1

M

�
i=1

N

�Zij� �1�

and

Rq =
1

MN
��

j=1

M

�
i=1

N

Zij
2 , �2�

where height deviations Zij are measured from the mean sur-
face and M and N are the numbers of data points in each
direction of the array �see Fig. 2 for an example of a rough
profile for the shot blasted plate�. These parameters cover a
large range of roughness and are given in Table II for each
plate.

The spatial periods � appearing in the rough profile are
other characteristics of roughness, which are useful to inves-
tigate the propagation phenomena. These spatial periods are
determined by using the PSD of each profile �i.e., the Fourier
Transform of the autocorrelation function�. Experimentally,
the PSD is determined from a �5�5 mm2� sample, which is
divided into 500 lines and 500 rows. The sum of the PSD of
all the lines �respectively, rows� gives the PSD for lines �re-
spectively, rows�. They are depicted as functions of the spa-
tial period � in Figs. 3 for the shot-blasted plate, showing

TABLE I. Characteristics of the isotropic glass: thickness d, density �, and
longitudinal and shear velocities VL and VT.

d �mm� ��kg m−3� VL�m s−1� VT�m s−1�
5 5000 5825 3485

FIG. 2. Example of a rough profile �shot blasted plate�.

FIG. 1. �Color online� Experimental setup.

TABLE II. Roughness statistic parameters for the four glass plates.

Glass plate Ra��m� Rq��m�

Nontreated �0.01 �0.01
Sanded 4.8 6.0
Shot blasted 23.3 29.8
Strong shot blasted 52.4 67.4

074908-2 Potel et al. J. Appl. Phys. 104, 074908 �2008�



that the PSD for lines �Fig. 3�a�� does not present the same
maxima as the PSD for rows �Figs. 3�b��. The presence of
several maxima indicates that several main spatial periods �
coexist in the rough profile �those which will be used subse-
quently are denoted �i, i=1, ¯ ,4�. The spatial period � is
an important parameter, regarding the propagation of Lamb
waves �see Part II �Ref. 25��.

C. Experimental results

Let us note k1T
the projection of the wavenumber vector

on the x1-axis, its real and imaginary parts being respectively
denoted k1T

� and k1T
� ,

k1T
= k1T

� + ik1T
� . �3�

The results of the experiments described in Sec. II A allow,
after some signal analysis, to extract the characteristics for
each Lamb mode, for each plate, phase velocities �related to
k1T
� � and attenuation �related to k1T

� �. As expected, the experi-
mental phase velocities corresponding to rough plates are
very close to those corresponding to the reference smooth
plate.9,20 As a consequence, they are not relevant for charac-
terizing the effect of the roughness on the propagation of
Lamb waves.

The displacement amplitudes of each Lamb mode as a
function of x1 are experimentally obtained by means of a
spatial short time Fourier transform. Let us focus on the shot
blasted plate �see Fig. 4, other results for the other plates can
be found in Ref. 20�. Three Lamb modes are studied: sym-
metric mode S1 and antisymmetric modes A1 and A2. The
imaginary part k1T

� , related to the attenuation of a Lamb
mode, which is due to three effects, the effect of the sur-
rounding fluid, the effect of the bounded nature of the ultra-
sonic beam, and the intrinsic phenomena inside the plate
�here the roughness�, is obtained from the slope of the loga-
rithm of the experimental curves shown in Fig. 4. Assuming
that, for a given Lamb mode, these effects on the imaginary
part k1T

� are added the ones to the others, the imaginary part

k1�, corresponding only to the attenuation due to the rough-
ness can be deduced from the following formula:

k1T
� = k1� + k1ref

� , �4�

where the imaginary part k1ref
� corresponds to the attenuation

of the Lamb mode for the roughless plate �thus only taking
into account the effects of the surrounding fluid and of the
bounded nature of the ultrasonic beam�.

Table III reports the experimental imaginary parts k1�,
denoted k1exp

� , of Lamb modes S1, A1, and A2, for each rough
plate. It can be observed that for all the modes, the imaginary
part k1exp

� increases with the root mean square roughness Rq

�see Table II�.

III. SHAPE PROFILE MODEL FOR AN ANISOTROPIC
ROUGH PLATE: DISPERSION EQUATION

This section aims at providing a three-dimensional
model able to predict the characteristics �in particular the
intrinsic wavenumber k1=k1�+ ik1�� of the Lamb modes, which
propagate in an anisotropic rough solid plate in vacuum. As-
suming small roughness, the dispersion equation for Lamb
modes is the same as that for the smooth plate except for an
additional perturbation term. The results provided by the res-
olution of this equation are given in Sec. IV. It should be
noted that this model is a monomode approach �only one

FIG. 3. PSD of a sample of a shot blasted plate �a� average of lines,�b�
average of rows. �1=0.546 mm, �2=0.745 mm, �3=1.640 mm, and �4

=1.22 mm.

FIG. 4. Experimental normalized displacement amplitudes in a rough shot
blasted plate, for Lamb modes A2 �fd=10.8 MHz.mm, thick solid line with
closed diamonds�, S1 �fd=8.7 MHz mm, dotted line with closed squares�,
A1 �fd=5.9 MHz mm, thin solid line with open circles�.

TABLE III. Theoretical wavenumber k10
of the smooth plate, experimental

imaginary part k1 exp� of the wavenumber �multiplied by thickness d of the
plate� for each rough plate, and the corresponding theoretical spatial period
�theor, which gives a theoretical k1� equal to the experimental one, for three
Lamb modes A1, S1, and A2.

Lamb mode A1 S1 A2

fd �MHz mm� 5.9 8.7 10.8
k10

d 8.8 12.7 14.9
Sanded k1 exp� d Not measured 0.003 0.006
�Rq=6.0 �m� �theor /d 0.19 0.474

�theor �mm� 0.95 2.37
Shot blasted k1 exp� d 0.0075 0.025 0.052
�Rq=29.8 �m� �theor /d 0.052 0.109 0.244

�theor �mm� 0.26 0.546�=�1� 1.22�=�4�
Strong shot blasted k1 exp� d 0.071 0.1305 0.144
�Rq=67.4 �m� �theor /d 0.124 0.056 0.034

�theor �mm� 0.62 0.28 0.17
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Lamb mode is considered�, the purpose being to show how
the propagation of a given mode is affected by the rough-
ness.

A. Geometry of the medium assumptions

The anisotropic plate of Fig. 5 is assumed to be bounded
by two parallel planes, only one of them having two-
dimensional shape perturbation �three-dimensional geom-
etry�. The anisotropic plate with regularly shaped �smooth�
surfaces x3=−d /2 and x3= +d /2 is characterized by its thick-
ness d, its density �, and its �6�6� elastic constant matrix
c��. The boundary surface x3=−d /2+h�x1 ,x2� has a weak
shape variation h�x1 ,x2� around the plane x3=−d /2. The
slopes h1�=�h /�x1 and h2�=�h /�x2 are also assumed to be
small.

It is worth noting that in the experiment, the rough plate
is surrounded by a fluid and the ultrasonic beam is bounded
laterally, but in the model, the plate is in vacuum, and the
waves propagating in the plate are assumed to be plane
waves.

In the problem addressed below, only one Lamb mode is
considered �monomode approach�. It is worth noting that an
intermodal approach is considered in the second part of the
paper.

1. Change of basis

As the boundary conditions satisfied by the acoustic field
on the perturbed surface of the plate are given by the require-
ment that the stress vector �linked to the normal to the inter-
face� vanishes at every point of the boundary, the local basis

B̃= �x̃1 , x̃2 , x̃3� has to be considered �see Fig. 5�, x̃3 being the
normal vector to the rough upper surface. The coefficients
�ij of the change-of-basis matrix � from the Cartesian basis
B= �x1 ,x2 ,x3� �associated to the corresponding upper smooth

surface� to the local basis B̃, are such as

� = � 1/N1 0 − h1�/N3

0 1/N2 − h2�/N3

h1�/N1 h2�/N2 1
	 , �5�

where

N1 = �1 + h1�
2, �6a�

N2 = �1 + h2�
2, �6b�

and

N3 = �1 + h1�
2 + h2�

2. �6c�

2. Stress tensor in the local basis B̃

Note 	̃ij and 	k� the coefficients of the stress tensors

expressed, respectively, in the local basis B̃ �linked to each
point M�x� of the surface x3=−d /2+h�x1 ,x2� and in the Car-
tesian basis B�. These coefficients 	̃ij and 	kl are linked to-
gether by the tensor formula

	̃ij = �ik� j�	k�, �7�

which amounts to writing the matricial relation

�̃�x1,x2,x3� = J��x1,x2,x3� , �8�

where J is a �3�6� matrix given in Appendix A,
�̃�x1 ,x2 ,x3�= �	̃33, 	̃23, 	̃13�T and ��x1 ,x2 ,x3�
= �	11,	22,	33,	23,	13,	12�T are, respectively, the �3�1�
column vector depending on the three components of the
stress vector linked to vector x̃3 normal to the upper rough
surface and the �6�1� column vector depending on the six
components of the stress tensor, where T denotes the trans-
pose operation.

Introducing the slowness vector �
�m of the monochro-
matic plane wave �
� in the plate �its components on the
Cartesian basis B being denoted m1, m2 and �
�m3� the total
particle displacement vector can be written as

u�x;t� = �

=1

6
�
�a�
�Pe−i���
�m·x−t�, �9�

where �
�a and �
�P are the displacement amplitude and the
polarization vector of wave �
�, respectively, and where � is
the angular frequency of the waves.

Hooke’s law26 allows to express the stress tensor in the
Cartesian basis ��x1 ,x2 ,x3� as a function of the �6�1� col-
umn vector A= ��1�a , �2�a , �3�a , �4�a , �5�a , �6�a�T �which de-
pends on the six displacement amplitudes �
�a� as follows,
the factor 
−i� exp�−i��m1x1+m2x2− t��� being omitted,

��x1,x2,x3� = DH�x3�A , �10�

where �6�6� matrix D only depends on the elastic constant
matrix c��, of components m1 and m2, respectively, on the
x1-axis and x2-axis of the slowness vector �
�m �they are
identical for all the waves �
� due to the boundary conditions
written for any x1 and for any x2� and of the polarization
vector �
�P �see Appendix B�, and where the �6�6� matrix
H�x3� is a diagonal matrix

H�x3� = diag�exp�− i��
�m3x3�� . �11�

Finally, substituting Eq. �10� into Eq. �8� leads to

�̃�x1,x2,x3� = JDH�x3�A = N�x3�A , �12�

omitting factor 
−i� exp�−i��m1x1+m2x2− t���.

FIG. 5. Anisotropic solid plate in vacuum, with a perturbed boundary
surface.
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B. Second order expansion of stress vector

The second order expansion of the stress vector as a
function of the three parameters h1�, h2�, and h is presented in
two steps. The first one as a function of h1� and h2� �through
the matrix J� and the second one as a function of h �through
matrix H�x3�� around x3=−d /2.

1. Second-order expansion of matrix J as a function
of h1� and h2�

A second-order expansion of all the coefficients of the
change-of-basis matrix � given by Eq. �5� permits to express
the �3�6� matrix J as a linear combination of six matrices:

J � J0 + h1�J1 + h2�J2 + h1�h2�J3 + h1�
2J4 + h2�

2J5, �13�

where the six matrices Jk, k=0, . . . ,5, are given in Appendix
A.

2. Second-order expansion of stress vector
�̃„x1,x2,x3… as a function of h

As the boundary surface x3=−d /2+h�x1 ,x2� has a weak
variation h�x1 ,x2� around the plane x3=−d /2, the matrix
H�x3� is expanded in series, and then the matrix �̃�x1 ,x2 ,x3�,
at a second order as a function of h around this plane.

Using Taylor’s formula, it is easy to obtain the following
expansion:

H�− d/2 + h� � H0
− + hH1

− + h2H2
−, �14�

where matrices H0
−, H1

−, and H2
− are three diagonal matrices

given by

H0
− = diag
exp�i��
�m3d/2�� , �15a�

H1
− = diag
− i��
�m3 exp�i��
�m3d/2�� , �15b�

and

H2
− = diag−

1

2
�2�
�m3

2 exp�i��
�m3d/2�� . �15c�

Substituting Eq. �14� into Eq. �12� yields to a second-order
expansion of matrix N�x3� as a function of h �involved in the
stress vector �̃�x1 ,x2 ,x3� through Eq. �12��,

N�− d/2 + h� � JDH0
− + hJDH1

− + h2JDH2
−. �16�

3. Approximate expression of stress vector
�̃„x1,x2,x3… as a function of h, h1� and h2�

Substituting Eq. �13� into Eq. �16� yields finally to an
approximate expression of matrix N�x3� around the plane
x3=−d /2. This expansion is the sum of 18 matrices, the zero-
order being J0DH0

−,

N�− d/2 + h� � J0DH0
− + h1�J1DH0

− + h2�J2DH0
−

+ h1�h2�J3DH0
− + h1�

2J4DH0
− + h2�

2J5DH0
−

+ hJ0DH1
− + h2J0DH2

− + h�h1�J1 + h2�J2

+ h1�h2�J3 + h1�
2J4 + h2�

2J5�D�H0
− + hH1

−� .

�17�

The final expansion of stress vector �̃�x1 ,x2 ,x3� around the
plane x3=−d /2 is obtained by reporting Eq. �17� into Eq.
�12�.

C. Boundary conditions

Since the plate is in vacuum, the stress vector linked to
the normal to the interfaces vanishes,

�̃�x1,x2,− d/2 + h� = 0, ∀ x1, ∀ x2, �18a�

x3 = − d/2 + h�x1,x2� ,

�̂�x1,x2, + d/2� = 0, ∀ x1, ∀ x2, x3 = + d/2, �18b�

where �̂�x1 ,x2 ,x3�= �	33,	23,	13�T is the �3�1� column
vector depending on the three components of the stress vec-
tor linked to the normal vector x3 to the lower surface, i.e.,
using Eq. �10�,

�̂�x1,x2,x3� = J0DH�x3�A , �19�

omitting factor 
−i� exp�−i��m1x1+m2x2− t���.
The boundary conditions �18a� and �18b� lead to a sixth-

order homogeneous system of equations,

MA = 0 , �20�

where M is a �6�6� matrix of the form

M = �N�− d/2 + h�
J0DH0

+ � , �21�

with

H0
+ = H�x3 = + d/2� = diag�exp�− i��
�m3d/2�� . �22�

Substituting the expansion �17� as a function of h, h1�,
and h2� into Eq. �21� leads to the following expansion of
matrix M:

M � M0 + �M , �23�

where matrix M0 corresponds to the homogeneous system of
equations, written for regularly shaped �smooth� interfaces,
given by

M0 = �J0DH0
−

J0DH0
+� , �24�

and where �M is the sum of seventeen matrices given in
Appendix C.

D. Dispersion equation

The homogeneous system �20� has nonzero solution only
if the determinant det M of matrix M is equal to zero, lead-
ing to the dispersion equation for Lamb modes, which can be
written in the form

det M = F�k1,�� = 0, �25�

where k1 is the projection of the wavenumber vector on the
x1-axis, its real and imaginary parts being denoted k1� and k1�,
respectively. The expression �23� of matrix M can be written
as
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M � M0 + �M = M0�I + M0
−1�M� , �26�

where M0
−1 is the inverse matrix of M0 and I is the identity

matrix. A first-order expansion of Eq. �8� permits the deter-
minant of M to be expressed as follows:

det M � det M0 + Tr�M̃0�M� , �27�

where Tr�X� and X̃ are the trace and the adjoint of matrix X,
respectively. Equation �25� can thus be written in the form

F�k1,�� � F0�k1,�� + �F�k1,�� = 0, �28�

where

F0�k1,�� = det M0, �29a�

and

�F�k1,�� = Tr�M̃0�M� . �29b�

The function F0�k1 ,�� corresponds to the dispersion
equation for classical Lamb modes in a plate with plane sur-
faces. In this case, for a given angular frequency �, the so-
lution is real and is denoted k10

. The roughness of the stress-
free boundary induces a small complex perturbation �k1

=�k1�+ i�k1�. Thus, it is assumed that for a given angular fre-
quency �, the solution k1 of the dispersion Eq. �25� can be
written as

k1 = k10
+ �k1, �30�

the real and imaginary parts of which being related to the
shift frequency and to the attenuation of the wave, respec-
tively. It should be noted that the real part �k1� of the small
complex perturbation �k1 is much smaller than k10

.

E. Physical interpretation

Though there is no absorption in the anisotropic me-
dium, the wavenumber of the Lamb wave, which propagates
in the rough plate, is complex, meaning that the correspond-
ing amplitude decreases as a function of x1, which has al-
ready been observed experimentally �see Sec. II C�.

In fact, the mechanism of decay of a Lamb mode may be
explained as follows �Fig. 6�. When the interfaces are
smooth �Fig. 6�a��, for a given pulsation � and a given wave-
number k10

, phase matching occurs on the two parallel inter-
faces between the six plane waves. When the plate is rough
�Fig. 6�b��, this phase matching does not occur in the same
manner. In other words, it can be said that the initial Lamb
mode is scattered by the roughness. These scattered waves
combine together to create other Lamb modes. In other
words, when impacting the roughness, the main Lamb mode
�0� with wavenumber k10

is scattered, creating other Lamb
modes with different wavenumbers ka, kb, kc, . . .. Thus, by
coupling at the rough interface, there is an energy transfer
between all Lamb modes �0�, �a�, �b�, �c�, . . ., which can
propagate in the plate. Because the energy given by the
source is only provided to the main Lamb mode �0�, statisti-
cally, it is this mode that distributes acoustic energy to the
other modes; thus, its amplitude decreases.

As the present model is a monomode approach, Lamb
mode �0�, the problem �20�, which leads to the dispersion Eq.

�25� or Eq. �28�, is representative of its scattering due to the
roughness and thus of its loss of energy �through energy
transfer to other modes�, which is therefore characterized by
a complex perturbation �k1 of the wavenumber k10

corre-
sponding to the main Lamb mode �0� without roughness.

Results presented below in Part II �Ref. 25� justify this
physical interpretation, in the simple case of a fluid plate
with the same shape profile model but in the frame of an
intermodal approach.

IV. SHAPE PROFILE MODEL FOR AN ANISOTROPIC
ROUGH PLATE: ATTENUATION FACTOR

This section aims at providing theoretical results coming
from the shape profile model developed in Sec. III and to
compare them with the experimental results obtained in Sec.
II. When propagating, the Lamb wave is sensitive to effec-
tive parameters of the roughness, linked to the statistical pa-
rameters Ra and Rq and to the spatial periods � of the profile,
which have to be related to weak parameters, namely the
variation h and the slopes h1� and h2� �see Sec. IV A�. In Sec.
IV B, the numerical resolution of the dispersion Eq. �28� is
discussed briefly, and the importance of the spatial period of
the rough profile is highlighted together with a comparison
between theoretical and experimental results.

A. Effective parameters

For a given angular frequency �, the dispersion Eq. �28�
provides a wavenumber k1 for each abscissa �x1 ,x2� of the
rough profile. It is worth noting that this refinement is con-
sistent with the boundary conditions, which are not self-
similar in the x1 and x2 directions, but it prevents us from
deriving the expected wavenumber, which expresses statisti-
cally averaged effects of the roughness. Moreover, it is ap-
propriate to estimate the attenuation factor due to the rough-
ness �given through the imaginary part k1� of the wavenumber
k1�, which would reflect the statistical properties of the
roughness expressed by the normalized functions Ra or Rq

�Eqs. �1� and �2�, respectively�. In other words, it is suitable
to replace the parameters h, h1�, and h2� expressing the rough-

FIG. 6. Schematic view of energy transfers by coupling on the roughness.
�a� propagation of the main Lamb mode �0� in the plate with smooth inter-
faces, �b� scattering of the main Lamb mode on the roughness and energy
transfers between all the Lamb modes created by coupling.
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ness in expression �28� �through expression �17� of the ma-
trix N� by effective parameters defined as their statistical
averaged expressions, namely for example, Rq for h2,
Ra / �� /4� for both h1� and h2�, assuming in this last approxi-
mation that the rough profile behaves statistically as a peri-
odic sawtooth profile with spatial period � �it appears that
the effect of the slopes h1� and h2� are predominant�.

This first approach provides results that must be re-
garded as qualitative results. In Part II a deeper analysis is
provided, but it is limited to longitudinal waves �fluid guide�.

It is noteworthy that the effective parameters involved in
the dispersion equation are expressed as a function of data
easily accessible experimentally, including the spatial peri-
ods of the rough profile, which are important parameters, as
it will be seen in Sec. IV B and, in Part II �Ref. 25� for the
case of a fluid plate.

B. Solutions of the dispersion equation and results

The numerical resolution of the dispersion Eq. �25� or
Eq. �28� leads, for a given angular frequency �, to a complex
wavenumber k1=k1�+ ik1�. Two methods have been used: the
Simplex algorithm27 and a Taylor expansion �Appendix D�.

Though the Simplex algorithm is a very reliable and ro-
bust method, it needs a starting point and may sometimes
lead to divergent solutions. Moreover, the computation with
this algorithm takes several hours when using a 797 MHz
Processor 2800 in a usual personal computer. In order to
avoid these difficulties, we used a Taylor expansion of the
function F�k1 ,�� at the second-order of parameter �k1 �see
Appendix D for the detailed calculation�. The dispersion
curves obtained by the second-order Taylor expansion are
almost the same as those obtained by the Simplex algorithm.
The computation using Taylor expansion takes about only 5
min and there is no lack of convergence, but higher modes
�mode A7 for example� may not be correctly found �it should
be noted that the modes are here named as in Ref. 28 for
example�. Thus, for most of the cases, the second-order Tay-
lor expansion is sufficient to obtain reliable results, but the
Simplex algorithm may be useful to punctually confirm some
results.

As expected, for the three glass plates �sanded, shot
blasted, and strong shot blasted, see Tables I and II and Sec.
II B�, the real part k1� of the wavenumber is very close to the
real wavenumber k10

corresponding to classical Lamb waves
in a plate with smooth interfaces. As a consequence, the dis-
persion curves for the real part of the wavenumber, i.e.,
curves k1� as functions of frequency f �see Fig. 7�a� for the
shot blasted plate�, are almost the same for all the plates.
This theoretical result is in excellent agreement with the ex-
perimental results summarized in Sec. II B.13,20

As far as the imaginary part k1� of the wavenumber is
concerned, the results strongly depend on the effective pa-
rameters expressing the roughness in expression �28�, these
parameters being related to the statistical characteristics of
the rough profile �expressed by Eqs. �1� and �2�� and, in
particular, to a spatial period � of the profile �see Sec. IV A�.
An example of dispersion curves for k1� as a function of the
frequency is given in Fig. 7�b� for a shot blasted plate with

�=�1=0.546 mm �in order to make the figure clearer for
the present discussion, the upper modes have been cancelled
and the curves have been drawn only in the frequency range
of interest�.

In order to determine how the imaginary part k1� is sen-
sitive to the spatial period �, we have studied the variation
of product k1�d �where d is the thickness of the smooth plate�
as a function of � /d �see Fig. 8 for the shot blasted plate�,
and with a view to comparing with experimental results, the
curves are drawn for three Lamb modes �A1, S1, and A2�, in
the validity domain i.e., assuming that the slopes h1� and h2�
are small �see Sec. III A�. It can be observed that the more
the spatial period � increases, the less the imaginary part k1�
is sensitive to �. As a consequence, the results will be quite
different when taking into account the main spatial periods,
which are involved in the PSD of the rough profile. How-
ever, there might be several quite different PSDs �and thus
several spatial periods� for a given rough profile, depending
on the sampling considered �see Sec. II B and Figs. 3�a� and
3�b��. Therefore, a given Lamb mode can be sensitive to a
given spatial period, whereas another Lamb mode will be
sensitive to another one. For each rough glass plate, the the-
oretical spatial period �, which gives a perfect matching of
the theoretical k1� with the experimental k1� �denoted k1 exp� �, is
reported in Table III. For the shot blasted plate and for mode

FIG. 7. �Color online� Dispersion curves for Lamb waves in a shot blasted
plate ��=�1=0.546 mm� obtained by the three-dimensional model and
second-order Taylor expansion; �a� real part k1�d as a function of frequency f ,
�b� imaginary part k1�d as a function of frequency f .

FIG. 8. Theoretical imaginary part k1� �multiplied by thickness d of the plate�
as a function of the spatial period � �divided by thickness d of the plate, for
a given thickness d� of the shot blasted rough profile, for Lamb modes A2

�fd=10.8 MHz.mm,  /d=0.42, thick solid line with closed diamonds�, S1

�fd=8.7 MHz.mm,  /d=0.494, dotted line with closed squares�, A1 �fd
=5.9 MHz.mm,  /d=0.714, thin solid line with open circles�.
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S1, this spatial period corresponds to, �1=0.546 mm which
is found on the PSD of Fig. 3�a�, and for mode A2, it corre-
sponds to �4=1.22 mm �see Fig. 3�b��. However, for a
given spatial period, �1 for instance, k1�d=0.0034 for the
mode A1, 0.025 for the mode S1, and the 0.012 for mode A2

�see the corresponding closed circle, closed square, and
closed diamond, respectively, in Fig. 7�.

It can also be observed from Fig. 8 that since the spatial
period � is inversely proportional to the roughness average
Ra �see Sec. IV A�, the more Ra increases �i.e., the more �
decreases�, the more k1� increases. This result is in agreement,
for each mode, with the experimental results given in Table
III: the experimental imaginary part k1 exp� increases with Ra.
It should be noted that for the strong shot blasted plate, the
assumption that h1� and h2� small is no more verified and thus
the model is no longer valid.

As a remark, it can be noted that when the condition
�phonon relation�

2k1� � 2�/� = 0 �31�

is satisfied,18,19 there is a strong coupling between the main
Lamb mode and the same Lamb mode created by the scat-
tering on the roughness �this is the case for mode A1, with
�=�3�. The phonon relation will be studied with more de-
tails in Part II.25

V. CONCLUSION

The motivation for this study was to characterize the
influence of a surface roughness on the propagation of waves
in anisotropic rough solid plates, having in mind the charac-
terization of the quality of adhesive joints.

Unlike earlier studies based on the analysis of surface
waves �Rayleigh waves or Scholte waves�, which are not
really dedicated to the characterization of surface roughened
before applying adhesive joints inside plates bounded to-

gether, the current study uses the much more adapted guided
acoustic waves, i.e., Lamb waves. These waves are analyzed
in order to sequentially �i� give experimental results of the
attenuation effects of the surface roughness on the propaga-
tion of several Lamb waves and �ii� calculate the attenuation
factor of the Lamb waves due to the roughness in an aniso-
tropic rough solid plate, through a complex analytical model
of the dispersion equation �monomode shape profile model�.

Consistency between the theoretical and experimental
results is reported. As expected, the real part k1� of the wave-
number k1 is very close to the real wavenumber k10

corre-
sponding to classical Lamb waves in a plate with smooth
interfaces, and the imaginary part k1� increases with the
roughness average Ra. This imaginary part also strongly de-
pends on the spatial periods �, which appear in the rough
profile through its PSD, as verified theoretically. An inter-
modal analytical modeling limited to compressional acoustic
waves �fluid plate�, is done in Part II.25 From this approach a
physical interpretation of several phenomena involved in the
presence of rough interface is given. Numerical validation of
this modeling is also provided using FEM.
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APPENDIX A: EXPRESSIONS OF MATRIX J
Coefficients 	̃ij and 	k� are related by the tensor formula

�7� �see Sec. III A 2�,

	̃ij = �ik� j�	k�, �A1�

where coefficients �ik of the change-of-basis matrix � are
given by Eq. �5�, in particular, �21=�12=0.

As a consequence,

J = � �31
2 �32

2 �33
2 2�32�33 2�31�33 2�31�32

0 �22�32 �23�33 ��22�33 + �23�32� �23�31 �22�31

�11�31 0 �13�33 �13�32 ��11�33 + �13�31� �11�32
	 . �A2�

Substituting Eqs. �5� and �6� into Eq. �A1� and expanding
each coefficient at a second order in h1� and h2� leads to

J � �h1�
2 h2�

2 1 2h2� 2h1� 2h1�h2�

0 h2� − h2� 1 − 3
2h2�

2 − h1�h2� h1�

h1� 0 − h1� − h1�h2�
2 1 − 3

2h1�
2 h2�

	 .

�A3�

This last expression can thus be written as follows:

J � J0 + h1�J1 + h2�J2 + h1�h2�J3 + h1�
2J4 + h2�

2J5, �A4�

where

J0 = �0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
	 , �A5�

J1 = �0 0 0 0 2 0

0 0 0 0 0 1

1 0 − 1 0 0 0
	 , �A6�

J2 = �0 0 0 2 0 0

0 1 − 1 0 0 0

0 0 0 0 0 1
	 , �A7�

074908-8 Potel et al. J. Appl. Phys. 104, 074908 �2008�



J3 = �0 0 0 0 0 2

0 0 0 0 − 1 0

0 0 0 − 1 0 0
	 , �A8�

J4 = �1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 − 3/2 0
	 , �A9�

J5 = �0 1 0 0 0 0

0 0 0 − 3/2 0 0

0 0 0 0 0 0
	 . �A10�

APPENDIX B: EXPRESSIONS OF MATRIX D
Hooke’s law, which relates coefficients 	ij of the stress

tensor to the coefficients of the strain tensor �through com-
ponents uk of the displacement vector u given by Eq. �9��,
can be written as

	ij = cijk� � uk/�x�, �B1�

where cijk��i , j ,k ,�=1,2 ,3� are the coefficients of the rigid
elastic fourth-order tensor, related to coefficients c���� ,�
=1, ¯ ,6� of the rigid elastic �6�6� matrix c�� by the con-
vention �↔ �ij� and �↔ �k��, with

1 ↔ �11�, 2 ↔ �22�, 3 ↔ �33� ,

4 ↔ �23�, 5 ↔ �13�, 6 ↔ �12� . �B2�

Substituting expression �9� of the displacement vector u into
Eq. �B1� leads to

	� = �

=1

6
�
�aD�
e−i��
�m3x3, � = 1, ¯ 6, �B3�

omitting factor 
−i� exp�−i��m1x1+m2x2− t���, where

D�
 = c�1m1
�
�P1 + c�2m2

�
�P2 + c�3
�
�m3

�
�P3

+ c�4��
�m3
�
�P2 + m2

�
�P3� + c�5��
�m3
�
�P1

+ m1
�
�P3� + c�4�m2

�
�P1 + m1
�
�P2� �B4�

are the coefficients of �6�6� matrix D, m1, and m2 being the
components on x1-axis and x2-axis of the slowness vector m
of all the waves �
�, and �
�Pj being the components on
xj-axis of the polarization vector of the wave �
�.

Finally, Eq. �B3� can be written in the following matri-
cial form:

��x1,x2,x3� = DH�x3�A , �B5�

omitting factor 
−i� exp�−i��m1x1+m2x2− t���, where matri-
ces H�x3� and A are defined in Sec. III A 2.

APPENDIX C: EXPANSION OF MATRIX M
The expansion of matrix M is obtained by substituting

the expansion �17� of matrix N�−d /2+h� into expression
�21� of matrix M,

M � M0 + �M , �C1�

where M0 is given by Eq. �24� and �M by

�M � h1�M1 + h2�M2 + h1�h2�M3 + h1�
2M4 + h2�

2M5 + hM6

+ h2M7 + hh1�M8 + hh2�M9 + hh1�h2�M10 + hh1�
2M11

+ hh2�
2M12 + h2h1�M13 + h2h2�M14 + h2h1�h2�M15

+ h2h1�
2M16 + h2h2�

2M17. �C2�

The seventeen matrices are given by

M1 = �J1DH0
−

0
�, M2 = �J2DH0

−

0
� , �C3�

M3 = �J3DH0
−

0
�, M4 = �J4DH0

−

0
� ,

M5 = �J5DH0
−

0
�, M6 = �J0DH1

−

0
� ,

M7 = �J0DH2
−

0
�, M8 = �J1DH1

−

0
� ,

M9 = �J2DH1
−

0
�, M10 = �J3DH1

−

0
� ,

M11 = �J4DH1
−

0
�, M12 = �J5DH1

−

0
� ,

M13 = �J1DH2
−

0
�, M14 = �J2DH2

−

0
� ,

M15 = �J3DH2
−

0
�, M16 = �J4DH2

−

0
� ,

M17 = �J5DH2
−

0
� .

APPENDIX D: SECOND-ORDER TAYLOR EXPANSION
OF THE DISPERSION RELATION FOR LAMB
MODES

The dispersion equation for Lamb modes in the rough
plate is of the form �see Sec. III D�

F�k1,�� = 0, �D1�

with

F�k1,�� � F0�k1,�� + �F�k1,�� , �D2�

and

F0�k10
,�� = 0, �D3�

where k10
is the solution of the dispersion Eq. �D3�, for a

given pulsation �, for the classical Lamb modes in a plate
with smooth interfaces.

It is assumed that, for a given angular frequency �, so-
lution k1 of Eq. �D2� is of the form

074908-9 Potel et al. J. Appl. Phys. 104, 074908 �2008�



k1 = k10
+ �k1, �D4�

where �k1 is a complex number.

1. First-order expansion

Using Eq. �D4�, function F�k1 ,�� can be expanded at the
first-order,

F�k1,�� � F0�k10
,�� + �k1

�F

�k1
�k10

,�� . �D5�

Substituting Eq. �D2� into Eq. �D5� and using Eqs. �D1� and
�D3� yields to

�k1 � − �F�k10
,��/

�F

�k1
�k10

,�� , �D6�

denoted below �k1
�1�.

2. Second-order expansion

Using Eq. �D4�, function F�k1 ,�� can also be expanded
at the second-order. Its vanishing leads to a polynomial func-
tion of the second degree in the variable �k1:

��k1�2�2F

�k1
2 �k10

,�� + 2��k1�
�F

�k1
�k10

,�� + 2�F�k10
,�� � 0

�D7�

which has two roots

�k1 � − � �F

�k1
�k10

,�� � ��/
�2F

�k1
2 �k10

,�� , �D8a�

denoted below �k1
�2�, with

�2 = � �F

�k1
�k10

,���2

− 2�F�k10
,��

�2F

�k1
2 �k10

,�� . �D8b�

If these two roots have opposite imaginary parts, the physical
root corresponds to a decreasing of the Lamb wave, i.e., to
Im��k1

�2��=�k1�
�2��0. If the imaginary parts of the two roots

has the same sign, the chosen root is such as its imaginary
part �k1�

�2� is the closest to the imaginary part �k1�
�1� coming

from the first-order expansion �see Eq. �D5��.
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