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Introduction

Bilinear pairing in cryptography get increasing interest during the past decade. Pairings were first use to attack discrete logarithm problem over elliptic curve like in MOV attack [START_REF] Menezes | Reducing elliptic curve logarithms to logarithms in a finite field[END_REF]. Since 2001, they are used also in a constructive way. Specifically, new important and original protocols using bilinear pairing have been proposed (e.g. Identity Based Cryptography [START_REF] Boneh | Identity-based encryption from the weil pairing[END_REF] or Short Signature [START_REF] Boneh | Short signatures from the weil pairing[END_REF]). The most popular pairings used in pairing cryptography are defined over elliptic curves E(F q k ) (namely the Weil, Tate, ηT and Ate pairings [START_REF] Matsuda | Optimised versions of the ate and twisted ate pairings[END_REF]). Pairing evaluation over elliptic curve E(F q k ) involves arithmetical operations as multiplications and additions in the field F q k [START_REF] Koblitz | Pairing-based cryptography at high security levels[END_REF]. Fields F q k used in elliptic pairings are specific : q must have bit length bigger than 160 for security reason and 6 < k < 32 for optimization and security reason. For now, the principal method [START_REF] Koblitz | Pairing-based cryptography at high security levels[END_REF] proposed to multiply elements in F q k uses a mix of Karatsuba and Toom-Cook method. Consequently, they focus on k of the form k = 2 i 3 j , the resulting fields are called friendly field and the cost of a multiplication in F q k is equal to 3 i 5 j multiplications in Fq. Recently Discrete Fourier Transform approach has been proposed [START_REF] Gorla | Explicit formulas for efficient multiplication in F 3 6m[END_REF] to implement multiplication in F q 6 where q = 3 n . In practice Discrete Fourier Transform approach is interesting for quite large extension degree k. But here the underlying field are quite big, so if the use of DFT can save even a small number of multiplications in Fq this can be advantageous. In this paper, we extend the use of DFT for field F p k where p is now a prime integer. The multiplication with DFT requires, in the best case, 2k-1 multiplications in Fp and O(k 2 ) multiplications by roots of unity. If FFT can be used, the cost of DFT approach becomes O(n log(n)) operations in Fp. If the field Fp is represented in usual way, the DFT approach remains too costly. Indeed, in this case the roots of unity are generally not nice (e.g. with a dense binary representation) and a multiplication by these roots are costly. We propose here to use the AMNS system of Fp defined in [START_REF] Bajard | Modular number systems: Beyond the Mersenne family[END_REF]. In this situation we can manage to get roots of unity with nice representation, providing a multiplication which are almost cost free. These multiplications can thus be neglect and the resulting multiplication algorithm in F q k requires only 2k -1 multiplications in Fp. The paper is organized as follows : in Section 2 we recall the definition of the AMNS for representing integer modulo p and the arithmetic in this system. In Section 3 we recall the discrete Fourier transform approach for multiplication in F p k and extend it in Subsection 3.3 to specific cases. We then focus on DFT friendly fieds (Section 4) which get benefit of a combination of AMNS and DFT for field multiplicattion. We evaluate the complexity of our approach for several field extensions and compare them to friendly field. We ends the paper with a brief conclusion.

Prime field arithmetic in AMNS system

Modular arithmetic operations like addition or multiplication modulo p consist to add or multiply two integers 0 ≤ a, b < p and reduce the result modulo p if it is bigger than p. Efficient arithmetic modulo a prime integer p is generally deeply related to the system of representation used to represent the elements. Generally integers are expressed as a sum a = i=0 aiγ i where 0 ≤ ai < γ and γ has approximately the size of p. In practice γ is often chosen as 2 w where w is the size of computer words. Here we will use an original system of representation in Fp introduced in [START_REF] Bajard | Modular number systems: Beyond the Mersenne family[END_REF] by Bajard, Imbert and Plantard and called the Adapted Modular Number System. The main idea of the AMNS consists to relax the fact that γ ∼ = p 1/ . We take γ freely in [0, p] such that each 0 ≤ a < p can be written as a = i=0 aiγ i mod p with ai ∈ [0, p 1/ ]. The advantage is that γ can be taken as γ = λ mod p where λ is small. Definition 1 (AMNS [START_REF] Bajard | Modular number systems: Beyond the Mersenne family[END_REF]). An Adapted Modular Number System B, is a quadruple (p, , γ, ρ)E, where E = t -λ such that γ -λ = 0 mod p and such that for all positive integers 0 ≤ a < p there exists a polynomial

a(t) = -1 =0 ait i satisfying a(γ) = a mod p, deg(a(t)) < , a ∞ = max i=1 |ai| < ρ. (1) 
The polynomial a(t) is a representation of a in B.

Generally in AMNS we have γ ∼ = p and small coefficients |ai| < ρ ∼ = p 1/ .

Example 1. In Table 1, we give the representation in the AMNS B = (17, 3, 7, 2) for each element modulo p = 17.

In particular, we can verify that if we evaluate (-1 + t + t 2 ) in γ, we have -1 + γ + γ 2 = -1 + 7 + 49 = 55 ≡ 4 mod 17. We have also that 

-1 + t + t 2 ∞ = 1 < 2.
-t -t 2 1 -t -t 2 -1 + t 2 t 2 -1
In [START_REF] Negre | Efficient modular arithmetic in adapted modular number system using lagrange representation[END_REF] the authors have shown that it is possible to build an AMNS of length when it is possible to compute a polynomial m(γ) = 0 mod p with m ∞ small. Proposition 1. Let p be a prime integer and λ ∈ Z, ∈ N such that the polynomial E = t -λ admits a root γ in Fp. Then the following statements are true.

i) There exists a polynomial m such that m(γ) = 0 and m ∞ ≤ ( !) 1/ p 1/ . ii) Let σ = m ∞ and ρ = 2|λ| σ then the system B = (p, , γ, ρ)E is an AMNS of Fp.

Fields used in cryptographic pairing have a p randomly constructed. Thus multiplication modulo p cannot use some rare property of p, like the prime considered in [START_REF] Bajard | Modular number systems: Beyond the Mersenne family[END_REF]. The better algorithm in AMNS which does not use rare property of prime p is the Montgomery-like multiplication presented in [START_REF] Negre | Efficient modular arithmetic in adapted modular number system using lagrange representation[END_REF].

Algorithm 1: AMNS Multiplication

Input : a, b ∈ B = (p, , γ, ρ)E with E = t -λ Data : m a polynomial such that m(γ) ≡ 0 (mod p) an integer φ and m = -m -1 mod (E, φ)

Output: r(t) such that r(γ) = a(γ)b(γ)φ -1 mod p begin c ← a × b mod E; q ← c × m mod (E, φ) ; r ← (c + q × m mod E)/φ; end
According to [START_REF] Negre | Efficient modular arithmetic in adapted modular number system using lagrange representation[END_REF] this algorithm is correct if φ ≥ 2 λρ. Concerning the implementation of Algorithm 1, it requires essentially three polynomial multiplications where polynomial coefficients are smaller than ρ and φ. Such polynomial multiplication can be implemented using classical approach : for really small length schoolbook method are generally recommended, for bigger Karatsuba or Toom-Cook should be better. We will use here ≤ 60, thus, we will always use one of this two methods.

An extension field F p k can be seen as the set of polynomial with degree less than k

F p k = {U (X) ∈ Fp[X] s.t. deg U < k} .
Arithmetic in this set is done modulo an irreducible polynomial P with degree k. Since p is large, the polynomial P can be taken, in general, with a binomial form X k -α with α small (cf. [START_REF] Koblitz | Pairing-based cryptography at high security levels[END_REF][START_REF] Bajard | Pairing in cryptography: an arithmetic point of view[END_REF]). In this situation the multiplication modulo P of two elements

U = k-1 i=0 uiX i and V = k-1 i=0 viX i
consists first to compute the product W = U ×V and after that to reduce it modulo P . Since P is a binomial, the reduction modulo P is simple.

We split

W = W + X k W with deg W ≤ k and compute W + αW since X k ≡ α mod P .
The main challenge is thus to perform efficiently the polynomial multiplication U × V .

Polynomial multiplication using DFT

We recall here the Discrete Fourier Transform (DFT) approach for polynomial multiplication. This approach is a special case of the multievaluation/interpolation strategy [START_REF] Von Zurgathen | Modern Computer Algebra[END_REF]. Multi-evaluation/interpollation perform a polynomial multiplication of two polynomials U and V by evaluating both of them in n ≥ 2k -1 elements of Fp. Then we deduce the evalutation of W = U × V by computing term by term the evaluation of U and V . Finally we perform a Lagrange interpolation to get the polynomial form of W .

In the DFT approach the evaluation set used is the set of n-th roots of unity. Specifically, let ω ∈ Fp be a primitive root of unity, then the DFT works as follow.

1. Multi-evaluation. Let U, V be two polynomials in Fp[X] with degree k. We compute the multi-evaluation of U

Û = DF Tω(U ) = (U (1), U (ω), . . . , U (ω n-1 )).
This operation is usually called the Discrete Fourier Transform of U . The same is done for V . This operation can be done through a matrix vector product

Û =      1 ω ω 2 • • • ω k-1 1 ω 2 ω 4 • • • ω (k-1)2 . . . . . . 1 ω n-1 ω 2(n-1) • • • ω (k-1)(n-1)      •      u0 u1 . . . u k-1      . 2.
Term by term multiplications. Term by term multiplication is performed on Û and V Ŵ = (û1 × v1, û2 × v2 . . . , ûn × vn), we get the multi-evaluation of W where W = U × V .

3.

Interpolation. The interpolation consists to compute the polynomial form of W knowing its multi-evaluation in ω = (1, ω, ω 2 , . . . , ω (n-1) ).

Lemma 1. Let Fp be a prime field and ω be a primitive n-th root of unity. Let

Ω =        1 1 1 • • • 1 1 ω ω 2 • • • ω n-1 1 ω 2 ω 4 • • • ω (n-1)2 . . . . . . 1 ω n-1 ω 2(n-1) • • • ω (n-1)(n-1)        (2)
its inverse is given by

Ω -1 = 1 n        1 1 1 • • • 1 1 ω ω 2 • • • ω n-1 1 ω 2 ω 4 • • • ω (n-1)2 . . . . . . 1 ω n-1 ω 2(n-1) • • • ω (n-1)(n-1)        (3) 
where

ω = ω -1 = ω n-1 .
In this situation the interpolation is computed by applying Ω -1 to Ŵ and keeping only the first 2k -1 coefficients. We obtain

W = 1 n        1 1 1 • • • 1 1 ω ω 2 • • • ω n-1 1 ω 2 ω 4 • • • ω (n-1)2 . . . . . . 1 ω 2k-2 ω 2(2k-2) • • • ω (n-1)(2k-2)        •      ŵ1 ŵ2 . . . ŵn     
.

Remark 1 (Montgomery representation.). We can avoid the division by n in the interpolation process. Indeed, if we use a Montgomery representation (cf [START_REF] Montgomery | Modular multiplication without trial division[END_REF]) of U and

V U = 1 n U and V = 1 n V.
If we perfom DFT approach without the division by n to multiply U and V we get

n U V = n( 1 n U ) × ( 1 n V ) = W ,
where W = U × V . In other words DFT multiplication without division by n is stable in Montgomery representation. This representation is also stable under addition and reduction modulo P . It can thus be used in a chain of multiplication/addition, like in pairing evaluation over elliptic curves.

Fast Fourier Transformation (FFT)

Let U = n-1 i=0 uiX i ∈ Fp[X]
and ω be a primitive root of unity. The fast Fourier transform (FFT) is an algorithm which performs efficiently the evaluation of U in ω = (1, ω, ω 2 , . . . , ω n-1 ). The FFT process is based on the following two-way splitting of U

U1 = n/2-1 j=0 a2jX 2j , U2 = n/2-1 j=0 a2j+1X 2j , such that U = U1 + XU2 . Let U [i] = U (ω i ) be the i-th coefficient of Û = DF Tω(U ). Let us also denote by Û1[i], Û2[i] the coefficients of DF T ω 2 (U1) and DF T ω 2 (U2) in {1, ω 2 , ω 4 , . . . , (ω 2 ) n/2-1 }. If we evaluate U = U1 + XU2 in ω i and ω i+n/2 = -ω i , i < n/2 we get U [i] = U1[i] + ω i U2[i] U [i + n/2] = U1[i] -ω i U2[i]
The computation DF Tω(U ) is thus reduced to the computation of DF T ω 2 (U1) and DF T ω 2 (U2). These computations can be done recursivelly. The resulting algorithm has a cost of n 2 log 2 (n) multiplications by ω i in Fp and n log 2 (n) additions/subtractions.

Multiplication with DFT when n ≤ 2k -2

DFT approach for multiplication uses evaluations and interpolation in a set of n ≥ 2k -2 root of unity in order to get the correct product W . In some situations there is no primitive n-th root of unity with n ≥ 2k -1 and n close to 2k -1. In these situations DFT approach is not practical. We present here an extension of the DFT approach when there exists primitive n-th root of unity smaller than 2k -1. We focus here on two cases n = 2k -2 and n = 2k -4, which correspond to practical situations (see Section 4). The following approach is a generalization of the method presented in [START_REF] Gorla | Explicit formulas for efficient multiplication in F 3 6m[END_REF] when k = 3 and n = 6. Lemma 2. Let Fp be a prime field, ω be a primitive n-th root of unity and Ω and Ω -1 be the matrices defined in Lemma 1. We consider

U = k-1 i=0 uiX i , V = k-1
i=0 viX i and W = U × V and we assume that n = 2k -2. Then W can be computed as follows.

1.

Û = DF Tω(U ), V = DF Tω(V ). 2. w 2k-2 = u k-1 × v k-1 3.
The coefficients wi for i = 0, . . . , 2k -3 are computed as

     w0 w1 . . . w 2k-3      = Ω -1 •      ûi × vi -w 2k-2 ûi × vi -w 2k-2 . . . ûi × vi -w 2k-2      . (4) 
Proof. Since n = 2k -2 and U and V have degree k -1 then U × V = W = n i=0 wiX i has degree n and W = n i=0 wiX i . The evaluation Ŵ of W in the n elements ω i gives

             ŵ0 = W (1) = w0 + w1 + . . . + wn-1 + wn ŵ1 = W (ω) = w0 + w1ω + . . . + wn-1ω n-1 + wnω n ŵ2 = W (ω 2 ) = w0 + w1(ω 2 ) + . . . + wn-1(ω 2 ) n-1 + wn(ω 2 ) n . . . . . . ŵn-1 = W (ω n-1 ) = w0 + w1(ω n-1 ) + . . . + wn-1(ω n-1 ) n-1 + wn(ω n-1 ) n . Now, since ω n = 1, we have (ω i ) n = 1 for i = 1, . . . , n -1.
The right part of the previous equations rewrites as

             ŵ0 = W (1) = w0 + w1 + • • • + wn ŵ1 = W (ω) = w0 + w1ω + • • • + wnω n-1 + wn ŵ2 = W (ω 2 ) = w0 + w1(ω 2 ) + • • • + wn-1(ω 2 ) n-1 + wn . . . . . . ŵn-1 = W (ω n-1 ) = w0 + • • • + wn-1(ω n-1 ) n-1 + wn (5) 
The coefficient wn is already known since wn

= w 2k-2 = u k-1 v k-1 .
Using [START_REF] Boneh | Short signatures from the weil pairing[END_REF], we remark that the vector ( ŵ0 -wn, ŵ1 -wn, . . . , ŵn-1 -wn) is the discrete Fourier transform of the polynomial W = n-1 i=0 wiX i . Thus we get back to the coefficients of W by computing

Ω -1 • ŵ0 -wn ŵ1 -wn • • • ŵn-1 -wn) t .
This corresponds to Eq. ( 4).

We focus now on the case n = 2k -4.

Lemma 3. Let Fp be a prime field and ω ∈ Fp a primitive n-th root of unity. Let U = k-1 i=0 uiX i and V = k-1 i=0 viX i in Fp[X]. Let W = U ×V and assume that n = 2k -4, then the coefficients of W can be computed as follows.

1. Û = DF Tω(U ), V = DF Tω(V ).

w

2k-2 = u k-1 × v k-1 , w0 = u0 × v0 3. w 2k-3 = u k-1 × v k-2 + u k-2 × v k-1 4.
The coefficients wi for i = 1, . . . , 2k -4 are computed as

       w1 w2 w2 . . . wn        = Ω -1 •        ŵ0 -w0 -wn+1 -wn+2 ( ŵ1 -w0 -wn+1ω -wn+2ω 2 )ω -1 ( ŵ2 -w0 -wn+1ω 2 -wn+2(ω 2 ) 2 )ω -2
. . .

( ŵn-1 -w0 -wn+1ω n-1 -wn+1(ω n-1 ) 2 )ω -(n-1)        (6)
where Ω -1 is defined in Eq. (3).

Proof. The proof is similar to the proof Lemma 2. Since n = 2k -4 and U and V have degree k -1 then U × V = W = n+2 i=0 wiX i has degree n + 2 = 2k -2. The evaluation Ŵ of W in the n elements ω i gives

                 ŵ0 = W (1) = w0 + w1 + • • • + wn + wn+1 + wn+1 ŵ1 = W (ω) = w0 + w1ω + • • • + wnω n + wn+1ω n+1 + wn+2ω n+2 ŵ2 = W (ω 2 ) = w0 + w1(ω 2 ) + • • • + wnω n + wn(ω 2 ) n + wn+2(ω 2 ) n+2 . . . . . . ŵn-1 = W (ω n-1 ) = w0 + w1(ω n-1 ) + • • • + wn(ω n-1 ) n +wn+1(ω n-1 ) n+1 + wn+2(ω n-1 ) n+2
Now, since ω n = 1, we have (ω i ) n+1 = ω i and (ω i ) n+2 = (ω i ) 2 for i = 1, . . . , n -1 in the right part of the previous equations. We get for ŵi

             ŵ0 = W (1) = w0 + w1 + • • • + wn + wn+1 + wn+2 ŵ1 = W (ω) = w0 + w1ω + • • • + wnω n + wn+1ω + wn+1ω 2 ŵ2 = W (ω 2 ) = w0 + w1(ω 2 ) + • • • + wn(ω 2 ) n + wn+1ω 2 + wn+2(ω 2 ) 2 . . . . . . ŵn-1 = W (ω n-1 ) = w0 + • • • + wn(ω n-1 ) n + wn+1ω n-1 + wn+2(ω n-1 ) 2
The three coefficients w0, wn+1, wn+2 are already known. Then we rewrite the previous equations as follows

             ŵ0 -w0 -wn+1 -wn+2 = w1 + • • • + wn-1 ( ŵ1 -w0 -wn+1ω -wn+2ω 2 )ω -1 = w1 + • • • + wnω n-1 ( ŵ2 -w0 -wn+1ω 2 -wn+2(ω 2 ) 2 )ω -2 = w1 + • • • + wn-1(ω 2 ) n-1 . . . . . . ( ŵn-1 -w0 -wn+1ω n-1 -wn+1(ω n-1 ) 2 )ω -(n-1) = w1 + • • • + wn-1(ω n-1 ) n-1
We remark now that the right part corresponds to the evaluation of the polynomial W = n-1 i=0 wi+1X i . Consequently we get the coefficients of W by computing the matrix vector product

       w1 w2 w2 . . . wn        = 1 n Ω •        ŵ0 -w0 -wn+1 -wn+2 ( ŵ1 -w0 -wn+1ω -wn+2ω 2 )ω -1 ( ŵ2 -w0 -wn+1ω 2 -wn+2(ω 2 ) 2 )ω -2 . . . ( ŵn-1 -w0 -wn+1ω n-1 -wn+1(ω n-1 ) 2 )ω -(n-1)       
This corresponds to Eq. ( 6).

The previous Lemmas are just special cases. They can be extended to smaller value of n by increasing the number of precomputed wi for small indices i = 1, 2, . . . and big indices i = 2k -2, 2k -3, . . . before the interpolation process using Ω -1 .

Remark 2. In the two situations of Lemma 2 and Lemma 3 we can use also Montgomery representation of polynomials to avoid division by n. For example if Lemma 2 is applied without the division by n to U = 1 n U and V = 1 n V , we obtain the coefficients wi of W = 1 n U × V for i = 0, . . . , 2k -2. Only w 2k-1 must be computed separatly w 2k-2 = 1 n w 2k-1 to get all the coefficients of W . The same strategy can be applied to Lemma 3 with 3 more multiplications by 1 n .

Complexity of differents DFT methods

We evaluate the complexity of the different DFT approaches. We distinguished the cases where DFT is performed through a matrix vector product and where DFT is performed using FFT algorithm. We express the cost in term of the number of operations in Fp : the number of multiplication by roots of unity, addition/subtraction, and multiplication. For multi-evaluation and interpolation we used the fact that the entries in Ω and Ω -1 are all power of ω. We also assume that multiplication are done in Montgomery representation, in order to avoid the division by 1 n (cf. Remark 1 and Remark 2). We obtain the complexity given in Table 2.

Table 2. Complexity of DFT approaches

Method # Mult. by ω i # Mult. # Add. General DFT 4nk -3n n 4nk -3n General FFT 3n 2 log 2 (n) n 3n log 2 (n) Lemma 2 3(2k -3) 2 2k (2k -2)(6k -8) Lemma 2 with FFT 3(k -1) log 2 (2k -2) 2k 3(2k -2) log 2 (2k -2) + (2k -2) Lemma 3 3(2k -5) 2 + 2(2k -5) 2k + 3 3(2k -4)(2k -4 -1) + 2(2k -4) Lemma 3 with FFT 3(k -2) log 2 (2k -4) + 3(2k -5) 2k + 3 3(2k -4)(log 2 (2k -4) + 1)

DFT friendly field

We focus in this section on specific fields called DFT friendly fields. These fields admit an AMNS which provide efficient multiplication by roots of unity.

Definition of DFT friendly field

The main goal is to find a way to have fields Fp with n-roots of unity such that n ∈ {2k -1, 2k -2, 2k -3} and such that the multiplication by these roots are really efficient. We propose to consider fields F p k satisfying the following definition.

Definition 2 (DFT Friendly Field). We call a DFT friendly field an extension field F p k such that Fp admits an AMNS B = (p, , γ, ρ)E of length and such that one of the following conditions holds 1. λ = 1 and ∈ {2k -1, 2k -2, 2k -4} and γ is primitive -th root of unity. 2. λ = -1 and ∈ {k -1, k -2} and γ is primitive 2 -th root of unity.

Since we have roots of unity with appropriate order, we can use DFT approaches presented in Section 3 to perform the multiplication of elements in F p k . Indeed the condition on in each case of Definition 2 enables us to use at least one of the strategies expressed in Subsection 3.1 or Lemma 2 and Lemma 3. In DFT Friendly fields, the root of unity are the elements ±γ i . The multiplication by these roots can be done using the formula stated in the following Lemma. 

aγ i = λan-i + λan-i+1γ + • • • + λan-1γ i-1 + a0γ i + • • • + an-i-1γ n-1
Proof. The proof is a direct consequence of the definition of an AMNS.

In our case, the field Fp represented with an AMNS where λ = ±1. Consequently the multiplication by ±γ i consists just of a cyclic shift, with eventually some changes of sign. The multiplication by ±γ i is almost free of computations.

Fields used pairing cryptography

We recall here different methods used to construct elliptic curves and corresponding finite field providing pairing. The curve order #E(Fp) must have a big prime factor, called r and an extension degree 6 < k ≤ 32. To get such curve the most used method is based on Complex Multiplication. The construction of a curve with the Complex Multiplication (CM) method requires to solve a system of equations [START_REF] Cocks | Identity-based cryptosystems based on the Weil pairing[END_REF] where the indeterminates are an integer D, the embedding degree k, the prime factor r, t the trace of the Frobenius on E(Fp) and p the characteristic of the finite field:

   r | p + t -1, r | p k -1,
for primes r, p, Dy 2 = 4p -t 2 for some integer y. [START_REF] Cocks | Identity-based cryptosystems based on the Weil pairing[END_REF] Several methods exist to solve this system. An overview of this different methods is given in [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]. We recall here the two following methods -The Miyaji-Nakabayashi-Takano (MNT) strategy is one of the first CM method [START_REF] Miyaji | New explicit conditions of elliptic curve traces for fr-reduction[END_REF] to construct elliptic curve suitable for ECC. It was extended by Barreto and Naehrig [START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF] to construct elliptic curves with embedding degree 12. These curves with embedding degree 12 are given by the following parametrization:

k = 12, p = x 4 + 36x 3 + 24x 2 + 6x + 1, r = 36x 4 + 36x 3 + 18x 2 + 6x + 1, t = 6x 2 + 1.
-The second method which could be used in order to build curves with arbitrary embedding degree k is the Cocks-Pinch method [START_REF] Cocks | Identity-based cryptosystems based on the Weil pairing[END_REF]. This method generates curves with arbitrary r, such that #E(Fp)/r ≈ 2. The extension of the Cocks-Pinch method given in [START_REF] Brezing | Elliptic curves suitable for pairing based cryptography[END_REF] provides smaller value for #E(Fp)/r. Their method can be applied for general embedding degree. For example in [START_REF] Brezing | Elliptic curves suitable for pairing based cryptography[END_REF] they generated a family of curves with embedding degree 16. This family is given by the following polynomials: 

k = 16

Complexity comparison

We present in Table 3 the complexity of a multiplication in DFT friendly field F p k for different size of k. This complexity is given in term of the number of multiplication and addition in Fp. The complexity is deduced from Table 2 : we neglect the cost of the multiplication by the roots of unity since it is almost cost free. We also specify if we use FFT or not. We give also in Table 2 the complexity of the multiplication in friendly field [START_REF] Bajard | Pairing in cryptography: an arithmetic point of view[END_REF]. We remark that even for small value of k, DFT approach seems competitive regarding the number of multiplication. When no FFT can be used, the number of additions increases significantly, and should make our approach not competitive in these special cases.

Conclusion

We have presented in this paper a new approach for multiplication in fields F p k used in pairing cryptography. We used AMNS [START_REF] Bajard | Modular number systems: Beyond the Mersenne family[END_REF] to represent element in Fp and DFT approach for extension field arithmetic. Specificaly we pointed out that some AMNS provides efficient multiplication by roots of unity and thus optimize DFT approach. The resulting multiplication in extension field F p k requires less multiplications in Fp for 

M =        p 0 0 • • • 0 -γ 1 0 • • • 0 -γ 2 0 1 • • • 0 . . . . . . . . . -γ ( -1) 0 • • • 0 1       
We apply LLL algorithm to this matrix and we obtain a short vector m satisfying m(γ) = 0 mod p. We finally get ρ = 2 |λ| m ∞.

Curves with embedding degree k = 12

We use the parametrization of Barreto and Naehrig [START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF] which provides elliptic curves with embedding degree 12:s

k = 12, p = 36x 4 + 36x 3 + 24x 2 + 6x + 1, r = 36x 4 + 36x 3 + 18x 2 + 6x + 1, t = 6x 2 + 1.
We use also the polynomial E(t) = 10 i=0 (-t) i to build the AMNS of p. For a security level of 80 (i.e. the best attack requires 2 80 operations) we find the following example: 

Lemma 4 .

 4 Let an AMNS B = (p, , γ, ρ)E and a = n-1 i=0 aiγ i be expressed in B. The multiplication of a by the power γ i of γ is given by

5 +11263X 6 - 4 +1059907X 5 - 5 +43021X 6 +

 564556 ) = 12376 -49167X + 48460X 2 + 18281X 3 + 15213X 4 -10299X 70120X 7 -13636X 8 -18106X 9 .For a security level of 160 we found:) = 8053715 -20923230X + 23417521X 2 -26826999X 3 + 19243643X 41954237X 6 -42180723X 7 + 5371359X 8 -19196965X 9 .6.2 Curves with embedding degree k = 16We use the parametrization of[START_REF] Kachisa | Constructing brezingweng pairing friendly elliptic curves using elements in the cyclotomic field[END_REF]:k = 16, p = (x 10 + 2x 9 + 5x 8 + 48x 6 + 152x 5 + 240x 4 + 625x 2 + 2398x + 3125)/980,r = (x 8 + 48x 4 + 625)/61250, t = (2x 5 + 41x + 35)/35. We use the polynomial E(t) = t 16 + 1.For a security level of 80 we found the following example: ) = 7400X + 49262X 2 -3010X 3 -14335X 4 + 34360X 6813X 7 + 5184X 8 + 13206X 9 + 10037X10 

+2540X 11 -

 11 7384X 12 -66117X 13 -57557X 14 + 32450X15 .For a security level of 160 we found :) = 11792 + 15441X -25387X 2 + 11348X 3 + 20103X 4 + 25605X 5 -8716X 6 + 9091X 7 + 19039X 8 + 13855X 9 -22021X 10 -15182X 11 -4543X 12 + 1417X 13 -26776X 14 + 11502X 15 .

Table 1 .

 1 The elements of Z17 in B = M N S[START_REF] Von Zurgathen | Modern Computer Algebra[END_REF][START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF][START_REF] Cocks | Identity-based cryptosystems based on the Weil pairing[END_REF][START_REF] Bajard | Pairing in cryptography: an arithmetic point of view[END_REF] 

	0	1	2	3	4	5
	0	1	-t 2 1 -t 2 -1 + t + t 2 t + t 2
	6	7	8	9	10	11
	-1 + t	t	1 + t -t -1	-t	-t + 1
	12	13	14	15	16	

  , for x ≡ ±25 mod(70) p = (x 10 + 2x 9 + 5x 8 + 48x 6 + 152x 5 + 240x4 For all these constructions the prime p is constructed randomly. Proposition 1 tells us that if there exists a primitive -th (or 2 -th) root of unity, where satisfies the condition of Definition 2, then we can construct an AMNS satisfying Definition 2. For a random prime p, the probability that it has a primitive ell-th root of unity is roughly 1/(ell -1). Indeed p has a root of unity if and only if p ≡ 1 mod . But prime are equally distributed in the set of class modulo . Consequently for small value of , we can easily find DFT friendly field Fp and elliptic curve over this field providing practical pairing.

	+625x 2 + 2398x + 3125)/980,
	r = (x 8 + 4x 4 + 625)/61250,
	t = (2x 5 + 41x +

Table 3 .

 3 Complexity comparison for practical extension degree k

	Method	k	Cost of M ultF p k
			# Add. in Fp # Mult. in Fp
	Karatsuba/Toom-Cook [11,2]	6	60	15
	Karatsuba/Toom-Cook [11,2]	8	72	27
	Subsection 3.1 with FFT and E = t 8 + 1 8	192	16
	Karatsuba/Toom-Cook [11,2]	9	160	25
	Lemma 2 with FFT and E = t 8 + 1	9	208	18
	Lemma 3 with FFT and E = t 8 + 1	10	240	23
	Subsection 3.1 with E = 10 i=0 (-t) i	11	902	22
	Karatsuba/Toom-Cook [11,2]	12	180	45
	Lemma 2 with E = 10 i=0 (-t) i Lemma 3 with E = 10 i=0 (-t) i	12 13	1408 1430	24 28
	Karatsuba/Toom-Cook [11,2]	16	248	81
	Subsection 3.1 with FFT and E = t 16 + 1 16	480	32
	Lemma 2 with FFT and E = t 16 + 1 17	512	34
	Lemma 3 with FFT and E = t 16 + 1 18	576	39
	Karatsuba/Toom-Cook [11,2]	24	588	135
	different practical size of k than previously recommended method [11,2].
	Specifically for k ≥ 12 combined AMNS and DFT approach in DFT
	friendly field, proposed in this paper, decreases the number of multipli-
	cation in Fp by 50%.