
HAL Id: hal-00360280
https://hal.science/hal-00360280

Preprint submitted on 10 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite field multiplication combining AMNS and DFT
approach for pairing cryptography

Nadia El Mrabet, Christophe Negre

To cite this version:
Nadia El Mrabet, Christophe Negre. Finite field multiplication combining AMNS and DFT approach
for pairing cryptography. 2009. �hal-00360280�

https://hal.science/hal-00360280
https://hal.archives-ouvertes.fr

Finite field multiplication combining AMNS and
DFT approach for pairing cryptography

Abstract. Pairings over ellitpic curve use fields Fpk with p ≥ 2160 and
6 < k ≤ 32. In this paper we propose to represent elements in Fp with
AMNS sytem of [1]. For well chosen AMNS we get roots of unity with
sparse representation. The multiplication by these roots are thus really
efficient in Fp. The DFT/FFT approach for multiplication in extension
field Fpk is thus optimized. The resulting complexity of a multiplication
in Fpk combining AMNS and DFT is about 50% less than the previously
recommended approach [11].

Keywords. Pairing, finite field, AMNS, discrete Fourrier transform.

1 Introduction

Bilinear pairing in cryptography get increasing interest during the past
decade. Pairings were first use to attack discrete logarithm problem over
elliptic curve like in MOV attack [13]. Since 2001, they are used also
in a constructive way. Specifically, new important and original protocols
using bilinear pairing have been proposed (e.g. Identity Based Cryptogra-
phy [4] or Short Signature [5]). The most popular pairings used in pairing
cryptography are defined over elliptic curves E(Fqk) (namely the Weil,
Tate, ηT and Ate pairings [12]). Pairing evaluation over elliptic curve
E(Fqk) involves arithmetical operations as multiplications and additions
in the field Fqk [11].
Fields Fqk used in elliptic pairings are specific : q must have bit length
bigger than 160 for security reason and 6 < k < 32 for optimization and
security reason. For now, the principal method [11] proposed to multi-
ply elements in Fqk uses a mix of Karatsuba and Toom-Cook method.

Consequently, they focus on k of the form k = 2i3j , the resulting fields
are called friendly field and the cost of a multiplication in Fqk is equal

to 3i5j multiplications in Fq.
Recently Discrete Fourier Transform approach has been proposed [9]
to implement multiplication in Fq6 where q = 3n. In practice Discrete
Fourier Transform approach is interesting for quite large extension de-
gree k. But here the underlying field are quite big, so if the use of DFT
can save even a small number of multiplications in Fq this can be advan-
tageous.
In this paper, we extend the use of DFT for field Fpk where p is now a
prime integer. The multiplication with DFT requires, in the best case,
2k−1 multiplications in Fp and O(k2) multiplications by roots of unity. If
FFT can be used, the cost of DFT approach becomes O(n log(n)) opera-
tions in Fp. If the field Fp is represented in usual way, the DFT approach
remains too costly. Indeed, in this case the roots of unity are generally

not nice (e.g. with a dense binary representation) and a multiplication
by these roots are costly. We propose here to use the AMNS system of
Fp defined in [1]. In this situation we can manage to get roots of unity
with nice representation, providing a multiplication which are almost
cost free. These multiplications can thus be neglect and the resulting
multiplication algorithm in Fqk requires only 2k − 1 multiplications in
Fp.
The paper is organized as follows : in Section 2 we recall the definition of
the AMNS for representing integer modulo p and the arithmetic in this
system. In Section 3 we recall the discrete Fourier transform approach
for multiplication in Fpk and extend it in Subsection 3.3 to specific cases.
We then focus on DFT friendly fieds (Section 4) which get benefit of a
combination of AMNS and DFT for field multiplicattion. We evaluate
the complexity of our approach for several field extensions and compare
them to friendly field. We ends the paper with a brief conclusion.

2 Prime field arithmetic in AMNS system

Modular arithmetic operations like addition or multiplication modulo p
consist to add or multiply two integers 0 ≤ a, b < p and reduce the result
modulo p if it is bigger than p.
Efficient arithmetic modulo a prime integer p is generally deeply related
to the system of representation used to represent the elements. Generally
integers are expressed as a sum a =

∑`
i=0 aiγ

i where 0 ≤ ai < γ and
γ` has approximately the size of p. In practice γ is often chosen as 2w

where w is the size of computer words.
Here we will use an original system of representation in Fp introduced
in [1] by Bajard, Imbert and Plantard and called the Adapted Modular
Number System. The main idea of the AMNS consists to relax the fact
that γ ∼= p1/`. We take γ freely in [0, p] such that each 0 ≤ a < p can
be written as a =

∑`
i=0 aiγ

i mod p with ai ∈ [0, p1/`]. The advantage
is that γ can be taken as γ` = λ mod p where λ is small.

Definition 1 (AMNS [1]). An Adapted Modular Number System B, is
a quadruple (p, `, γ, ρ)E, where E = t` − λ such that γ` − λ = 0 mod p
and such that for all positive integers 0 ≤ a < p there exists a polynomial
a(t) =

∑`−1
=0 ait

i satisfying

a(γ) = a mod p,
deg(a(t)) < `,

‖a‖∞ = max`
i=1 |ai| < ρ.

(1)

The polynomial a(t) is a representation of a in B.

Generally in AMNS we have γ ∼= p and small coefficients |ai| < ρ ∼= p1/`.

Example 1. In Table 1, we give the representation in the AMNS B =
(17, 3, 7, 2) for each element modulo p = 17.
In particular, we can verify that if we evaluate (−1 + t + t2) in γ, we
have −1 + γ + γ2 = −1 + 7 + 49 = 55 ≡ 4 mod 17. We have also that
‖ − 1 + t+ t2‖∞ = 1 < 2.

Table 1. The elements of Z17 in B = MNS(17, 3, 7, 2)

0 1 2 3 4 5

0 1 −t2 1− t2 −1 + t+ t2 t+ t2

6 7 8 9 10 11

−1 + t t 1 + t −t− 1 −t −t+ 1

12 13 14 15 16
−t− t2 1− t− t2 −1 + t2 t2 −1

In [16] the authors have shown that it is possible to build an AMNS of
length ` when it is possible to compute a polynomial m(γ) = 0 mod p
with ‖m‖∞ small.

Proposition 1. Let p be a prime integer and λ ∈ Z, ` ∈ N such that
the polynomial E = t` − λ admits a root γ in Fp. Then the following
statements are true.

i) There exists a polynomial m such that m(γ) = 0 and ‖m‖∞ ≤
(`!)1/`p1/`.

ii) Let σ = ‖m‖∞ and ρ = 2|λ|`σ then the system B = (p, `, γ, ρ)E is
an AMNS of Fp.

Fields used in cryptographic pairing have a p randomly constructed.
Thus multiplication modulo p cannot use some rare property of p, like
the prime considered in [1]. The better algorithm in AMNS which does
not use rare property of prime p is the Montgomery-like multiplication
presented in [16].

Algorithm 1: AMNS Multiplication

Input : a, b ∈ B = (p, `, γ, ρ)E with E = t` − λ
Data : m a polynomial such that m(γ) ≡ 0 (mod p)

an integer φ and m′ = −m−1 mod (E, φ)
Output: r(t) such that r(γ) = a(γ)b(γ)φ−1 mod p
begin

c← a× b mod E;
q← c×m′ mod (E, φ) ;
r← (c + q×m mod E)/φ;

end

According to [16] this algorithm is correct if φ ≥ 2`λρ. Concerning the
implementation of Algorithm 1, it requires essentially three polynomial
multiplications where polynomial coefficients are smaller than ρ and φ.

Such polynomial multiplication can be implemented using classical ap-
proach : for really small length ` schoolbook method are generally rec-
ommended, for bigger ` Karatsuba or Toom-Cook should be better. We
will use here ` ≤ 60, thus, we will always use one of this two methods.

3 Field extension arithmetic

An extension field Fpk can be seen as the set of polynomial with degree
less than k

Fpk = {U(X) ∈ Fp[X] s.t. degU < k} .
Arithmetic in this set is done modulo an irreducible polynomial P with
degree k. Since p is large, the polynomial P can be taken, in general,
with a binomial form Xk − α with α small (cf. [11,2]). In this situation
the multiplication modulo P of two elements

U =
∑k−1

i=0 uiX
i and V =

∑k−1
i=0 viX

i

consists first to compute the product W = U×V and after that to reduce
it modulo P . Since P is a binomial, the reduction modulo P is simple.
We split W = W +XkW with degW ≤ k and compute W + αW since
Xk ≡ α mod P . The main challenge is thus to perform efficiently the
polynomial multiplication U × V .

3.1 Polynomial multiplication using DFT

We recall here the Discrete Fourier Transform (DFT) approach for poly-
nomial multiplication. This approach is a special case of the multi-
evaluation/interpolation strategy [17]. Multi-evaluation/interpollation per-
form a polynomial multiplication of two polynomials U and V by eval-
uating both of them in n ≥ 2k − 1 elements of Fp. Then we deduce the
evalutation of W = U × V by computing term by term the evaluation
of U and V . Finally we perform a Lagrange interpolation to get the
polynomial form of W .
In the DFT approach the evaluation set used is the set of n-th roots of
unity. Specifically, let ω ∈ Fp be a primitive root of unity, then the DFT
works as follow.

1. Multi-evaluation. Let U, V be two polynomials in Fp[X] with degree
k. We compute the multi-evaluation of U

Û = DFTω(U) = (U(1), U(ω), . . . , U(ωn−1)).

This operation is usually called the Discrete Fourier Transform of
U . The same is done for V . This operation can be done through a
matrix vector product

Û =


1 ω ω2 · · · ωk−1

1 ω2 ω4 · · · ω(k−1)2

...
...

1 ωn−1 ω2(n−1) · · · ω(k−1)(n−1)

 ·


u0

u1

...
uk−1

 .
2. Term by term multiplications. Term by term multiplication is per-

formed on Û and V̂

Ŵ = (û1 × v̂1, û2 × v̂2 . . . , ûn × v̂n),

we get the multi-evaluation of W where W = U × V .

3. Interpolation. The interpolation consists to compute the polynomial
form ofW knowing its multi-evaluation in ω = (1, ω, ω2, . . . , ω(n−1)).

Lemma 1. Let Fp be a prime field and ω be a primitive n-th root
of unity. Let

Ω =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω(n−1)2

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 (2)

its inverse is given by

Ω−1 =
1

n


1 1 1 · · · 1
1 ω′ ω′2 · · · ω′n−1

1 ω′2 ω′4 · · · ω′(n−1)2

...
...

1 ω′n−1 ω′2(n−1) · · · ω′(n−1)(n−1)

 (3)

where ω′ = ω−1 = ωn−1.

In this situation the interpolation is computed by applying Ω−1 to
Ŵ and keeping only the first 2k − 1 coefficients. We obtain

W =
1

n


1 1 1 · · · 1
1 ω′ ω′2 · · · ω′n−1

1 ω′2 ω′4 · · · ω′(n−1)2

...
...

1 ω′2k−2 ω′2(2k−2) · · · ω′(n−1)(2k−2)

 ·

ŵ1

ŵ2

...
ŵn

 .

Remark 1 (Montgomery representation.). We can avoid the division by
n in the interpolation process. Indeed, if we use a Montgomery represen-
tation (cf [15]) of U and V

Ũ =
1

n
U and Ṽ =

1

n
V.

If we perfom DFT approach without the division by n to multiply Ũ and
Ṽ we get

nŨṼ = n(
1

n
U)× (

1

n
V) = W̃ ,

where W = U × V . In other words DFT multiplication without division
by n is stable in Montgomery representation. This representation is also
stable under addition and reduction modulo P . It can thus be used in a
chain of multiplication/addition, like in pairing evaluation over elliptic
curves.

3.2 Fast Fourier Transformation (FFT)

Let U =
∑n−1

i=0 uiX
i ∈ Fp[X] and ω be a primitive root of unity. The fast

Fourier transform (FFT) is an algorithm which performs efficiently the
evaluation of U in ω = (1, ω, ω2, . . . , ωn−1). The FFT process is based
on the following two-way splitting of U

U1 =
∑n/2−1

j=0 a2jX
2j ,

U2 =
∑n/2−1

j=0 a2j+1X
2j ,

such that U = U1 +XU2 .
Let Û [i] = U(ωi) be the i-th coefficient of Û = DFTω(U). Let us also
denote by Û1[i], Û2[i] the coefficients of DFTω2(U1) and DFTω2(U2)
in {1, ω2, ω4, . . . , (ω2)n/2−1}. If we evaluate U = U1 + XU2 in ωi and
ωi+n/2 = −ωi, i < n/2 we get

Û [i] = Û1[i] + ωiÛ2[i]

Û [i+ n/2] = Û1[i]− ωiÛ2[i]

The computationDFTω(U) is thus reduced to the computation ofDFTω2(U1)
and DFTω2(U2). These computations can be done recursivelly. The re-
sulting algorithm has a cost of n

2
log2(n) multiplications by ωi in Fp and

n log2(n) additions/subtractions.

3.3 Multiplication with DFT when n ≤ 2k − 2

DFT approach for multiplication uses evaluations and interpolation in a
set of n ≥ 2k− 2 root of unity in order to get the correct product W . In
some situations there is no primitive n-th root of unity with n ≥ 2k − 1
and n close to 2k− 1. In these situations DFT approach is not practical.
We present here an extension of the DFT approach when there exists
primitive n-th root of unity smaller than 2k − 1. We focus here on two
cases n = 2k−2 and n = 2k−4, which correspond to practical situations
(see Section 4). The following approach is a generalization of the method
presented in [9] when k = 3 and n = 6.

Lemma 2. Let Fp be a prime field, ω be a primitive n-th root of unity
and Ω and Ω−1 be the matrices defined in Lemma 1. We consider U =∑k−1

i=0 uiX
i, V =

∑k−1
i=0 viX

i and W = U × V and we assume that
n = 2k − 2. Then W can be computed as follows.

1. Û = DFTω(U), V̂ = DFTω(V).
2. w2k−2 = uk−1 × vk−1

3. The coefficients wi for i = 0, . . . , 2k − 3 are computed as
w0

w1

...
w2k−3

 = Ω−1 ·


ûi × v̂i − w2k−2

ûi × v̂i − w2k−2

...
ûi × v̂i − w2k−2

 . (4)

Proof. Since n = 2k − 2 and U and V have degree k − 1 then U × V =
W =

∑n
i=0 wiX

i has degree n and W =
∑n

i=0 wiX
i. The evaluation Ŵ

of W in the n elements ωi gives

ŵ0 = W (1) = w0 + w1 + . . .+ wn−1 + wn

ŵ1 = W (ω) = w0 + w1ω + . . .+ wn−1ω
n−1 + wnω

n

ŵ2 = W (ω2) = w0 + w1(ω2) + . . .+ wn−1(ω2)n−1 + wn(ω2)n

...
...

ŵn−1 = W (ωn−1) = w0 + w1(ωn−1) + . . .+ wn−1(ωn−1)n−1 + wn(ωn−1)n

.

Now, since ωn = 1, we have (ωi)n = 1 for i = 1, . . . , n − 1. The right
part of the previous equations rewrites as

ŵ0 = W (1) = w0 + w1 + · · ·+ wn

ŵ1 = W (ω) = w0 + w1ω + · · ·+ wnω
n−1 + wn

ŵ2 = W (ω2) = w0 + w1(ω2) + · · ·+ wn−1(ω2)n−1 + wn

...
...

ŵn−1 = W (ωn−1) = w0 + · · ·+ wn−1(ωn−1)n−1 + wn

(5)

The coefficient wn is already known since wn = w2k−2 = uk−1vk−1.
Using (5), we remark that the vector (ŵ0−wn, ŵ1−wn, . . . , ŵn−1−wn)
is the discrete Fourier transform of the polynomial W ′ =

∑n−1
i=0 wiX

i.
Thus we get back to the coefficients of W ′ by computing

Ω−1 ·
[
ŵ0 − wn ŵ1 − wn · · · ŵn−1 − wn)

]t
.

This corresponds to Eq. (4).

We focus now on the case n = 2k − 4.

Lemma 3. Let Fp be a prime field and ω ∈ Fp a primitive n-th root of
unity. Let U =

∑k−1
i=0 uiX

i and V =
∑k−1

i=0 viX
i in Fp[X]. Let W = U×V

and assume that n = 2k− 4, then the coefficients of W can be computed
as follows.

1. Û = DFTω(U), V̂ = DFTω(V).

2. w2k−2 = uk−1 × vk−1, w0 = u0 × v0
3. w2k−3 = uk−1 × vk−2 + uk−2 × vk−1

4. The coefficients wi for i = 1, . . . , 2k − 4 are computed as
w1

w2

w2

...
wn

 = Ω−1·


ŵ0 − w0 − wn+1 − wn+2

(ŵ1 − w0 − wn+1ω − wn+2ω
2)ω−1

(ŵ2 − w0 − wn+1ω
2 − wn+2(ω2)2)ω−2

...

(ŵn−1 − w0 − wn+1ω
n−1 − wn+1(ωn−1)2)ω−(n−1)


(6)

where Ω−1 is defined in Eq. (3).

Proof. The proof is similar to the proof Lemma 2. Since n = 2k− 4 and
U and V have degree k − 1 then U × V = W =

∑n+2
i=0 wiX

i has degree

n+ 2 = 2k − 2. The evaluation Ŵ of W in the n elements ωi gives

ŵ0 = W (1) = w0 + w1 + · · ·+ wn + wn+1 + wn+1

ŵ1 = W (ω) = w0 + w1ω + · · ·+ wnω
n + wn+1ω

n+1 + wn+2ω
n+2

ŵ2 = W (ω2) = w0 + w1(ω2) + · · ·+ wnω
n + wn(ω2)n + wn+2(ω2)n+2

...
...

ŵn−1 = W (ωn−1) = w0 + w1(ωn−1) + · · ·+ wn(ωn−1)n

+wn+1(ωn−1)n+1 + wn+2(ωn−1)n+2

Now, since ωn = 1, we have (ωi)n+1 = ωi and (ωi)n+2 = (ωi)2for i =
1, . . . , n− 1 in the right part of the previous equations. We get for ŵi

ŵ0 = W (1) = w0 + w1 + · · ·+ wn + wn+1 + wn+2

ŵ1 = W (ω) = w0 + w1ω + · · ·+ wnω
n + wn+1ω + wn+1ω

2

ŵ2 = W (ω2) = w0 + w1(ω2) + · · ·+ wn(ω2)n + wn+1ω
2 + wn+2(ω2)2

...
...

ŵn−1 = W (ωn−1) = w0 + · · ·+ wn(ωn−1)n + wn+1ω
n−1 + wn+2(ωn−1)2

The three coefficients w0, wn+1, wn+2 are already known. Then we rewrite
the previous equations as follows

ŵ0 − w0 − wn+1 − wn+2 = w1 + · · ·+ wn−1

(ŵ1 − w0 − wn+1ω − wn+2ω
2)ω−1 = w1 + · · ·+ wnω

n−1

(ŵ2 − w0 − wn+1ω
2 − wn+2(ω2)2)ω−2 = w1 + · · ·+ wn−1(ω2)n−1

...
...

(ŵn−1 − w0 − wn+1ω
n−1 − wn+1(ωn−1)2)ω−(n−1) = w1 + · · ·+ wn−1(ωn−1)n−1

We remark now that the right part corresponds to the evaluation of the
polynomial W ′ =

∑n−1
i=0 wi+1X

i. Consequently we get the coefficients of
W ′ by computing the matrix vector product

w1

w2

w2

...
wn

 =
1

n
Ω ·


ŵ0 − w0 − wn+1 − wn+2

(ŵ1 − w0 − wn+1ω − wn+2ω
2)ω−1

(ŵ2 − w0 − wn+1ω
2 − wn+2(ω2)2)ω−2

...

(ŵn−1 − w0 − wn+1ω
n−1 − wn+1(ωn−1)2)ω−(n−1)


This corresponds to Eq. (6).

The previous Lemmas are just special cases. They can be extended to
smaller value of n by increasing the number of precomputed wi for small
indices i = 1, 2, . . . and big indices i = 2k − 2, 2k − 3, . . . before the
interpolation process using Ω−1.

Remark 2. In the two situations of Lemma 2 and Lemma 3 we can use
also Montgomery representation of polynomials to avoid division by n.
For example if Lemma 2 is applied without the division by n to Ũ = 1

n
U

and Ṽ = 1
n
V , we obtain the coefficients w̃i of W̃ = 1

n
U × V for i =

0, . . . , 2k− 2. Only w̃2k−1 must be computed separatly w̃2k−2 = 1
n
w2k−1

to get all the coefficients of W̃ . The same strategy can be applied to
Lemma 3 with 3 more multiplications by 1

n
.

3.4 Complexity of differents DFT methods

We evaluate the complexity of the different DFT approaches. We dis-
tinguished the cases where DFT is performed through a matrix vector
product and where DFT is performed using FFT algorithm. We express
the cost in term of the number of operations in Fp : the number of multi-
plication by roots of unity, addition/subtraction, and multiplication. For
multi-evaluation and interpolation we used the fact that the entries in Ω
and Ω−1 are all power of ω. We also assume that multiplication are done
in Montgomery representation, in order to avoid the division by 1

n
(cf.

Remark 1 and Remark 2). We obtain the complexity given in Table 2.

Table 2. Complexity of DFT approaches

Method # Mult. by ωi # Mult. # Add.

General DFT 4nk − 3n n 4nk − 3n

General FFT 3n
2

log2(n) n 3n log2(n)

Lemma 2 3(2k − 3)2 2k (2k − 2)(6k − 8)

Lemma 2 with FFT 3(k − 1) log2(2k − 2) 2k 3(2k − 2) log2(2k − 2) + (2k − 2)

Lemma 3 3(2k − 5)2 + 2(2k − 5) 2k + 3 3(2k − 4)(2k − 4− 1) + 2(2k − 4)

Lemma 3 with FFT 3(k − 2) log2(2k − 4) + 3(2k − 5) 2k + 3 3(2k − 4)(log2(2k − 4) + 1)

4 DFT friendly field

We focus in this section on specific fields called DFT friendly fields. These
fields admit an AMNS which provide efficient multiplication by roots of
unity.

4.1 Definition of DFT friendly field

The main goal is to find a way to have fields Fp with n-roots of unity such
that n ∈ {2k−1, 2k−2, 2k−3} and such that the multiplication by these
roots are really efficient. We propose to consider fields Fpk satisfying the
following definition.

Definition 2 (DFT Friendly Field). We call a DFT friendly field
an extension field Fpk such that Fp admits an AMNS B = (p, `, γ, ρ)E of
length ` and such that one of the following conditions holds
1. λ = 1 and ` ∈ {2k− 1, 2k− 2, 2k− 4} and γ is primitive `-th root of

unity.
2. λ = −1 and ` ∈ {k− 1, k− 2} and γ is primitive 2`-th root of unity.

Since we have roots of unity with appropriate order, we can use DFT ap-
proaches presented in Section 3 to perform the multiplication of elements
in Fpk . Indeed the condition on ` in each case of Definition 2 enables us to
use at least one of the strategies expressed in Subsection 3.1 or Lemma 2
and Lemma 3.
In DFT Friendly fields, the root of unity are the elements ±γi. The
multiplication by these roots can be done using the formula stated in
the following Lemma.

Lemma 4. Let an AMNS B = (p, `, γ, ρ)E and a =
∑n−1

i=0 aiγ
i be ex-

pressed in B. The multiplication of a by the power γi of γ is given by

aγi = λan−i + λan−i+1γ + · · ·+ λan−1γ
i−1 + a0γ

i + · · ·+ an−i−1γ
n−1

Proof. The proof is a direct consequence of the definition of an AMNS.

In our case, the field Fp represented with an AMNS where λ = ±1.
Consequently the multiplication by ±γi consists just of a cyclic shift,
with eventually some changes of sign. The multiplication by±γi is almost
free of computations.

4.2 Fields used pairing cryptography

We recall here different methods used to construct elliptic curves and
corresponding finite field providing pairing. The curve order #E(Fp)
must have a big prime factor, called r and an extension degree 6 <
k ≤ 32. To get such curve the most used method is based on Complex
Multiplication.
The construction of a curve with the Complex Multiplication (CM)
method requires to solve a system of equations (7) where the indetermi-
nates are an integer D, the embedding degree k, the prime factor r, t
the trace of the Frobenius on E(Fp) and p the characteristic of the finite
field: 

r | p+ t− 1,

r | pk − 1, for primes r, p,
Dy2 = 4p− t2 for some integer y.

(7)

Several methods exist to solve this system. An overview of this different
methods is given in [8]. We recall here the two following methods

– The Miyaji-Nakabayashi-Takano (MNT) strategy is one of the first
CM method [14] to construct elliptic curve suitable for ECC. It was
extended by Barreto and Naehrig [3] to construct elliptic curves with
embedding degree 12. These curves with embedding degree 12 are
given by the following parametrization:

k = 12,

p = x4 + 36x3 + 24x2 + 6x+ 1,

r = 36x4 + 36x3 + 18x2 + 6x+ 1,

t = 6x2 + 1.

– The second method which could be used in order to build curves with
arbitrary embedding degree k is the Cocks-Pinch method [7]. This
method generates curves with arbitrary r, such that #E(Fp)/r ≈
2. The extension of the Cocks-Pinch method given in [6] provides
smaller value for #E(Fp)/r. Their method can be applied for gen-
eral embedding degree. For example in [6] they generated a family
of curves with embedding degree 16. This family is given by the
following polynomials:

k = 16, for x ≡ ±25 mod(70)

p = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4

+625x2 + 2398x+ 3125)/980,

r = (x8 + 4x4 + 625)/61250,

t = (2x5 + 41x+ 35)/35.

For all these constructions the prime p is constructed randomly. Proposi-
tion 1 tells us that if there exists a primitive `-th (or 2`-th) root of unity,
where ` satisfies the condition of Definition 2, then we can construct an
AMNS satisfying Definition 2.
For a random prime p, the probability that it has a primitive ell-th root
of unity is roughly 1/(ell− 1). Indeed p has a root of unity if and only if
p ≡ 1 mod `. But prime are equally distributed in the set of class modulo
`. Consequently for small value of `, we can easily find DFT friendly field
Fp and elliptic curve over this field providing practical pairing.

4.3 Complexity comparison

We present in Table 3 the complexity of a multiplication in DFT friendly
field Fpk for different size of k. This complexity is given in term of the
number of multiplication and addition in Fp. The complexity is deduced
from Table 2 : we neglect the cost of the multiplication by the roots of
unity since it is almost cost free. We also specify if we use FFT or not.
We give also in Table 2 the complexity of the multiplication in friendly
field [2].
We remark that even for small value of k, DFT approach seems com-
petitive regarding the number of multiplication. When no FFT can be
used, the number of additions increases significantly, and should make
our approach not competitive in these special cases.

5 Conclusion

We have presented in this paper a new approach for multiplication in
fields Fpk used in pairing cryptography. We used AMNS [1] to represent
element in Fp and DFT approach for extension field arithmetic. Specif-
icaly we pointed out that some AMNS provides efficient multiplication
by roots of unity and thus optimize DFT approach. The resulting mul-
tiplication in extension field Fpk requires less multiplications in Fp for

Table 3. Complexity comparison for practical extension degree k

Method k Cost of MultF
pk

Add. in Fp # Mult. in Fp

Karatsuba/Toom-Cook [11,2] 6 60 15

Karatsuba/Toom-Cook [11,2] 8 72 27

Subsection 3.1 with FFT and E = t8 + 1 8 192 16

Karatsuba/Toom-Cook [11,2] 9 160 25

Lemma 2 with FFT and E = t8 + 1 9 208 18

Lemma 3 with FFT and E = t8 + 1 10 240 23

Subsection 3.1 with E =
∑10

i=0(−t)i 11 902 22

Karatsuba/Toom-Cook [11,2] 12 180 45

Lemma 2 with E =
∑10

i=0(−t)i 12 1408 24

Lemma 3 with E =
∑10

i=0(−t)i 13 1430 28

Karatsuba/Toom-Cook [11,2] 16 248 81

Subsection 3.1 with FFT and E = t16 + 1 16 480 32

Lemma 2 with FFT and E = t16 + 1 17 512 34

Lemma 3 with FFT and E = t16 + 1 18 576 39

Karatsuba/Toom-Cook [11,2] 24 588 135

different practical size of k than previously recommended method [11,2].
Specifically for k ≥ 12 combined AMNS and DFT approach in DFT
friendly field, proposed in this paper, decreases the number of multipli-
cation in Fp by 50%.

References

1. J.-C. Bajard, L. Imbert, and T. Plantard. Modular number sys-
tems: Beyond the Mersenne family. In SAC 04: 11th International
Workshop on Selected Areas in Cryptography, pages 159–169, August
2004.

2. J.C. Bajard and N. El Mrabet. Pairing in cryptography: an arith-
metic point of view. Advanced Signal Processing Algorithms, Archi-
tectures and Implementations XVI, SPIE, August 2007.

3. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves
of prime order. Selected Areas in Cryptography SAC2005, Lecture
Notes in Computer Science 3897, pp 319331 Springer-Verlag, 2006.

4. D. Boneh and M.K. Franklin. Identity-based encryption from the
weil pairing. In CRYPTO ’01: Proceedings of the 21st Annual In-
ternational Cryptology Conference on Advances in Cryptology, pages
213–229. Springer-Verlag, 2001.

5. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil
pairing. In ASIACRYPT ’01: Proceedings of the 7th International

Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 514–532, London, UK, 2001. Springer-Verlag.

6. F. Brezing and A. Weng. Elliptic curves suitable for pairing based
cryptography. Designs Codes and Cryptography, Vol. 37, No. 1, pp.
133141, 2005.

7. C. Cocks and R.G.E. Pinch. Identity-based cryptosystems based on
the Weil pairing, 2001.

8. D. Freeman, M. Scott, and E. Teske. A taxonomy of
pairing-friendly elliptic curves. Cryptology ePrint Archive,
http://eprint.iacr.org/2006/372, 2006.

9. E. Gorla, C. Puttmann, and J. Shokrollahi. Explicit formulas for
efficient multiplication in F36m . In Selected Areas in Cryptography
2007, volume 4876, pages 173–183, 2007.

10. E.J. Kachisa, E. F. Schaefer, and M. Scott. Constructing brezing-
weng pairing friendly elliptic curves using elements in the cyclotomic
field. In Pairing ’08: Proceedings of the 2nd international conference
on Pairing-Based Cryptography, pages 126–135, 2008.

11. N. Koblitz and A. Menezes. Pairing-based cryptography at high
security levels. In Proceedings of the Tenth IMA International Con-
ference on Cryptography and Coding, volume 3796 of LNCS, pages
13–36, 2005.

12. S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Optimised ver-
sions of the ate and twisted ate pairings. Cryptography and Coding,
LNCS 4887:302–312, 2007.

13. A. Menezes, S. Vanstone, and T. Okamoto. Reducing elliptic curve
logarithms to logarithms in a finite field. In STOC ’91: Proceedings
of the twenty-third annual ACM symposium on Theory of computing,
pages 80–89, New York, NY, USA, 1991. ACM.

14. Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New
explicit conditions of elliptic curve traces for fr-reduction, 2001.

15. P. L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44(170):519–521, Apr 1985.

16. C. Negre and T. Plantard. Efficient modular arithmetic in adapted
modular number system using lagrange representation. In Proceed-
ings of Australasian Conference on Information Security and Privacy
(ACISPP 08), 2008.

17. J. Von ZurGathen and J. Gerhard. Modern Computer Algebra. Cam-
bridge University Press, New York, NY, USA, 2003.

6 Annexe

We present in this section some examples of curves with embedding de-
gree 6 < k ≤ 32 over DFT friendly field.

We first briefly recall the method given in [16] to construct an AMNS
for a fixed prime p. We choose a polynomial E(t) = t` − λ of degree `
and compute γ a root of E in Fp. Then we construct the matrix M :

M =


p 0 0 · · · 0
−γ 1 0 · · · 0
−γ2 0 1 · · · 0

...
. . .

...

−γ(`−1) 0 · · · 0 1


We apply LLL algorithm to this matrix and we obtain a short vector m

satisfying m(γ) = 0 mod p. We finally get ρ = 2`|λ|‖m‖∞.

6.1 Curves with embedding degree k = 12

We use the parametrization of Barreto and Naehrig [3] which provides
elliptic curves with embedding degree 12:s

k = 12,

p = 36x4 + 36x3 + 24x2 + 6x+ 1,

r = 36x4 + 36x3 + 18x2 + 6x+ 1,

t = 6x2 + 1.

We use also the polynomial E(t) =
∑ 10

i=0(−t)i to build the AMNS of p.
For a security level of 80 (i.e. the best attack requires 280 operations) we
find the following example:

x = 1099511637026,

p = 52614060714492069992659260093542155440429911322253,

r = 52614060714492069992659252839987115706863666574197,

t = 7253555039733566244748057,

γ = 14348622953168487070046731700990451973985348345534,

m(X) = 12376− 49167X + 48460X2 + 18281X3 + 15213X4 − 10299X5

+11263X6 − 70120X7 − 13636X8 − 18106X9.

For a security level of 160 we found:

x = 18446744073709692895,

p = 41685152125435107379370057363152675115521120051443074052763868100

45976396949971,

r = 41685152125435107379370057363152675115500703109427817432219558905

25925116063821,

t = 2041694201525662054430919520051280886151,

γ = 3777110808431704610730298619816519741988385386404769931764

1286502190684739139,

m(X) = 8053715− 20923230X + 23417521X2 − 26826999X3 + 19243643X4

+1059907X5 − 41954237X6 − 42180723X7 + 5371359X8 − 19196965X9.

6.2 Curves with embedding degree k = 16

We use the parametrization of [10]:

k = 16,

p = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125)/980,

r = (x8 + 48x4 + 625)/61250,

t = (2x5 + 41x+ 35)/35.

We use the polynomial E(t) = t16 + 1.

For a security level of 80 we found the following example:

x = 74156485,

p = 5131747716031925180698577911272774150920883965678805953616840478

933959934561,

r = 14930934707260179303940284190066288525962852908481890536993,

t = 128146760584932038247348983414439772062,

Γ = 3869682865821773894755186582406048635100954822997767338413

19721386977404674,

m(X) = 7400X + 49262X2 − 3010X3 − 14335X4 + 34360X5

+43021X6 + 6813X7 + 5184X8 + 13206X9 + 10037X10

+2540X11 − 7384X12 − 66117X13 − 57557X14 + 32450X15.

For a security level of 160 we found :

x = 300650886015,

p = 6157420379412900644319875864344339428999761290450062716759615209

367079614301451112752451271493775945297121074689,

r = 1089917965628569491882686378264600130698430055744221456154539259

930378582049607058754993,

t = 140370029614552009401267496693144064107592433030506438440,

γ = 551737151471267013665906013312108810638488413639246814149706

947418249015319821682977158544996914977939922628908,

m(X) = 11792 + 15441X − 25387X2 + 11348X3 + 20103X4 + 25605X5

−8716X6 + 9091X7 + 19039X8 + 13855X9 − 22021X10 − 15182X11

−4543X12 + 1417X13 − 26776X14 + 11502X15.

