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Finite volume scheme for two-phase flows in heterogeneous porous

media involving capillary pressure discontinuities

Clément Cancès∗†

Abstract

We study a one-dimensional model for two-phase flows in heterogeneous media, in which the capillary

pressure functions can be discontinuous with respect to space. We first give a model, leading to a system

of degenerated nonlinear parabolic equations spatially coupled by nonlinear transmission conditions. We

approximate the solution of our problem thanks to a monotonous finite volume scheme. The convergence of

the underlying discrete solution to a weak solution when the discretization step tends to 0 is then proven.

We also show, under assumptions on the initial data, a uniform estimate on the flux, which is then used

during the uniqueness proof. A density argument allows us to relax the assumptions on the initial data and

to extend the existence-uniqueness frame to a family of solution obtained as limit of approximations. A

numerical example is then given to illustrate the behavior of the model.

MSC subject classification. 35R05, 65M12
keywords. capillarity discontinuities, degenerate parabolic equation, finite volume scheme

Introduction

The models of immiscible two-phase flows in porous media are widely used in petroleum engineering in order to
predict the positions where oil could be collected. The discontinuities of the physical characteristics due to brutal
change of lithology play a crucial role in the phenomenon of oil trapping, preventing the light hydrocarbons
from reaching the surface. It seems that the discontinuities with respect to the space variable of a particular
function, called the capillary pressure, are responsible of the phenomenon of oil-trapping [38, 10].

In this paper, we consider one-dimensional two-phase flows in heterogeneous porous media, which are made
of several homogeneous submedia. A simplified model of two-phase flow within this rock is described in the first
section, leading to the definition of the weak solution. The transmission conditions at the interface between the
different submedia are written using the graph formalism introduced in [19] for the connection of the capillary
pressures, which is simple to manipulate and allows to deal with any type of discontinuity of the domain, without
any compatibility constraint, contrary to what occurs in [14] and to a lesser extent in [10, 23].

The graph way to connect the capillary pressures at the interfaces is well suited to be discretized by a
monotonous Finite Volume scheme. A discretization is proposed in the second section of the paper. Adapting
the material from the book of Eymard, Gallouët & Herbin [25] to our case, it is shown that the discrete solution
provided by the scheme converges, up to a subsequence, to a weak solution as the step of the discretization
tends to 0. The monotonicity of the transmission conditions is fundamental for proving the convergence of the
scheme.

Unfortunately, we are not able to show the uniqueness of the weak solution to the problem, because of the
lack of regularity. As it will be shown in the fourth section, supposing that the fluxes are uniformly bounded
with regard to space and time is sufficient to claim the uniqueness of the solution. The uniqueness proof is
an adaptation of the one given in [19] to the case where the convection is not neglected. Here again, the
monotonicity of the transmission conditions at the interfaces is strongly used.

The existence of a bounded flux solution is the topic of Section 3. It is shown that if the initial data is regular
enough to ensure that the initial flux is bounded with respect to space, then the flux will remain bounded with
respect to space and to time. Such a result has already been obtained in [19], where a parabolic regularization
of the problem had been introduced. A maximum principle on the flux follows. We also quote [10], in which
a BV -estimate is shown on the flux. Since the monotonous schemes introduce some numerical diffusion, a
strong analogy can be done between a uniformly parabolic regularization of the problem and the numerical
approximation via a monotonous scheme. The convergence of the discrete solution to a bounded flux solution
for regular enough initial data is thus naturally expected and stated in Theorem 3.1. The monotonicity of the
transmission relations is essential during the proof.
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We are able to prove the uniqueness of the bounded-flux solution to the problem using the doubling variable
technique. This work performed in Section 4 is summarized in Theorem 4.1

In Section 5, a density argument allows to extend the existence and uniqueness frame to any initial data,
using the notion of SOLA (Solution Obtained as Limit of Approximation). It is a more restrictive notion than
the notion of weak solution, even if we are not able to prove the existence of a weak solution which is not a
SOLA. The main result of the paper is given in Theorem 5.1, which claims that the whole sequence of discrete
solutions built using the finite volume scheme introduced in Section 2 converges towards the unique SOLA to
the problem.

Finally, a numerical example is given in Section 6. This example gives an evidence of the entrapment of a
certain quantity of oil under the interface.

1 Presentation of the problem

We consider a one-dimensional heterogeneous porous medium, which is an apposition of homogeneous porous
media, representing the different geological layers. The physical properties of the medium only depend on the
rock type and are piece-wise constant.

For the sake of simplicity, we only deal with two geological layers of same size. A generalization to an
arbitrary finite number of geological layers would only lead to notation difficulties. In the sequel, we denote by
Ω = (−1, 1) the heterogeneous porous medium, and by Ω1 = (−1, 0), Ω2 = (0, 1) the two homogeneous layers.
The interface between the layers is thus {x = 0}. T is a positive real value.

We consider an incompressible and immiscible oil-water flow through Ω. Writing the conservation of each
phase, and using Darcy’s law leads to: for all (x, t) ∈ Ωi × (0, T ),

φi∂tu− ∂x [µo,i(u) (∂xPo,i − ρog)] = 0, (1)

− φi∂tu− ∂x [µw,i(u) (∂xPw,i − ρwg)] = 0, (2)

where φi ∈ (0, 1) is the porosity of the porous media Ωi, u is the oil-saturation (then (1 − u) is the water-
saturation), µβ,i is the mobility of the phase β = w, o, where w stands for water, and o for oil. We denote by
Pβ,i the pressure of the phase β, by ρβ its density, and by g the gravity.

Adding (1) and (2) shows that :
∂xq = 0,

where
q = −µw,i(u) (∂xPw,i − ρwg) − µo,i(u) (∂xPo,i − ρog) (3)

is the total flow-rate. For the sake of simplicity, we suppose that q does not depend on time, even if all the
results presented below still hold for q ∈ BV (0, T ), as it is shown in [13, chapter 4].

Using (3) in (1) and (2) yields:

φi∂tu+ ∂x

(

µo,i(u)

µo,i(u) + µw,i(u)
q + λi(u)(ρo − ρw)g − λi(u)∂x(Po,i − Pw,i)

)

= 0, (4)

where

λi(u) =
µo,i(u)µw,i(u)

µo,i(u) + µw,i(u)
.

One assumes that the capillary pressure (Po,i−Pw,i) depends only on the saturation and of the rock type. More
precisely, (Po,i −Pw,i) = πi(u), where πi(u) is supposed to be an increasing Lipschitz continuous function. The
equation (4) becomes

φi∂tu+ ∂x (fi(u) − λi(u)∂xπi(u)) = 0, (5)

where

fi(u) =
µo,i(u)

µo,i(u) + µw,i(u)
q(t) + λi(u)(ρo − ρw)g.

We do the following assumptions on the functions appearing in the equation.

Assumptions 1 For i = 1, 2, one has:

1. πi is an increasing Lipschitz continuous function;

2. µo,i is an increasing Lipschitz continuous function on [0, 1], with µo,i(0) = 0;

3. µw,i is a decreasing Lipschitz continuous function on [0, 1], with µw,i(1) = 0.
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Remark 1.1 It is often supposed for such problems that the functions µβ,i are monotonous in a large sense,
and that there exist irreducible saturations si, Si ∈ (0, 1), with si < Si, such that

µo,i(u) = 0 if u ∈ [0, si], µw,i(u) = 0 if u ∈ [Si, 1].

If we assume that the functions µβ,i are strictly monotonous on their support, a convenient scaling would allow
us to suppose that assumptions 1 are fulfilled.

We denote by ϕi(s) =
∫ s

0 λi(a)π
′
i(a)da, then (5) can be rewritten

φi∂tu+ ∂x (fi(u) − ∂xϕi(u)) = 0. (6)

Properties 1.1 It follows directly from assumptions 1 that for i = 1, 2 :

1. fi is Lipschitz continuous and fi(0) = 0, fi(1) = q;

2. λi is Lipschitz continuous, and λi(0) = λi(1) = 0, λi(u) > 0 if u > 0;

3. ϕi is an increasing Lipschitz continuous fulfilling ϕi(0) = 0, ϕ′
i(0) = ϕ′

i(1) = 0.

We deduce from the properties 1.1 that (6) is a degenerated nonlinear parabolic equation.
Let us now focus on the transmission conditions through the interface {x = 0}. We denote by αi =

lims→0 πi(s) and βi = lims→1 πi(s). We define the monotonous graphs π̃i by:

π̃i(s) =







πi(s) if s ∈ (0, 1),
(−∞, αi] if s = 0,
[βi,+∞) if s = 1.

(7)

Let ui denote the trace of u|Ωi
on {x = 0} (which is supposed to exist for the moment). The trace on

{x = 0} from Ωi of the pressure Pβ,i of the phase β is still denoted by Pβ,i. As it is exposed in [23] (see also
[19]), the pressure of the phase β can be discontinuous through the interface {x = 0} in the case where it is
missing in the upstream side. This can be written

µβ,1(u1)(Pβ,1 − Pβ,2)
+ − µβ,2(u2)(Pβ,2 − Pβ,1)

+ = 0, β ∈ {o, w}. (8)

The conditions (8) have direct consequences on the connection of the capillary pressures through {x = 0}.
Indeed, if 0 < u1, u2 < 1, then the partial pressures Po and Pw have both to be continuous, thus the connection
of the capillary pressures π1(u1) = π2(u2) is satisfied. If u1 = 0 and 0 < u2 ≤ 1, then Po,1 ≥ Po,2 and
Pw,1 ≤ Pw,2, thus π2(u2) ≤ π1(0). The same way, u1 = 1 and 0 ≤ u2 < 1 implies π2(u2) ≥ π1(1). Checking
that the definition of the graphs π̃1 and π̃2 implies π̃1(0) ∩ π̃2(0) 6= ∅, π̃1(1) ∩ π̃2(1) 6= ∅, we can claim that (8)
implies:

π̃1(u1) ∩ π̃2(u2) 6= ∅. (9)

The conservation of each phase leads to the connection of the fluxes on {x = 0}. Denoting by Fi the flux in Ωi,
i.e. for all x ∈ Ωi,

Fi(x, t) = fi(u)(x, t) − ∂xϕi(u)(x, t),

the connection of the fluxes through the interface can be written

F1(0, ·) = F2(0, ·), (10)

where (10) has to be understood in a weak sense.
We now turn to the problem of the boundary conditions. Because of technical difficulties occurring during

section 4, we want that the solution to the flow admits bounded fluxes, at least for regular initial data. This
will force us to consider specific boundary conditions, which will involve bounded fluxes.
Let Gi : (a, b) 7→ Gi(a, b) (i = 1, 2) be a function fulfilling the following properties :

• Gi is Lipschitz continuous, non-decreasing w.r.t. its first argument, and non-increasing w.r.t. the second.

• for all a ∈ [0, 1], Gi(a, a) = fi(a).
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Let u, u ∈ L∞(0, T ), 0 ≤ u, u ≤ 1 a.e., we choose the boundary condition

F1(−1, t) = G1(u(t), u(−1, t)), F2(1, t) = G2(u(1, t), u(t)). (11)

The way in which we approximate the boundary condition shall be judiciously compared with the discretization
of the boundary conditions for scalar hyperbolic conservation laws using monotonous Finite Volume schemes
(see [39]).

We consider an initial data u0 ∈ L∞(Ω), with 0 ≤ u0 ≤ 1, then we can write the initial-boundary-value
problem:































φi∂tu+ ∂x [fi(u) − ∂xϕi(u)] = 0 in Ωi × (0, T ),
F1(0, ·) = F2(0, ·) on (0, T ),
π̃1(u1) ∩ π̃2(u2) 6= ∅ on (0, T ),
u(t = 0) = u0 in Ω,
F1(−1, t) = G1(u(t), u(−1, t)) on (0, T ),
F2(1, t) = G2(u(1, t), u(t)) on (0, T ).

(P)

We now define the notion of weak-solution

Definition 1.1 A function u is said to be a weak solution to the problem (P) if it fulfills:

1. u ∈ L∞(Ω × (0, T )), with 0 ≤ u ≤ 1;

2. for i = 1, 2, ϕi(u) ∈ L2(0, T ;H1(Ωi));

3. for a.e. t ∈ (0, T ), π̃1(u1(t)) ∩ π̃2(u2(t)) 6= ∅, where ui denotes the trace of u|Ωi
on {x = 0};

4. for all ψ ∈ D(Ω × [0, T [), denoting by u(1, ·) and u(−1, ·) the traces of u on the boundary,

∫ T

0

∑

i=1,2

∫

Ωi

φiu(x, t)∂tψ(x, t)dxdt +
∑

i=1,2

∫

Ωi

φiu0(x)ψ(x, 0)dx

+

∫ T

0

∑

i=1,2

∫

Ωi

[fi(u)(x, t) − ∂xϕi(u)(x, t)] ∂xψ(x, t)dxdt

+

∫ T

0

G1(u(t), u(−1, t))ψ(−1, t)dt−

∫ T

0

G2(u(1, t), u(t))ψ(1, t)dt = 0. (12)

2 The finite volume scheme

In this section, we build an implicit finite volume scheme in order to approximate a solution of (P). We will
adapt the convergence proofs stated in [21, 25, 23], which are based on monotonicity properties of the scheme.
This will allow us to claim the convergence in Lp(Ω × (0, T )), up to a subsequence, of the discrete solutions
built using the finite volume scheme towards a weak solution to the problem as step of the the discretization
tends to 0.

2.1 The finite volume approximation

We first need to discretize all the data, so that we can define an approximate problem through the finite volume
scheme.

Discretization of Ω: for the sake of simplicity, we will only deal with uniform spatial discretizations. Let
N ∈ N

⋆, one defines:
{

xj = j/N, ∀j ∈ [[−N,N]],

xj+1/2 =
j + 1/2

N
, ∀j ∈ [[−N,N − 1]].

One denotes by δx = 1/N .
Discretization of (0, T ): once again, we will only deal with uniform discretizations. Let M ∈ N

⋆, one
defines: for all n ∈ [[0,M]], tn = nT/M . One denotes by δt = T/M . We denote by D the discretization of
Ω × (0, T ) deduced of those of Ω and (0, T ).

Discretization of u0: ∀j ∈ [[−N,N − 1]],

u0,D(xj+1/2) = u0
j+1/2 =

1

δx

∫ xj+1

xj

u0(x)dx. (13)
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Discretization of the boundary conditions: ∀n ∈ [[0,M]],

un+1 =
1

δt

∫ tn+1

tn
u(t)dt, un+1 =

1

δt

∫ tn+1

tn
u(t)dt.

The Finite Volume scheme: the first equation of (P) can be rewritten:

φi∂tu+ ∂xFi(x, t) = 0, in Ω × (0, T )

with Fi(x, t) = fi(u) − ∂xϕi(u). We consider the following implicit scheme: ∀j ∈ [[−N,N − 1]], ∀n ∈ [[0,M − 1]],

φi
un+1
j+1/2 − unj+1/2

δt
δx+ Fn+1

j+1 − Fn+1
j = 0 (14)

where Fn+1
j is an approximation of the mean flux through xj on (tn, tn+1), and i is chosen such that (xj , xj+1) ⊂

Ωi. This notation will hold all along the paper. We choose a monotonous discretization of the flux: ∀j ∈
[[−N + 1,−1]] ∪ [[1,N − 1]], ∀n ∈ [[0,M − 1]],

Fn+1
j = Gi(u

n+1
j−1/2, u

n+1
j+1/2) −

ϕi(u
n+1
j+1/2) − ϕi(u

n+1
j−1/2)

δx
, (15)

where Gi is the same function as the one defined in (11). We also define

Fn+1
−N = G1(u

n+1, u−N+1/2), Fn+1
N = G2(uN−1/2, u

n+1), (16)

Fn+1
0 = G1(u

n+1
−1/2, u

n+1
0,1 ) −

2(ϕ1(u
n+1
0,1 ) − ϕ1(u

n+1
−1/2))

δx
(17)

= G2(u
n+1
0,2 , un+1

1/2 ) −
2(ϕ2(u

n+1
1/2 ) − ϕ2(u

n+1
0,2 ))

δx
, (18)

where un+1
0,1 , un+1

0,2 moreover satisfy

π̃1(u
n+1
0,1 ) ∩ π̃2(u

n+1
0,2 ) 6= ∅. (19)

Remark 2.1 The choice of the boundary conditions Fn+1
±N has been done in order to ensure

∣

∣Fn+1
−N

∣

∣ ≤ ‖G1‖∞ <∞,
∣

∣Fn+1
N

∣

∣ ≤ ‖G2‖∞ <∞.

Thanks to the following lemma, such a couple (un+1
0,1 , un+1

0,2 ) is unique in [0, 1]2, thus the discrete transmission
conditions system (17)-(18)-(19) is well posed.

Lemma 2.1 For all (a, b) ∈ [0, 1]2, there exists a unique couple (c, d) ∈ [0, 1]2 such that:
{

G1(a, c) −
2(ϕ1(c) − ϕ1(a))

δx
= G2(d, b) −

2(ϕ2(b) − ϕ2(d))

δx
,

π̃1(c) ∩ π̃2(d) 6= ∅.
(20)

Furthermore, (a, b) 7→ c and (a, b) 7→ d are continuous and nondecreasing w.r.t. each one of their arguments.

Proof
For i = 1, 2, π̃−1

i are continuous non-decreasing functions, increasing on [πi(0), πi(1)] and constant otherwise.
Then we can build the continuous non-decreasing function Λ, defined by

Λ :

{

R → R

p 7→ G2(π̃
−1
2 (p), b) −G1(a, π̃

−1
1 (p)) +

2

δx

(

ϕ1 ◦ π̃
−1
1 (p) − ϕ1(a) + ϕ2 ◦ π̃

−1
2 (p) − ϕ2(b)

)

.

For all p such that Λ(p) = 0, the couple (π̃−1
1 (p), π̃−1

2 (p)) is a solution to the discrete transmission conditions
system (17)-(18)-(19). It is easy to check, using the monotonicity of the functions Gi that for all p ≤ minπi(0),
Λ(p) ≤ 0. Symmetrically, for all p ≥ maxπi(1), Λ(p) ≥ 0. Thus there exists p⋆ such that Λ(p⋆) = 0.

Suppose that there exists i such that p⋆ ∈ (πi(0), πi(1)), then since ϕi is increasing, Λ is increasing on a
neighborhood of p⋆, and then the solution to the system (20) is unique.

Suppose now that p⋆ /∈
⋃

i(πi(0), πi(1)). Either p⋆ ≤ mini πi(0), then c = d = 0, or p⋆ ≥ maxi πi(1), then
c = d = 1, or p⋆ ∈ [πk(1), πl(0)] for k 6= l. We can suppose without any loss of generality that p⋆ ∈ [π1(1), π2(0)],
then the unique solution to the system (20) is given by c = 1, d = 0.

To conclude the proof of the lemma, it only remains to check that (a, b) 7→ Λ is decreasing w.r.t. each one of
its arguments, then the monotonicity of Λ and π̃−1

i ensures that (a, b) 7→ c and (a, b) 7→ d are non-decreasing.
�

5



2.2 Existence and uniqueness of the discrete solution

We will now work on the implicit finite volume scheme given by (13)-(19) to show that this approximate problem
is well-posed.

Definition 2.1 Let N,M be two positive integers and D be the associated discretization of Ω × (0, T ). One
defines:

XD,i =

{

z ∈ L∞(Ωi × (0, T )) / ∀(xj , xj+1) ⊂ Ωi, ∀n ∈ [[0,M − 1]],
z|(xj,xj+1)×(tn,tn+1] is a constant

}

,

and
XD =

{

z ∈ L∞(Ω × (0, T )) / ∀i = 1, 2, z|Ωi×(0,T ) ∈ XD,i

}

.

One defines uD(x, t) ∈ XD, called discrete solution, given almost everywhere in (−1, 1) × (0, T ) by: for all
j ∈ [[−N,N − 1]], for all n ∈ [[0,M − 1]],

{

uD(x, 0) = u0,D(x) = u0
j+1/2 if (x, t) ∈ (xj , xj+1),

uD(x, t) = un+1
j+1/2 if (x, t) ∈ (xj , xj+1) × (tn, tn+1],

where
(

un+1
j+1/2

)

j,n
are given by the scheme (14).

The monotonicity of the flux Fn+1
j w.r.t.

(

un+1
k+1/2

)

k
allows us to rewrite the scheme (14) under the form

Hj+1/2

(

un+1
j+1/2, u

n
j+1/2

(

un+1
k+1/2

)

k 6=j

)

= 0, (21)

where Hj+1/2 is continuous, increasing w.r.t. its first argument, and non-increasing w.r.t. all the others.

Definition 2.2 A function vD is said to be a discrete supersolution (resp. wD is a discrete subsolution) if
it belongs to X (D), and if it satisfies: ∀j ∈ [[−N,N − 1]],

Hj+1/2

(

vn+1
j+1/2, v

n
j+1/2

(

vn+1
k+1/2

)

k 6=j

)

≥ 0,

(resp. Hj+1/2

(

wn+1
j+1/2, w

n
j+1/2

(

wn+1
k+1/2

)

k 6=j

)

≤ 0 ).
Remark 2.2 A function uD is a discrete solution to the scheme if and only if it is both a supersolution and a
subsolution.

Remark 2.3 It follows from the definition of the scheme, particularly from the definitions of the discrete
boundary conditions (16) and of the discrete fluxes at the interface (17)-(18), that the constant function equal
to 1 is a discrete supersolution, and that the constant function equal to 0 is a discrete subsolution.

We now focus on the existence and the uniqueness of the discrete solution to the scheme. In order to prove the
existence of a discrete solution, we first need an a priori estimate on it.

Lemma 2.2 Let uD be a discrete solution to the scheme associated to the initial data u0,D, let vD be a discrete
supersolution associated to the initial data v0,D, then for all t ∈ [0, T ],

∑

i=1,2

∫

Ωi

φi (uD(x, t) − vD(x, t))
+
dx ≤

∑

i=1,2

∫

Ωi

φi (u0,D(x) − v0,D(x))
+
dx.

Symmetrically, if wD is a subsolution associated to the initial w0,D,

∑

i=1,2

∫

Ωi

φi (uD(x, t) − wD(x, t))− dx ≤
∑

i=1,2

∫

Ωi

φi (u0,D(x) − w0,D(x))− dx.

Proof
Denoting by a⊤b = max(a, b), and a⊥b = min(a, b), it follows from the monotonicity of the functions Hj+1/2

implies that

Hj+1/2

(

un+1
j+1/2, u

n
j+1/2⊤w

n
j+1/2

(

un+1
k+1/2⊤w

n+1
k+1/2

)

k 6=j

)

≤ 0,
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Hj+1/2

(

wn+1
j+1/2, u

n
j+1/2⊤w

n
j+1/2

(

un+1
k+1/2⊤w

n+1
k+1/2

)

k 6=j

)

≤ 0,

where wD is a subsolution. Since un+1
j+1/2⊤w

n+1
j+1/2 is either equal to un+1

j+1/2 or to wn+1
j+1/2,

Hj+1/2

(

un+1
j+1/2⊤w

n+1
j+1/2, u

n
j+1/2⊤w

n
j+1/2

(

un+1
k+1/2⊤w

n+1
k+1/2

)

k 6=j

)

≤ 0. (22)

Thanks to the conservativity of the scheme, subtracting (21) to (22), and summing on j ∈ [[−N,N − 1]] yields

∑

i=1,2

∫

Ωi

φi
(

uD(x, tn+1) − wD(x, tn+1)
)−

dx ≤
∑

i=1,2

∫

Ωi

φi (uD(x, tn) − wD(x, tn))
−
dx.

Since this inequality holds for any n ∈ [[0,M − 1]], it directly gives: ∀t ∈ [0, T ],

∑

i=1,2

∫

Ωi

φi (uD(x, t) − wD(x, t))
−
dx ≤

∑

i=1,2

∫

Ωi

φi (uD(x, 0) − wD(x, 0))
−
dx. (23)

The proof of the discrete comparison principle between a discrete solution and a discrete supersolution can be
performed similarly. �

Let us now state the existence and the uniqueness of the discrete solution.

Proposition 2.3 Let u0 ∈ L∞(Ω), 0 ≤ u0 ≤ 1 a.e., then there exists a unique discrete solution uD to the
scheme, which furthermore fulfills 0 ≤ uD ≤ 1 a.e.. Moreover, if v0 stands for another initial data, 0 ≤ v0 ≤ 1,
approximated by v0,D following (13), and if we denote by vD the corresponding discrete solution, then the
following L1-contraction principle holds;

∑

i=1,2

∫

Ωi

φi (uD(x, t) − vD(x, t))
±
dx ≤

∑

i=1,2

∫

Ωi

φi (u0,D(x) − v0,D(x))
±
dx, ∀t ∈ [0, T ].

Proof
It follows from Remark 2.3 and from Lemma 2.2 that the following L∞ a priori estimate holds:

0 ≤ uD(x, t) ≤ 1, for all t ∈ [0, T ], for almost all x ∈ Ω.

Thanks to this estimate, mimicking the proof given in [24], we can claim the existence of a discrete solution
uD. Suppose that uD and vD are two solutions associated to the initial data u0,D and v0,D. As it was stressed
in the remark 2.2, both uD and vD are both discrete sub- and supersolutions. Then, Lemma 2.2 ensures that
the following L1-contraction principle holds:

∑

i=1,2

∫

Ωi

φi (uD(x, t) − vD(x, t))± dx ≤
∑

i=1,2

∫

Ωi

φi (u0,D(x) − v0,D(x))± dx, ∀t ∈ [0, T ].

The uniqueness of the discrete solution uD corresponding to the initial data u0 follows. �

2.3 The L2((0, T ); H1(Ωi)) estimates

The current subsection is devoted to the proof of the discrete energy estimate stated in Proposition 2.4. Since
the discrete solutions are only piecewise constant, we need to introduce discrete semi-norms, which are discrete
analogues to the L2((0, T );H1(Ωi)) semi-norms.

Definition 2.3 Let i = 1, 2, one defines the discrete L2(0, T ;H1(Ωi)) semi-norms |·|1,D,i on XD,i by: ∀z ∈ XD,i,

|z|21,D,i =

M−1
∑

n=0

δt
∑

j∈Jint,i

δx

(

z(xj+1/2, t
n+1) − z(xj−1/2, t

n+1)

δx

)2

,

where Jint,1 = [[−N + 1,−1]] and Jint,2 = [[1,N − 1]].

Proposition 2.4 For i = 1, 2, one defines the Lipschitz continuous increasing functions

ξi : s 7→

∫ s

0

√

λi(a)π
′
i(a)da.

There exists C > 0 only depending on πi, φi, T,Gi such that:
∑

i=1,2

|ξi(uD)|21,D,i ≤ C.
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This estimate is the discrete analogue to:

∑

i=1,2

∫ T

0

∫

Ωi

|∂xξi(u)(x, t)|
2dxdt ≤ C.

In order to prove Proposition 2.4, we will need the following technical lemma. To understand this lemma, first
suppose that the total flow rate q is 0. Then, roughly speaking, it claims that, in the case where the capillary
pressure is discontinuous at the interface, the discrete flux is oriented from the high capillary pressure to the
low capillary pressure. Suppose now that q 6= 0. In order to respect the conservation of mass, some fluid will
have to go through the interface, but we keep a control on the energy.

Lemma 2.5 Let (a, b) ∈ [0, 1]2, and let (c, d) ∈ [0, 1]2 be the unique solution to the system (20), as stated in
Lemma 2.1, then the following inequality holds:

(π1(c)−π2(d))

(

G1(a, c) +
ϕ1(a) − ϕ1(c)

δx/2

)

= (π1(c)−π2(d))

(

G2(d, b) +
ϕ2(d) − ϕ1(b)

δx/2

)

≥ −|q||π1(c)−π2(d)|.

Proof
In this proof, we suppose that π1(0) ≥ π2(0) and π1(1) ≥ π2(1), the other cases do not bring any other
difficulties. One has π̃1(c) ∩ π̃2(d) 6= ∅, so there are three different cases:

• π1(c) = π2(d): in this case, one has directly:

(π1(c) − π2(d))

(

G1(a, c) +
ϕ1(a) − ϕ1(c)

δx/2

)

= 0.

• π2(d) < π1(0): the relation π̃1(c) ∩ π̃2(d) 6= ∅ ensures that c = 0, thus it follows from the monotonicity of
ϕ1 and G1 that ϕ1(a) ≥ ϕ1(0) = 0, and G1(a, 0) ≥ G1(0, 0) = f1(0) = 0. This gives:

(π1(c) − π2(d))

(

G1(a, c) +
ϕ1(a) − ϕ1(c)

δx/2

)

≥ 0.

• π1(c) > π2(1): this implies d = 1. From the monotonicity of ϕ2 and G2, we deduce that ϕ2(b) ≤ ϕ2(1)
and G2(1, b) ≥ G2(1, 1) = q. This yields

(π1(c) − π2(d))

(

G2(d, b) +
ϕ2(d) − ϕ1(b)

δx/2

)

≥ q|π1(c) − π2(d)|.

� Proof of Proposition 2.4. First check that the scheme (14) can be rewritten

un+1
j+1/2 − unj+1/2

δt
δx+

(

Fn+1
j+1 − fi(u

n+1
j+1/2)

)

−
(

Fn+1
j − fi(u

n+1
j+1/2)

)

= 0.

We multiply the previous equation by δtπi(u
n+1
j+1/2) and sum on j = −N,N − 1. This leads to

An+1 +Bn+1 + Cn+1 +Dn+1 + En+1 = 0, (24)

where

An+1 =

N−1
∑

j=−N

φiπi(u
n+1
j+1/2)

(

un+1
j+1/2 − unj+1/2

)

δx ;

Bn+1 =
∑

j /∈{−N,0,N}

δt





πi(u
n+1
j−1/2)

(

Gi(u
n+1
j−1/2, u

n+1
j+1/2) −Gi(u

n+1
j−1/2, u

n+1
j−1/2)

)

−πi(u
n+1
j+1/2)

(

Gi(u
n+1
j−1/2, u

n+1
j+1/2) −Gi(u

n+1
j+1/2, u

n+1
j+1/2)

)



 ;

Cn+1 = δt
∑

j /∈{−N,0,N}

(

πi(u
n+1
j+1/2) − πi(u

n+1
j−1/2)

) ϕi(u
n+1
j+1/2) − ϕi(u

n+1
j−1/2)

δx
;

Dn+1 = δtFn+1
0

(

π1(u
n+1
−1/2) − π2(u

n+1
1/2 )

)

δx− δtπ1(u
n+1
−1/2)f1(u

n+1
−1/2) + δtπ2(u

n+1
1/2 )f2(u

n+1
1/2 ) ;

En+1 = δtπ1(u
n+1
−N+1/2)

(

G1

(

un+1, un+1
−N+1/2

)

−G1

(

un+1
−N+1/2, u

n+1
−N+1/2

))

+δtπ2(u
n+1
N−1/2)

(

G2

(

un+1
N−1/2, u

n+1
)

−G2

(

un+1
N−1/2, u

n+1
N−1/2

))

.
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Denoting by LG a Lipschitz constant of both Gi,

En+1 ≥ −δtLG (‖π1‖∞ + ‖π2‖∞) . (25)

One has

Fn+1
0

(

π1(u
n+1
−1/2) − π2(u

n+1
1/2 )

)

= Fn+1
0

(

π1(u
n+1
−1/2) − π1(u

n+1
0,1 )

)

+ Fn+1
0

(

π1(u
n+1
0,1 ) − π2(u

n+1
0,2 )

)

+ Fn+1
0

(

π2(u
n+1
0,2 ) − π2(u

n+1
1/2 )

)

.

It has been proven in Lemma 2.5 that there exists C1 depending only on q and πi such that

Fn+1
0

(

π1(u
n+1
0,1 ) − π2(u

n+1
0,2 )

)

≥ C1. (26)

Using the definition of Fn+1
0 , it is then easy to check that there exists C2 only depending on Gi, q, πi,

Dn+1 ≥ δtC2 + δt
(

π1(u
n+1
−1/2) − π1(u

n+1
0,1 )

) ϕ1(u
n+1
−1/2) − ϕ1(u

n+1
0,1 )

δx/2

+δt
(

π2(u
n+1
1/2 ) − π2(u

n+1
0,2 )

) ϕ2(u
n+1
1/2 ) − ϕ2(u

n+1
0,2 )

δx/2
.

Since πi is a non-decreasing function, Gi : s 7→

∫ s

0

φiπi(a)da is convex, then: ∀n ∈ [[0,M − 1]],

An+1 ≥
N−1
∑

j=−N

(

Gi(u
n+1
j+1/2) − Gi(u

n
j+1/2)

)

δx. (27)

We denote by Ψi(s) =

∫ s

0

πi(τ)f
′
i(τ)dτ , then an integration by parts leads to

Ψi(b) − Ψi(a) = πi(a)(Gi(a, b) − fi(a)) − πi(b) (Gi(a, b) − fi(b)) −

∫ b

a

π′
i(s)(fi(s) −Gi(a, b))ds.

Since fi(s) = Gi(s, s), it follows from the monotonicity of Gi and πi that

∫ b

a

π′
i(s)(fi(s) −Gi(a, b))ds ≥ 0.

Thus

Bn+1 ≥ δt
∑

j /∈{−N,0,N}

(

Ψi(u
n+1
j+1/2) − Ψi(u

n+1
j−1/2)

)

≥ δt
(

Ψ1(u
n+1
−1/2) − Ψ1(u

n+1
−N+1/2) + Ψ2(u

n+1
N−1/2) − Ψ2(u

n+1
1/2 )

)

.

So there exists C3, only depending on πi, fi such that

Bn+1 ≥ δtC3. (28)

Let ξi : s 7→

∫ s

0

√

λi(a)π
′
i(a)da, Cauchy-Schwarz inequality yields: ∀(a, b) ∈ [0, 1]2,

(πi(a) − πi(b))(ϕi(a) − ϕi(b)) ≥ (ξi(a) − ξi(b))
2.

This ensures that

Cn+1 ≥ δt
∑

j /∈{−N,0,N}

(

ξi(u
n+1
j+1/2) − ξi(u

n+1
j−1/2)

)2

δx
; (29)

Dn+1 ≥ δtC2 + δt

(

ξ1(u
n+1
0,1 ) − ξ1(u

n+1
−1/2)

)2

δx/2
+ δt

(

ξ2(u
n+1
1/2 ) − ξ2(u

n+1
0,2 )

)2

δx/2
. (30)
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Summing (24) on n ∈ [[0,M − 1]], and taking into account (25), (27), (28), (29), (30), provides the existence of
a quantity C, depending only on T , πi, Gi, φi such that

∑

i=1,2

|ξi(uD)|21,D,i +
M−1
∑

n=0

δt







(

ξ1(u
n+1
0,1 ) − ξ1(u

n+1
−1/2)

)2

δx/2
+

(

ξ2(u
n+1
1/2 ) − ξ2(u

n+1
0,2 )

)2

δx/2






≤ C. (31)

�

Remark 2.4 The estimate (31) is stronger than the one stated in Proposition 2.4, since it lets also appear
some contributions coming from the interface. They will be useful in the sequel. Indeed, if we denote by uD,i
the trace of (uD)|Ωi

on the interface {x = 0}, and if we denote by γD,i(t) = un+1
0,i if t ∈ (nδt, (n+ 1)δt], then it

follows from (31) that
lim

δt,δx→0
‖uD,i − γD,i‖Lp(0,T ) = 0, ∀p ∈ [1,∞).

Suppose that uDi converges in Lp(0, T ) towards a function ui, as it will be proven later. Then, we directly obtain
that γD,i also converges towards ui. Moreover, for all t > 0, π̃1(γDd,1(t)) ∩ π̃2(γDd,2(t)) 6= ∅. Since

F = {(a, b) ∈ [0, 1]2 | π̃1(a) ∩ π̃2(b) 6= ∅} is a closed set of [0, 1]2,

we can claim that π̃1(u1) ∩ π̃2(u2) 6= ∅ a.e. in (0, T ).

2.4 Compactness of a family of approximate solutions

Let (Mp)p∈N, (Np)p∈N be two sequences of positive integers tending to +∞. We denote Dp the discretization
of Ω × (0, T ) associated to Mp, and Np. The L∞-estimate stated in Proposition 2.3 shows that there exists
u ∈ L∞(Ω × (0, T )), 0 ≤ u ≤ 1, such that, up to a subsequence, uDp → u in the L∞(Ω × (0, T )) weak-⋆ sense
as p→ +∞.

We just need to prove that uDp → u almost everywhere in Ω×(0, T ) to get the convergence of (uDp) towards
u in Lr(Ω× (0, T )) for any 1 ≤ r < +∞. To apply Kolmogorov criterion (see e.g. [12]) we need some estimates
on the space and time translates of ξi(uD).

Lemma 2.6 (space and time translates estimates) For all η ∈ R, for i = 1, 2, one denotes Ωi,η = {x ∈
Ωi / (x+ η) ∈ Ωi}, then the following estimate holds:

‖ξi(uD)(· + η, ·) − ξi(uD)(·, ·)‖L2(Ωi,η×(0,T )) ≤ |ξi(uD)|1,D,i|η|(|η| + 2δx). (32)

One denotes wi,D the function defined almost everywhere by:

wi,D(x, t) =

{

ξi(uD)(x, t) in Ωi × (0, T ),
0 in R

2\(Ωi × (0, T )).

There exists C1 depending only on πi, φi, T,Gi and C2 only depending on πi, φi, T, λi, Gi such that:

∀η ∈ R, ‖wi,D(· + η, ·) − wi,D(·, ·)‖L2(R2) ≤ C1η, (33)

∀τ ∈ (0, T ), ‖wi,D(·, · + τ) − wi,D(·, ·)‖L2(Ωi×(0,T−τ)) ≤ C2τ. (34)

The previous lemma is in fact a compilation of Lemmata 4.2, 4.3 and 4.6 of [25] adapted to our framework. The
estimates (33) and (34) allows us to use the Kolmogorov compactness criterion on the sequence (wi,Dp)p∈N, and
thus, there exists wi ∈ L2(Ωi × (0, T )) such that for almost every (x, t) ∈ (Ωi × (0, T )), ξi(uDp)(x, t) → wi(x, t),
and then thanks to the L∞-estimate 0 ≤ uDp(x, t) ≤ 1, one can claim that ξi(uDp) → wi in Lr(Ωi × (0, T )),

for all r ∈ [1,+∞[. Letting p tend to +∞ in (32) insures that wi belongs to L2(0, T ;H1(Ωi)). Since ξ−1
i is a

continuous function, we can identify the limit:

wi = ξi(u).

Thus ξi(u) ∈ L2(0, T ;H1(Ωi)), and since ϕi ◦ ξ
−1
i is a Lipschitz function, there exists C depending only on

T, πi, φi, Gi, λi such that:
‖ϕi(u)‖L2(0,T ;H1(Ωi)) ≤ C, (35)

and that ξi(uDp) → ξi(u), up to a subsequence, in Lr(Ωi × (0, T )) as p → +∞ for any r ∈ [1,+∞). Since ξi,
i = 1, 2, is an increasing function, one can claim that uDp converges a.e. in Ω × (0, T ) towards u, and then:

uDp → u in the L∞(Ω × (0, T ))-weak- ⋆ sense, (36)

uDp → u in Lr(Ωi × (0, T )), ∀r ∈ [1,+∞[. (37)
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Roughly speaking, the approximation uD obtained via a monotonous finite volume scheme, which introduces
numerical diffusion, is “close” to the approximation uǫ obtained by adding additional diffusion −ǫ∆uǫ to the
problem. For such a continuous problem, we would have an estimate of type

∫ T

0

∫

Ωi

(∂xξi(u
ǫ)) dxdt ≤ C′,

which would lead to the relative compactness of the family (ξi(u
ǫ))ǫ>0 in L2(Ωi × (0, T )). Then the family

(ξi(u
ǫ))ǫ>0 is also relatively compact in L2((0, T );Hs(Ωi)) for all s ∈ (1/2, 1). This ensures that, up to a

subsequence, the traces on the boundary and on the interface of (ξi(u
ǫ)) converge in L2(0, T ). The continuity

of ξ−1
i , and the L∞-estimate ensure that the traces of uǫ on the boundary and on the interface converge in

Lr(0, T ), for all r ∈ [1,∞).
This sketch has to be modified in order to deal with discrete solutions, which do not belong to L2((0, T );Hs(Ωi))

for s > 1/2. Nevertheless, a convenient estimate on the translates at the boundary, based on the discrete
L2((0, T );H1(Ωi)) estimate stated in Proposition 2.4, leads to the following convergence result, which is proven
in the multidimensional case in [17, Proposition 3.10].

Lemma 2.7 Let i = 1, 2, and let α ∈ ∂Ωi. We denote by uα,Dp,i the trace of (uDp)|Ωi
on {x = α}. Then, one

has: for all r ∈ [1,∞),
uα,Dp,i → u|Ωi

(α, ·) in Lr(0, T ) as p→ +∞.

If we denote by ui(t) = u|Ωi
(0, t), it follows from the remark 2.4 that π̃1(u1)∩ π̃2(u2) 6= ∅ a.e. in (0, T ). We can

summarize all the results of this subsection in the following proposition :

Proposition 2.8 Let (Mp)p, (Np)p tend to ∞ as p → ∞, and let (Dp)p be the corresponding sequence of

discretizations of Ω × (0, T ). Let
(

uDp

)

p
be the sequence of corresponding discrete solutions to the scheme,

then, up to a subsequence (still denoted by
(

uDp

)

p
), there exists u ∈ L∞(Ω × (0, T )), 0 ≤ u ≤ 1 a.e., with

ξi(u) ∈ L2((0, T );H1(Ωi)) (i = 1, 2) such that:

uDp → u a.e. in Ω × (0, T ) as p→ ∞.

Moreover, keeping the notations of Lemma 2.7,

u−1,Dp,1(t) → u(−1, t) for a.e. t ∈ (0, T ) as p→ ∞,
u1,Dp,2(t) → u(1, t) for a.e. t ∈ (0, T ) as p→ ∞,
u0,Dp,i(t) → u|Ωi

(0, t) = ui(t) for a.e. t ∈ (0, T ) as p→ ∞, i = 1, 2,

and π̃1(u1) ∩ π̃2(u2) 6= ∅ almost everywhere in (0, T ).

2.5 Convergence of the scheme

We will now achieve the proof of the following result.

Theorem 2.9 Let (Mp)p∈N, (Np)p∈N be two sequences of positive integers tending to +∞, and (Dp)p∈N the
associated sequence of discretizations of Ω × (0, T ). Then, up to a subsequence, the sequence

(

uDp

)

p
of the

discrete solutions converges in Lr(Ω × (0, T )) for all r ∈ [1,∞) to a weak solution to the problem (P) in the
sense of Definition 1.1.

Proof
As it has been seen in Proposition 2.8, the discrete solution uDp converges, up to a subsequence, towards a
function u fulfilling all the regularity criteria to be a weak solution. In order to prove the convergence of the
subsequence to a weak solution, it only remains to show that the weak formulation (12) is satisfied by the limit
u.

In order to simplify the proof of convergence of the scheme towards a weak solution, we will use a density
result, which is a simple particular case of those stated in [22].

Lemma 2.10 Let a, b ∈ R, a < b, then: {ψ ∈ C∞
c ([a, b])/ψ′ ∈ C∞

c ((a, b))} is dense in W 1,q(a, b), q ∈ [1,+∞[.

This lemma particularly allows us, thanks to a straightforward generalization, to restrict the set of test functions
ψ for the weak formulation (12) to

T = {ψ ∈ D(Ω × [0, T ))/∂xψ ∈ D((∪i=1,2Ωi) × [0, T ))}.

Let ψ ∈ T . For j ∈ [[−Np,Np − 1]], n ∈ [[0,Mp − 1]], we denote by ψnj+1/2 = ψ(xj+1/2, t
n). Assume that p is

large enough to ensure:
ψn−1/2 = ψn1/2, ∀n ∈ [[0,Mp − 1]], (38)
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∀n ∈ [[0,Mp − 1]],

{

ψn−N+1/2 = ψ(−1, tn),

ψnN−1/2 = ψ(1, tn).
(39)

One has also
ψ
Mp

j+1/2 = 0, ∀j ∈ [[−Np,Np − 1]]. (40)

For j ∈ [[−Np,Np−1]], n ∈ [[0,Mp−1]], let us multiply equation (14) by ψnj+1/2δt, and sum on j ∈ [[−Np,Np−1]],

n ∈ [[0,Mp − 1]], we get:

Mp−1
∑

n=0

Np−1
∑

j=−Np

φi(u
n+1
j+1/2 − unj+1/2)ψ

n
j+1/2δx+

Mp−1
∑

n=0

δt

Np−1
∑

j=−Np

(Fn+1
j+1 − Fn+1

j )ψnj+1/2 = 0,

which can be rewritten thanks to (38), (39), (40):

Mp−1
∑

n=0

Np−1
∑

j=−Np

φiu
n+1
j+1/2(ψ

n
j+1/2 − ψn+1

j+1/2)δx −

Np−1
∑

j=−Np

φiu
0
j+1/2ψ

0
j+1/2δx

+

Mp−1
∑

n=0

δt
∑

j /∈{−Np,0,Np}

Fn+1
j (ψnj−1/2 − ψnj+1/2)

−

Mp−1
∑

n=0

δtFn+1
−N ψ(−1, tn) +

Mp−1
∑

n=0

δtFn+1
N ψ(1, tn) = 0. (41)

Using the definition of Fn+1
j , we obtain

Ap +Bp + Cp +Dp + Ep = 0, (42)

with, using the notation ψn−N−1/2 = ψn−N+1/2, and ψnN+1/2 = ψnN−1/2,

Ap =

Mp−1
∑

n=0

Np−1
∑

j=−Np

φiu
n+1
j+1/2(ψ

n
j+1/2 − ψn+1

j+1/2)δx ;

Bp = −

Np−1
∑

j=−Np

φiu
0
j+1/2ψ

0
j+1/2δx ;

Cp =

Mp−1
∑

n=0

δt
∑

j /∈{−Np,0,Np}

Gi(u
n+1
j−1/2, u

n+1
j+1/2)(ψ

n
j−1/2 − ψnj+1/2) ;

Dp = −

Mp−1
∑

n=0

δt

Np−1
∑

j=−Np

ϕi(u
n+1
j+1/2)

ψnj+3/2 − 2ψnj+1/2 + ψnj−1/2

δx
;

Ep = −

Mp−1
∑

n=0

δtG1(u
n+1, un+1

−N+1/2)ψ(−1, tn) +

Mp−1
∑

n=0

δtG2(u
n+1
N−1/2, u

n+1)ψ(1, tn) .

Since hAp : (x, t) 7→
ψn

j+1/2−ψ
n+1

j+1/2

δt if (x, t) ∈ (xj , xj+1)×(tn, tn+1), converges uniformly towards −∂tψ as p→ ∞,
and since uD converges in L1(Ω × (0, T )) towards u,

lim
p→∞

Ap = −

∫ T

0

∑

i=1,2

∫

Ωi

φiu(x, t)∂tψ(x, t)dxdt. (43)

Thanks to the convergence in L1(Ω) of uD(x, 0) towards u0, we have

lim
p→∞

Bp = −
∑

i=1,2

∫

Ωi

φiu0(x)ψ(x, 0)dx. (44)

We have to rewrite Cp = C1
p + C2

p , with

C1
p =

Mp−1
∑

n=0

δt
∑

j /∈{−Np,0,Np}

fi(u
n+1
j−1/2)(ψ

n
j−1/2 − ψnj+1/2),

12



C2
p =

Mp−1
∑

n=0

δt
∑

j /∈{−Np,0,Np}

(

Gi(u
n+1
j−1/2, u

n+1
j+1/2) − fi(u

n+1
j−1/2)

)

(ψnj−1/2 − ψnj+1/2).

Thanks to Proposition 2.8, the quantity C1
p converges towards −

∫ T

0

∑

i=1,2

∫

Ωi

fi(u)(x, t)∂xψ(x, t)dxdt as p→ ∞.

Concerning C2
p , since

∣

∣

∣
Gi(u

n+1
j−1/2, u

n+1
j+1/2) − fi(u

n+1
j−1/2

∣

∣

∣
=
∣

∣

∣
Gi(u

n+1
j−1/2, u

n+1
j+1/2) −Gi(u

n+1
j−1/2, u

n+1
j−1/2)

∣

∣

∣
≤ LG|u

n+1
j+1/2 − un+1

j−1/2|,

and since (x, t) 7→
ψn

j−1/2−ψ
n
j+1/2

δx on (xj−1/2, xj+1/2) × (tn, tn+1) is uniformly bounded by ‖∂xψ‖∞,

|C2
p | ≤ LG‖∂xψ‖∞

∫ T

0

∫

Ω

|δuDp(x, t)|dxdt,

where δuDp(x, t) = un+1
j+1/2 −u

n+1
j−1/2 on (xj−1/2, xj+1/2)× (tn, tn+1), (j ∈ [[−Np +1,Np−1]]), and 0 otherwise. It

is easy to check, thanks to the discrete L2((0, T );H1(Ωi)) estimates stated in Proposition 2.4, that δuDp tends
to 0 in L1(Ω × (0, T )) as p→ ∞. Then

lim
p→∞

Cp = −

∫ T

0

∑

i=1,2

∫

Ωi

fi(u)(x, t)∂xψ(x, t)dxdt. (45)

Since, using Proposition 2.8, ϕi(uDp) tends to ϕi(u) ∈ L2((0, T );H1(Ωi)) in the L2(Ωi × (0, T ))-topology, one
has:

lim
p→∞

Dp = −

∫ T

0

∑

i=1,2

∫

Ωi

ϕi(u)(x, t)∂
2
xxψ(x, t)dxdt =

∫ T

0

∑

i=1,2

∫

Ωi

∂xϕi(u)(x, t)∂xψ(x, t)dxdt. (46)

The strong convergence of the traces, stated in Proposition 2.8 allows us to claim that

lim
p→∞

Ep = −

∫ T

0

G1(u(t), u(−1, t))ψ(−1, t)dt+

∫ T

0

G2(u(1, t), u(t))ψ(1, t)dt. (47)

We can thus take the limit for p → ∞ in (42), and it follows from (43)-(44)-(45)-(46)-(47) that u fulfills the
weak formulation (12). �

3 Uniform bound on the fluxes

In this section, we show that, under some regularity assumptions on the initial data, there exists a solution with
bounded fluxes. This existence result is the consequence of some additional estimates on the discrete solution,
and will be necessary to get the uniqueness result of Theorem 4.1.

Definition 3.1 A function u is said to be a bounded-flux solution to the problem (P) if:

1. u is a weak solution to the problem (P) in the sense of Definition 1.1;

2. ∂xϕi(u) belongs to L∞(Ωi × (0, T )).

In order to get an existence result, we need more regularity on the initial data, as stated below.

Assumptions 2 We assume that:

1. ∂xϕi(u0) ∈ L∞(Ωi), 0 ≤ u0 ≤ 1;

2. π̃1(u0,1) ∩ π̃2(u0,2) 6= ∅, where u0,i is the trace of u0|Ωi
on {x = 0},

Theorem 3.1 Suppose that assumptions 2 are fulfilled. Let (Mp)p∈N, (Np)p∈N be two sequences of positive
integers tending to +∞. Let (uDp)p∈N be the sequence of the associated discrete solutions obtained via the finite
volume scheme (14), and let u be an adherence value of the sequence (uDp)p∈N. Then u is a bounded flux solution
to the problem (P) in the sense of Definition 3.1. This particularly ensures the existence of such a bounded-flux
solution.
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All the section 3 will be devoted to the proof of Theorem 3.1. We only need to verify the second point in
Definition 3.1, because we have already proven in Theorem 2.9 that u is a weak solution. So the aim of this
section is to get the uniform bound on the fluxes. Such an estimate can be found in [19] in the case where
the convection is neglected. It is obtained using a thin regular transition layer between Ω1 and Ω2, and a
regularization of the initial data u0. This technique was also used in [10] to get a BV -estimate on the fluxes
in the case of a non-bounded domain Ω, and for particular values of the data (which are supposed to be more
regular). In this paper, we only deal with the discrete solution, which can be seen as a regularization of the
solution to the continuous problem (P).

We extend the definitions of the discrete internal fluxes (15)-(18) to the case n = −1, i.e. in the time t = 0.
For all j ∈ [[−N + 1,N − 1]], j 6= 0,

F 0
j = Gi(u

0
j−1/2, u

0
j+1/2) −

ϕi(u
0
j+1/2) − ϕi(u

0
j−1/2)

δx
. (48)

Thanks to Lemma 2.1, there exists a unique couple (u0
0,1, u

0
0,2) solution to the system

F 0
0 = G1(u

0
−1/2, u

0
0,1) −

ϕ1(u
0
0,1) − ϕ1(u

0
−1/2)

δx/2
= G2(u

0
0,2, u

0
1/2) −

ϕ2(u
0
1/2) − ϕ2(u

0
0,2)

δx/2
, (49)

π̃1(u
0
0,1) ∩ π̃2(u

0
0,2) 6= ∅. (50)

Remark 3.1 u0
0,1 and u0

0,2 are given by Lemma 2.1, and so they are different of u0,1 and u0,2.

Lemma 3.2 There exists C > 0 depending only on u0, ϕi, q such that

max
j∈[[−N+1,N−1]]

|F 0
j | ≤ C.

Proof
Since ϕi(u0) is a Lipschitz continuous function, and ϕ−1

i is continuous, u0|Ωi
is a continuous function, and there

exists yj+1/2 ∈ (xj , xj+1) such that u0
j+1/2 = u0(yj+1/2). Then (48) can be rewritten

F 0
j = Gi(u0(yj−1/2), u0(yj+1/2)) −

ϕi(u0(yj+1/2)) − ϕi(u0(yj−1/2))

δx
.

Using the fact that ∂xϕi(u0) ∈ L∞(Ωi) gives directly: ∀j ∈ [[−N + 1,N − 1]] \ {0},
∣

∣F 0
j

∣

∣ ≤ max
i=1,2

‖Gi‖∞ + 2 max
i=1,2

(

‖∂xϕi(u0)‖L∞(Ωi)

)

. (51)

The monotony of the transmission conditions π̃1(u
0
0,1) ∩ π̃2(u

0
0,2) 6= ∅ and π̃1(u0,1) ∩ π̃2(u0,2) 6= ∅ implies that

either u0
0,1 ≥ u0,1 and u0

0,2 ≥ u0,2, or u0
0,1 ≤ u0,1 and u0

0,2 ≤ u0,2. Assume for example that u0
0,1 ≥ u0,1 and

u0
0,2 ≥ u0,2 —the other case could be treated similarly— then one deduce from (49) that:

G2(u0,2, u0(y1/2)) −
ϕ2(u0(y1/2)) − ϕ2(u0,2)

δx/2
≤ F 0

0 ≤ G1(u0(y−1/2), u0,1) −
ϕ1(u0,1) − ϕ1(u0(y−1/2))

δx/2
,

and so since ϕi(u0) is a Lipschitz continuous function,

|F 0
0 | ≤ max

i=1,2
‖Gi‖∞ + 2 max

i=1,2

(

‖∂xϕi(u0)‖L∞(Ωi)

)

.

�

Proposition 3.3 There exists C > 0 depending only on u0, ϕi, Gi, such that

max
j∈[[−N+1,N−1]]

(

max
n∈[[0,M]]

|Fnj |

)

≤ C.

Proof
For all j ∈ [[−N + 1,N − 1]] \ {0}, for all n ∈ [[0,M − 1]],

Fn+1
j − Fnj =

(

Gi(u
n+1
j−1/2, u

n+1
j+1/2) −Gi(u

n
j−1/2, u

n+1
j+1/2)

)

+
(

Gi(u
n
j−1/2, u

n+1
j+1/2) −Gi(u

n
j−1/2, u

n
j+1/2)

)

+

(

ϕi(u
n+1
j−1/2) − ϕi(u

n
j−1/2)

δx

)

−

(

ϕi(u
n+1
j+1/2) − ϕi(u

n
j+1/2)

δx

)

.
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Thus, using (14) yields

Fn+1
j − Fnj =

δt

φiδx

Gi(u
n+1
j−1/2, u

n+1
j+1/2) −Gi(u

n
j−1/2, u

n+1
j+1/2)

un+1
j−1/2 − unj−1/2

(

Fn+1
j − Fn+1

j−1

)

+
δt

φiδx

Gi(u
n
j−1/2, u

n+1
j+1/2) −Gi(u

n
j−1/2, u

n
j+1/2)

un+1
j+1/2 − unj+1/2

(

Fn+1
j+1 − Fnj

)

+
δt

φiδx2

ϕi(u
n+1
j−1/2) − ϕi(u

n
j−1/2)

un+1
j−1/2 − unj−1/2

(

Fn+1
j − Fn+1

j−1

)

−
δt

φiδx2

ϕi(u
n+1
j+1/2) − ϕi(u

n
j−1/2)

un+1
j+1/2 − unj+1/2

(

Fn+1
j+1 − Fn+1

j

)

.

The monotonicity of the scheme is once again crucial, since it implies that there exist two non-negative values
an+1
j,j+1, a

n+1
j,j−1 such that

(

1 + an+1
j,j−1 + an+1

j,j+1

)

Fn+1
j − an+1

j,j−1F
n+1
j−1 − an+1

j,j+1F
n+1
j+1 = Fnj . (52)

The monotonicity of the graph transmission condition (19) ensures that either un+1
0,1 ≥ un0,1 and un+1

0,2 ≥ un0,2,

or un+1
0,1 ≤ un0,1 and un+1

0,2 ≤ un0,2. Suppose for example that un+1
0,1 ≥ un0,1 and un+1

0,2 ≥ un0,2, the other case being
completely symmetrical.

Fn+1
0 − Fn0 =

(

G1(u
n+1
−1/2, u

n+1
0,1 ) −G1(u

n
−1/2, u

n
0,1)
)

+

(

ϕ1(u
n+1
−1/2) − ϕ1(u

n
−1/2)

δx/2

)

−

(

ϕ1(u
n+1
0,1 ) − ϕ1(u

n
0,1)

δx/2

)

(53)

=
(

G2(u
n+1
0,2 , un+1

1/2 ) −G2(u
n
0,2, u

n
1/2)

)

+

(

ϕ2(u
n+1
0,2 ) − ϕ2(u

n
1/2)

δx/2

)

−

(

ϕ2(u
n+1
0,2 ) − ϕ2(u

n
1/2)

δx/2

)

. (54)

It follows from (53) and from the monotony of G1, ϕ1 that

Fn+1
0 − Fn0 ≤

(

G1(u
n+1
−1/2, u

n
0,1) −G1(u

n
−1/2, u

n
0,1)
)

+

(

ϕ1(u
n+1
−1/2) − ϕ1(u

n
−1/2)

δx/2

)

.

Similar computations as those done to obtain (52) provide the existence of a non-negative value an+1
0,−1 such that

(

1 + an+1
0,−1

)

Fn+1
0 − an+1

0,−1F
n+1
−1 ≤ Fn0 . (55)

Considering (54) instead of (53) shows the existence of a non-negative value bn+1
0,1 such that

(

1 + bn+1
0,1

)

Fn+1
0 − bn+1

0,1 Fn+1
1 ≥ Fn0 . (56)

We denote by jn+1
max (resp. jn+1

min ) the integer such that

Fn+1

jn+1
max

= max
j∈[[−N,N]]

Fn+1
j (resp. Fn+1

jn+1

min

= min
j∈[[−N,N]]

Fn+1
j ).

Either jn+1
max ∈ {−N,N}, then it follows from the remark 2.1 that maxj∈[[−N,N]] F

n+1
j ≤ maxi=1,2 ‖Gi‖∞, or

jn+1
max ∈ [[−N + 1,N − 1]]. In the latter case, (52) and (55) imply

max
j
Fn+1
j = Fn+1

jn+1
max

≤ Fn
jn+1
max

≤ max
j
Fnj .

Similarly, (52) and (55) yield
min
j
Fn+1
j = Fn+1

jn+1

min

≥ Fn
jn+1

min

≥ min
j
Fnj .

We obtain a kind of discrete maximum principle on the discrete fluxes, which corresponds to the uniform bound
on the continuous fluxes proven in [19]. It follows from Lemma 3.2 that

max
n∈[[0,M]]

(

max
j∈[[−N+1,N−1]]

∣

∣Fn+1
j

∣

∣

)

≤ max
i=1,2

‖Gi‖∞ + 2 max
i=1,2

(

‖∂xϕi(u0)‖L∞(Ωi)

)

.
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� Conclusion of proof of Theorem 3.1 Let (Np)p∈N, (Mp)p∈N be two sequences of positive integers tending
to +∞, and let (uDp)p∈N the sequences of associated discrete solutions. It has been seen in theorem 2.9 that
(uDp)p tends to a weak solution u in Lr(Ω × (0, T )), for all r ∈ [1,+∞).
Let i = 1, 2, let (x, y) ∈ Ωi, let t ∈ (0, T ]. For p large enough,there exists j0, j1 ∈ Jint such that xj0 ≤ x ≤ xj0+1

and xj1 ≤ y ≤ xj1+1, and there exists n such that t ∈ (tn, tn+1].

∣

∣ϕi(uDp)(x, t) − ϕi(uDp)(y, t)
∣

∣ =
∣

∣

∣ϕi(u
n+1
j0+1/2) − ϕi(u

n+1
j1+1/2)

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

j0
∑

j=j1+1

ϕi(u
n+1
j+1/2) − ϕi(u

n+1
j−1/2)

∣

∣

∣

∣

∣

∣

≤

j0
∑

j=j1+1

∣

∣

∣ϕi(u
n+1
j+1/2) − ϕi(u

n+1
j−1/2)

∣

∣

∣ .

Using the definition of the discrete flux (15):

∣

∣ϕi(uDp)(x, t) − ϕi(uDp)(y, t)
∣

∣ ≤

j0
∑

j=j1+1

δx
∣

∣

∣Fn+1
j −Gi(u

n+1
j−1/2, u

n+1
j+1/2)

∣

∣

∣ .

We deduce from Proposition 3.3 that there exists C > 0, depending only on u0, ϕi, Gi such that:

∣

∣ϕi(uDp)(x, t) − ϕi(uDp)(y, t)
∣

∣ ≤

j0
∑

j=j1+1

δxC ≤ C(|x − y| + 2δx).

Letting p tend towards +∞, i.e. δx and δt towards 0 gives

|ϕi(u)(x, t) − ϕi(u)(y, t)| ≤ C|x− y|. (57)

So we deduce from (57) that ∂xϕi(u) ∈ L∞(Ωi × (0, T )). �

4 Uniqueness of the bounded-flux solution

This section is devoted to the proof of Theorem 4.1, which is an adaptation of [19, Theorem 5.1] to the case
where the convection is taken into account.

Theorem 4.1 If u,v are bounded-flux solutions in the sense of Definition 3.1 associated to the initial data u0,
v0, then for all p ∈ [1,+∞[, u and v belong to C([0, T ];Lp(Ω)), and the following L1-contraction principle holds:
∀t ∈ [0, T ],

∫

Ωi

φi(u(x, t) − v(x, t))±dx ≤

∫

Ωi

φi(u0(x) − v0(x))
±dx.

This particularly implies the uniqueness of the bounded flux solution to the problem (P)

Obtaining a L1-contraction principle for a nonlinear parabolic equation is classical. We refer for example to
[5, 26, 34, 20, 31, 33, 11] for the case of homogeneous domains, and for boundary conditions of Dirichlet or
Neumann type. We have to adapt the proof of the L1-contraction principle to our problem, and thus particularly
to the boundary conditions and to the transmission conditions at the interface.

We need to introduce the cut-off functions ρεα ∈ C0,1(Ω,R+) defined by

ρεα(x) =

(

ε− |x− α|

ε

)+

.

Lemma 4.2 For all θ ∈ D+([0, T )),

lim inf
ε→0

∫ T

0

θ(t)
∑

i=1,2

∫

Ωi

(

sign±(u− v)(fi(u) − fi(v)) − ∂x (ϕi(u) − ϕi(v))
±
)

∂xρ
ε
0(x)dxdt ≥ 0.

Proof
We define the subsets of (0, T )

Eu>v =
{

t ∈ (0, T )
∣

∣

∣ u1(t) > v1(t) or u2(t) > v2(t)
}

,
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Eu≤v = (Eu>v)
c

=
{

t ∈ (0, T )
∣

∣

∣ u1(t) ≤ v1(t) and u2(t) ≤ v2(t)
}

.

Since the trace on {x = 0} of the function sign+(u − v)(fi(u) − fi(v)) is equal to 0 for all t ∈ Eu≤v, it is easy
to check that

lim
ε→0

∫

Eu≤v

θ
∑

i=1,2

∫

Ωi

sign+(u − v)(fi(u) − fi(v))∂xρ
ε
0dxdt = 0.

Thanks to the fact that the trace of (ϕi(u) − ϕi(v))
+

is equal to 0 on the interface, one has also,

lim inf
ε→0

∫

Eu≤v

θ
∑

i=1,2

∫

Ωi

∂x (ϕi(u) − ϕi(v))
+ ∂xρ

ε
0dxdt ≥ 0.

This particularly implies that

lim inf
ε→0

∫

Eu≤v

θ
∑

i=1,2

∫

Ωi

[

sign+(u− v)(fi(u) − fi(v)) − ∂x (ϕi(u) − ϕi(v))
+
]

∂xρ
ε
0dxdt ≥ 0. (58)

Since u, v are two weak solutions, subtracting their corresponding weak formulation (12) for the test function
ψ(x, t) = θ(t)ρε0(x) leads to

∫ T

0

∑

i=1,2

∫

Ωi

φi(u− v)ρε0∂tθdxdt +
∑

i=1,2

∫

Ωi

φi(u0 − v0)ρ
ε
0θ(0)dx

+

∫ T

0

θ
∑

i=1,2

∫

Ωi

((fi(u) − fi(v)) − ∂x(ϕi(u) − ϕi(v))) ∂xρ
ε
0dxdt = 0.

Since ρε0 tends to 0 in L1(Ω) as ε→ 0, one has:

lim
ε→0

∫ T

0

∑

i=1,2

∫

Ωi

φi(u− v)ρε0∂tθdxdt +
∑

i=1,2

∫

Ωi

φi(u0 − v0)ρ
ε
0θ(0)dx = 0,

thus

lim
ε→0

∫ T

0

θ
∑

i=1,2

∫

Ωi

((fi(u) − fi(v)) − ∂x(ϕi(u) − ϕi(v))) ∂xρ
ε
0dxdt = 0. (59)

Thanks to the L∞(Ω × (0, T )) bound on the fluxes, one has
∣

∣

∣

∣

∣

∣

∫ T

0

θ
∑

i=1,2

∫

Ωi

((fi(u) − fi(v)) − ∂x(ϕi(u) − ϕi(v))) ∂xρ
ε
0dxdt

∣

∣

∣

∣

∣

∣

≤ C‖θ‖L1(0,T ),

then, using a density argument, (59) holds for all θ ∈ L1(0, T ).
Replacing θ by θχEu>v in (59), and splitting the positive and the negative parts a = a+ − a−, we obtain

∫

Eu>v

θ
∑

i=1,2

∫

Ωi

(

sign+(u− v)(fi(u) − fi(v)) − ∂x(ϕi(u) − ϕi(v))
+
)

∂xρ
ε
0dxdt

=

∫

Eu>v

θ
∑

i=1,2

∫

Ωi

(

sign−(u− v)(fi(u) − fi(v)) − ∂x(ϕi(u) − ϕi(v))
−
)

∂xρ
ε
0dxdt +r(ε), (60)

with
lim
ε→0

r(ε) = 0.

For almost every t ∈ Eu>v, it follows from the monotonicity of the graph relations for the capillary pressure

π̃1(u1) ∩ π̃2(u2) 6= ∅, π̃1(v1) ∩ π̃2(v2) 6= ∅,

that t belongs to Eu≥v =
{

t ∈ (0, T )
∣

∣

∣ u1(t) ≥ v1(t) and u2(t) ≥ v2(t)
}

. So we obtain exactly in the same way

that for (58), that

lim inf
ε→0

∫

Eu>v

θ
∑

i=1,2

∫

Ωi

[

sign−(u− v)(fi(u) − fi(v)) − ∂x (ϕi(u) − ϕi(v))
−
]

∂xρ
ε
0dxdt ≥ 0.

It follows directly from (60) that

lim inf
ε→0

∫

Eu>v

θ
∑

i=1,2

∫

Ωi

[

sign+(u− v)(fi(u) − fi(v)) − ∂x (ϕi(u) − ϕi(v))
+
]

∂xρ
ε
0dxdt ≥ 0. (61)

Adding (58) and (61) achieves the proof of Lemma 4.2. �
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Lemma 4.3 For all θ ∈ D+([0, T )),

lim inf
ε→0

∫ T

0

θ

∫

Ω1

(

sign±(u− v) (f1(u) − f1(v)) − ∂x(ϕ1(u) − ϕ1(v))
±
)

∂xρ
ε
−1dxdt ≥ 0, (62)

lim inf
ε→0

∫ T

0

θ

∫

Ω2

(

sign±(u− v) (f2(u) − f2(v)) − ∂x(ϕ2(u) − ϕ2(v))
±
)

∂xρ
ε
1dxdt ≥ 0. (63)

Proof
For the sake of simplicity, we will only prove

lim inf
ε→0

∫ T

0

θ

∫

Ω2

(

sign+(u − v) (f2(u) − f2(v)) − ∂x(ϕ2(u) − ϕ2(v))
+
)

∂xρ
ε
1dxdt ≥ 0,

but all the steps of the proof can be extended to the other cases. We denote by Fu>v and Fu≥v the subsets of
(0, T ) given by

Fu>v = {t ∈ (0, T ) | u(1, t) > v(1, t)} , Fu≤v = (Fu>v)
c = {t ∈ (0, T ) | u(1, t) ≤ v(1, t)} .

Let ε > 0. For almost every t ∈ Fu≤v, one has

∫

Ω2

∂x (ϕ2(u)(x, t) − ϕ2(v)(x, t))
+
∂xρ

ε
1(x)dx ≤ 0.

Then, using the fact that for almost every t ∈ Fu≤v, the trace of sign+(u(·, t) − v(·, t)) (f2(u)(·, t) − f2(v)(·, t))
on {x = 1} is equal to 0,

lim inf
ε→0

∫

Fu≤v

θ

∫

Ω2

(

sign+(u − v) (f2(u) − f2(v)) − ∂x(ϕ2(u) − ϕ2(v))
+
)

∂xρ
ε
1dx ≥ 0. (64)

We deduce from the weak formulation that for all θ ∈ D([0, T )),

lim
ε→0

∫ T

0

θ

(∫

Ω2

(f2(u) − ∂xϕ2(u)) ∂xρ
ε
1dx−G2(u(1, t), u(t))

)

dt = 0. (65)

Since the fluxes f2(u)− ∂xϕ2(u) and f2(v)− ∂xϕ2(v) belong to L∞(Ω2 × (0, T )), a density argument, which has
already been used during the proof of Lemma 4.2, allows us to claim that (65) still holds for any θ ∈ L1(0, T ).
So, it particularly holds if we replace θ by θχFu>v This leads to

lim
ε→0

∫

Fu<v

θ

∫

Ω2

(

f2(u)−f2(v)−∂x(ϕ2(u)−ϕ2(v))
)

∂xρ
ε
1dxdt =

∫

Fu>v

θ(t) (G2(u(1, t), u(t)) −G2(v(1, t), u(t))) dt.

It follows from the monotonicity of G2 that

∀t ∈ Fu>v, G2(u(1, t), u(t)) ≥ G2(v(1, t), u(t)),

thus

lim inf
ε→0

∫

Fu<v

θ

∫

Ω2

(

f2(u) − f2(v) − ∂x(ϕ2(u) − ϕ2(v))
)

∂xρ
ε
1dxdt ≥ 0. (66)

In order to conclude the proof of Lemma 4.3, it only remains to check that

lim inf
ε→0

∫

Fu<v

θ

∫

Ω2

(

f2(u) − f2(v) − ∂x(ϕ2(u) − ϕ2(v))
)

∂xρ
ε
1dxdt

= lim inf
ε→0

∫

Fu<v

θ

∫

Ω2

(

sign+(u− v)(f2(u) − f2(v)) − ∂x(ϕ2(u) − ϕ2(v))
+
)

∂xρ
ε
1dxdt. (67)

Since ϕ−1
2 is a continuous function, u(·, t) can be supposed to be continuous on Ω2 for almost every t in (0, T ).

Particularly, for almost every t ∈ Fu>v, there exists a neighborhood Vt of {x = 1} such that u(·, t) > v(·, t) for
all x ∈ Vt. On Vt, one has

R(x, t) =
(

f2(u) − f2(v) − ∂x(ϕ2(u) − ϕ2(v))
)

−
(

sign+(u− v)(f2(u) − f2(v)) − ∂x(ϕ2(u) − ϕ2(v))
+
)

= 0.

Then, for almost every t ∈ Fu>v,

lim
ε→0

∫

Ω2

R(x, t)∂xρ
ε
1(x)dx = 0.
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Moreover, since the fluxes f2(u) − ∂xϕ2(u) and f2(v) − ∂xϕ2(v) belong to L∞(Ω2 × (0, T )), there exists C > 0
not depending on ε such that for almost every t,

∣

∣

∣

∣

∫

Ω2

R(x, t)∂xρ
ε
1(x)dx

∣

∣

∣

∣

≤ C.

We deduce from the dominated convergence theorem that

lim
ε→0

∫ T

0

∫

Ω2

R(x, t)∂xρ
ε
1(x)dx = 0.

This particularly implies that (67) holds. This achieves the proof of Lemma 4.3. �

Proof of the Theorem 4.1. First, since u and v are weak solutions to a parabolic equation, they are also entropy
solutions (see [26], [20]), and it has been proven in [18] that u and v belong to C([0, T ], Lp(Ω)), in the sense
that there exists ũ, ṽ ∈ C([0, T ], Lp(Ω)) such that u = ũ, v = ṽ almost everywhere in Ω × (0, T ).

Let u and v be two weak solutions, then some classical computations, based on the doubling variable
technique applied on both the time and the space variable (see e.g. [26], [20]) yields yields that for any
ψ ∈ D+(Ωi × [0, T ))

∫ T

0

∫

Ωi

φi(u(x, t) − v(x, t))±∂tψ(x, t)dxdt +

∫

Ωi

φi(u0(x) − v0(x))
±ψ(x, 0)dx

+

∫ T

0

∫

Ωi

sign±(u(x, t) − v(x, t)) (fi(u)(x, t) − fi(v)(x, t)) ∂xψ(x, t)dxdt

−

∫ T

0

∫

Ωi

∂x(ϕi(u)(x, t) − ϕi(v)(x, t))
±∂xψ(x, t)dxdt ≥ 0. (68)

Let θ ∈ D+([0, T )), then summing (68) with respect to i = 1, 2, choosing

ψ(x, t) = θ(t)
(

1 − ρε−1(x) − ρε0(x) − ρε1(x)
)

as test function, and letting ε tend to 0 leads to, thanks to Lemmata 4.2 and 4.3 :

∫ T

0

∂tθ(t)
∑

i=1,2

∫

Ωi

φi(u(x, t) − v(x, t))±dxdt+
∑

i=1,2

∫

Ωi

φi(u0(x) − v0(x))
±θ(0)dx ≥ 0. (69)

Since u, v belong to C([0, T ];L1(Ω)), the relation (69) still holds for any θ ∈ BV (0, T ) with θ(T+) = 0. Let
t ∈ [0, T ], we choose θ = χ[0,t) in (69), obtaining this way the L1-contraction and comparison principle stated
in the Theorem 4.1. �

5 Solutions obtained as limit of approximations

We aim in this section to extend the existence-uniqueness result obtained in Theorems 3.1 and 4.1 for any initial
data u0 ∈ L∞(Ω), 0 ≤ u0 ≤ 1 a.e.. We are unfortunately not able to prove the uniqueness of the weak solution
to the problem (P) in such a general case, but we are able to prove the existence and the uniqueness of the
solution obtained as limit of approximation by bounded flux solution. Moreover, this limit is the weak solution
obtained via the convergence of the implicit scheme (14) studied previously.

Definition 5.1 A function u is said to be a SOLA (solution obtained as limit of approximation) to the prob-
lem (P) if it fulfils:

• u is a weak solution to the problem (P),

• there exists a sequence (uν)ν∈N of bounded flux solutions such that

un → u in C([0, T ];L1(Ω)), as n→ +∞.

Theorem 5.1 Let u0 ∈ L∞(Ω), 0 ≤ u0 ≤ 1 a.e., then there exists a unique SOLA u to the problem (P) in the
sense of Definition 5.1.
Furthermore, if (Mp)p∈N, (Np)p∈N are to sequences of positive integers tending to +∞, and if (uDp)p∈N is the
corresponding sequence of discrete solutions, then uDp → u in Lr(Ω × (0, T )), r ∈ [1,+∞).
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Proof
The set

E =
{

u0 ∈ L∞(Ω)
∣

∣

∣ 0 ≤ u0 ≤ 1, ∂xϕi(u0) ∈ L∞(Ωi), π̃1(u0,1) ∩ π̃2(u0,2) 6= ∅
}

is dense in {u0 ∈ L∞(Ω) | 0 ≤ u0 ≤ 1} for the L1(Ω)-topology. Then we can build a sequence (u0,ν)ν∈N
such

that
lim
ν→∞

‖u0,ν − u0‖L1(Ω) = 0.

Let (uν)ν be the corresponding sequence of bounded flux solutions, then we deduce from the Theorem 4.1 that
for all ν, µ ∈ N,

∀t ∈ [0, T ],
∑

i=1,2

∫

Ωi

φi (uν(x, t) − uµ(x, t))
±
dx ≤

∑

i=1,2

∫

Ωi

φi (u0,ν(x) − u0,µ(x))
±
dx. (70)

Then (uν)ν is a Cauchy sequence in C([0, T ];L1(Ω)), thus it converges towards u ∈ C([0, T ];L1(Ω)), and

∀t ∈ [0, T ],
∑

i=1,2

∫

Ωi

φi (uν(x, t) − u(x, t))
±
dx ≤

∑

i=1,2

∫

Ωi

φi (u0,ν(x) − u0(x))
±
dx. (71)

Let us now check that u is a weak solution. Since ϕi is continuous, and since 0 ≤ uν ≤ 1 a.e., ϕi(uν)
converges in L2(Ωi × (0, T )) towards ϕi(u). The L2((0, T );H1(Ωi)) estimate (35) does not depend on u0, thus,
up to a subsequence, (ϕi(uν))ν converges weakly to ϕi(u) in L2((0, T );H1(Ωi)). It also converges strongly in
L2((0, T );Hs(Ωi)) for all s ∈ (0, 1). This particularly ensures the strong convergence of the traces of (ϕi(uν))ν
on the interface. Since ϕ−1

i is continuous, we obtain the strong convergence of the traces of (uν)ν . Checking
that the set

F = {(a, b) ∈ [0, 1]2 | π̃1(a) ∩ π̃2(b) 6= ∅} is closed in [0, 1]2,

the limits ui fulfill π̃1(u1) ∩ π̃2(u2) 6= ∅, and so u is a weak solution, then it is a SOLA.
If u and v are two SOLAs associated to the initial data u0 and v0, we can easily prove, using the Theorem

4.1 that

∀t ∈ [0, T ],
∑

i=1,2

∫

Ωi

φi (u(x, t) − v(x, t))
±
dx ≤

∑

i=1,2

∫

Ωi

φi (u0(x) − v0(x))
±
dx. (72)

The uniqueness particularly follows.
Let u0 ∈ L∞(Ω), 0 ≤ u0 ≤ 1, and let (u0,ν)ν ⊂ E a sequence of approximate initial data tending to u0 in

L1(Ω). We denote by u the unique SOLA associated to u0, and by (uν)ν the bounded flux solutions associated
to (u0,ν)ν . Let (Mp)p∈N, (Np)p∈N be two sequences of positive integers tending to +∞. Let p ∈ N, ν ∈ N, let
uDp the discrete solution corresponding to u0, and let uν,Dp the discrete solution corresponding to u0,ν .

‖uDp − u‖L1(Ω×(0,T )) ≤ ‖uD − uν,Dp‖L1(Ω×(0,T )) + ‖uν,Dp − uν‖L1(Ω×(0,T )) + ‖uν − u‖L1(Ω×(0,T )).

From the discrete L1-contraction principle (23), and from the continuous one (71), we have

‖uDp − u‖L1(Ω×(0,T )) ≤ T
maxφi
minφi

‖u0,D − u0,ν,Dp‖L1(Ω) + ‖uν,Dp − uν‖L1(Ω×(0,T ))

+ T
maxφi
minφi

‖u0,ν − u0‖L1(Ω).

Letting p tend to ∞, it follows from the definition of (u0,ν,D) (adapted from (13)) that

lim
p→∞

‖u0,D − u0,ν,Dp‖L1(Ω) = ‖u0,ν − u0‖L1(Ω).

We have proven in the Theorem 3.1 that the sequence of discrete solutions converges, under assumption on the
initial data to the unique bounded flux solution, thus

lim
p→∞

‖uν,Dp − uν‖L1(Ω×(0,T )) = 0.

This implies

lim sup
p→∞

‖uDp − u‖L1(Ω×(0,T )) ≤ 2T
maxφi
minφi

‖u0,ν − u0‖L1(Ω).

Letting ν tend to ∞ provides
lim
p→∞

‖uDp − u‖L1(Ω×(0,T )) = 0.

The convergence occurs in L1(Ω × (0, T )), but the uniform bound on the sequence
(

uDp

)

in L∞(Ω × (0, T ))
ensures that the convergence also take place in all the Lp(Ω × (0, T )), for p ∈ [1,∞). �
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Figure 1: Saturation profiles for t = 20, t = 100, t = 200
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Figure 2: Capillary pressure profiles for t = 20, t = 100, t = 200

6 Numerical Result

In order to illustrate this model, we use a test case developed by Anthony Michel [32]. The porous medium
Ω = (0, 1) is made of sand for x ∈ (0, 0.5) ∪ (0.7, 1), with a layer of shale for x ∈ (0.5, 0.7).

First case:
The total flow rate is equal to 0, since fsand(1) = fshale(1) = 0, and the convection is the exclusive of the volume
mass difference between the oil, which is lighter, and the water. The convection functions are given by:

fsand(u) = 100 ∗ fshale(u) = 50 ∗
u2(1 − u2)

1 − 2u+ 2u2
.

The capillary pressures are first given by

πsand(u) = u5, πshale(u) = 0.5 + u5.

The function ϕsand and ϕshale, given by

ϕsand(u) = 10 ∗

∫ u

0

s2(1 − s2)

1 − 2s+ 2s2
π′

sand(s)ds, ϕshale(u) = 0.1 ∗

∫ u

0

s2(1 − s2)

1 − 2s+ 2s2
π′

shale(s)ds,

are computed using an approximate integration formula. The initial data u0 is equal to 0, and u = 0.001, u = 0.
The convection is approximated by a Godunov scheme, defined by

Gi(a, b) =







min
s∈[a,b]

fi(s) if a ≤ b,

max
s∈[b,a]

fi(s) otherwise.

A little quantity of oil enters the domain from the left boundary condition, and it moves forward in the
first part made of sand. The discontinuity of the capillary pressure (figure 2) stops the migration of oil, which
begins to collect at the left of the interface, as shown on the figure 1. One can check on the figure 3 that for t
small enough, the oil-flux through the interface {x = 0.5} is equal to 0. The accumulation of oil at the left of
{x = 0.5} implies an increase of the capillary pressure. As soon as the capillary pressure connects at {x = 0.5},
the oil can flow through the shale. The next discontinuity at {x = 0.7} does not impede the progression of the
oil, since the capillary pressure force, oriented from the large pressure to the small pressure (here from the left
to the right), works in the same direction that the buoyancy, which drives the migration of oil.

For t = 200, the presented solution is a steady solution, with constant flux (figure 3). Some oil remains
blocked in the first subdomain (0, 0.5). Even if one puts u(t) = 0 for t ≥ 200, the main proportion of oil in
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Figure 3: Oil-flux profiles for t = 20, t = 100, t = 200

the porous medium can not overpass the interface {x = 0.5} and leave the porous medium (0, 1). Indeed, the
function defined by

us(x) =

{

0 if x /∈ (0.4, 0.5),
π−1

sand(5(x− 0.4)) if x ∈ (0.4, 0.5)

is a steady solution to the problem for u = 0. It is easy to check that u(·, 200) ≥ us, thus the comparison
principle stated in the Theorem 4.1 ensures that for all t ≥ 200, u(·, t) ≥ us. Thus for all t ≥ 200

∫ 0.5

0

u(x, t)dx ≥

∫ 0.5

0

us(x)dx > 0.

This quantity is said to be trapped by the geology change. Further illustrations, and a scheme comparison will
be given in [32].

Second case:
We only change the values of the capillary pressure functions (and also the linked functions ϕsand and ϕshale).
The amplitude of the variation of each function is reduced from 1 to 0.2, i.e.

πsand(u) = 0.2 ∗ u5, πshale(u) = 0.5 + 0.2 ∗ u5.

The graph transmission condition for the capillary pressure turns to

(1 − usand)ushale = 0,

where usand (resp ushale) denotes the trace of the oil saturation at the interfaces {x = 0.5} and {x = 0.7}. In
this case, no oil can overpass the first interface, which is thus impermeable for oil. The only steady solution is

us(x) =

{

1 if x < 0.5,
0 if x > 0.5.

An asymptotic study for capillary pressures tending to functions depending only of space, and not on the
saturation has been performed in [13, Chapter 5&6] (see also [15, 16]). It has been proven that either the limit
solution for the saturation is an entropy solution for th e hyperbolic scalar conservation law with discontinuous
fluxes in the sense of [36, 37, 35, 1, 2, 3, 4, 6, 9, 8, 7, 27] (see also [28, 29, 30]), mainly when the capillary forces
at the interface are oriented in the same direction that the gravity forces, or that non-classical shocks can occur
at the interfaces when the capillary forces and the gravity are oriented in opposite directions.
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Figure 4: Saturation profiles for t = 100, t = 500, t = 900

Acknowledgements. The author would like to acknowledge the Professor Thierry Gallouët for his numerous
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Figure 5: Capillary pressure profiles for t = 100, t = 500, t = 900
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Figure 6: Oil-flux profiles for t = 100, t = 500, t = 900
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aux discontinuités de la pression capillaire. PhD thesis, Université de Provence, 2008.
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