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Abstract

This paper describes how the NewMadeleine communi-

cation library has been integrated within the MPICH2 MPI

implementation and the benefits brought. NewMadeleine is

integrated as a Nemesis network module but the upper lay-

ers and in particular the CH3 layer has been modified. By

doing so, we allow NewMadeleine to fully deliver its per-

formance to an MPI application. NewMadeleine features

sophisticated strategies for sending messages and natively

supports multirail network configurations, even heteroge-

neous ones. It also uses a software element called PIOMan

that uses multithreading in order to enhance reactivity and

create more efficient progress engines. We show various re-

sults that prove that NewMadeleine is indeed well suited as

a low-level communication library for building MPI imple-

mentations.

1 Introduction

In recent years, the landscape of parallel computing has

undergone dramatic changes. Massively multicore CPUs,

as well as highly hierarchical clusters based on NUMA

nodes are now emerging on the market. Programming such

architectures is becoming increasingly challenging since

current models become more and more questioned. How-

ever, it seems difficult to propose a brand new model that

would replace existing standards. Despite their lack of con-

venience in this context, OpenMP and MPI are tools that are

and will still be used for a long time. It is therefore crucial

for implementations to be able to take advantage as much

as possible of such hardware’s evolutions.

One of the major difficulties is that current MPI imple-

mentations have to take into account multiple hardware fea-

tures while maintaining a strict compliance to the actual

standard. Implementations now have to take into consider-

ation the increasing number of CPUs and cores available in

a computing node. They will also need to take into consid-

eration the memory hierarchy as well as the NUMA factor

when accessing data. As far as the network is concerned,

exploiting multiple and possibly heterogeneous intercon-

nects raises issues: How can an MPI implementation effi-

ciently utilize all NIC resources despite their different na-

tures? How can we avoid contention on the NICs in the

case where all the MPI processes on a given node are send-

ing messages? Could some cores be dedicated to optimize

communication progress instead of executing regular appli-

cation code? Building a complete MPI stack is a complex

task and such sophisticated optimizations are often over-

looked.

We believe that specialized software tailored to effi-

ciently exploit complex and hierarchical architectures is one

of the keys to an efficient MPI implementation in such en-

vironments. Indeed a low-level runtime system upon which

the MPI stack is ported offers both portability and perfor-

mance to the application using MPI. All optimization mech-

anisms developed in such a low-level system can benefit the

upper, more generic layers of the resulting MPI implemen-

tation.

The PM2 software suite [11] developed in the Runtime

team is able to provide such services. Several software el-



ements compose this suite. The main three are: a high-

performance communication library called NewMadeleine,

a sophisticated user-level thread package called Marcel [10]

and a generic I/O manager called PIOMan [15]. Those ele-

ments are able to interact with each other, making it easier,

for instance, to mix communication with multithreading.

All elements feature numerous characteristics that make

them extremely suitable as a runtime system for higher-

level programming environments and standards implemen-

tations. In this paper, we will show that overall MPICH2

performance is improved due to the PM2 suite.

The structure of this paper is as follows. In Section 2,

we describe the various software that we used to create our

MPI implementation. Section 3 presents the details of the

integration of the various software elements into an effi-

cient communication device for MPICH2. In Section 4 we

present the various performance evaluations we carried out.

In Section 5 we conclude this paper and discuss future work.

2 Software architecture of MPICH2-

NewMadeleine

In this section, we describe the various pieces that consti-

tute our MPI implementation. We first give an overview of

the MPICH2 software stack. We then explain how the PM2

software suite is organized and which elements are used to

create our implementation. In particular, we emphasize the

advantages provided by each piece of software selected.

2.1 An overview of MPICH2-
NewMadeleine software stack

MPICH2 is an MPI-2 compliant implementation. It fea-

tures a layered structure, as shown by Figure 1. Several im-

plementation choices are available for porting a new com-

munication library or protocol into this stack. A first so-

lution is to implement a new ADI3 device. Building a

whole device is likely to yield the best performance, but

at a high cost in terms of complexity of development be-

cause the number of routines to implement is the largest.

This solution is particularly recommended when the under-

lying interface is an elaborate one, closely matching what

the MPI standard itself might propose. For instance, the

MPICH2 implementation on top of the Myrinet MX [2] in-

terface follows this philosophy of development and so does

the MPICH2 port over Elan networks [9]. Our target as

a low-level communication layer is PM2’s communication

subsystem, that is, the NewMadeleine library. As we shall

see later, its interface is rather simple and the number of

routines proposed is small. In this regard, implementing

a new device would not be ideal since we would have to

reimplement most of the things that have been previously

developed in the current CH3 device.

Channels
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MPICH2Network Module

CH3
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Quadrics
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Figure 1. Software layers of MPICH2

Another approach would be to develop a new CH3 chan-

nel. Since we target nodes that will eventually feature a

large number of cores, we need an efficient communica-

tion mechanism to move data between processes sharing the

same physical node. However, NewMadeleine focuses on

network communication and the issue of intra-node com-

munication is left unaddressed. Several CH3 channels in

MPICH2 already offer a support for intra-node communica-

tion: shm (the shared memory channel), ssm (the socket and

shared memory channel), sshm (the scalable shared memory

channel) and the Nemesis channel.

2.1.1 The Nemesis communication channel

The Nemesis channel [5] is the default channel in MPICH2.

It relies on shared memory for intra-node communication

and uses network for all inter-node communication. The

Nemesis channel currently yields the best performance for

intra-node communication among all available channels in

MPICH2. It also compares favourably to other MPI imple-

mentations [5]. The Nemesis channel uses shared-memory

message queues of fixed-size message cells for intra-node

communication. These queues are lock-free and allow mul-

tiple processes to enqueue cells concurrently. Each process

owns one free queue and one receive queue. The free queue

holds free cells which the process dequeues and fills with a

message (or message fragment when the message is larger

than a single cell). To receive a message, a process actively

polls on the receive queue until a sender process enqueues a

new cell. This approach is scalable since the receiver needs

only to poll a single receive queue. This also allows han-

dling the MPI ANY SOURCE case efficiently. Another in-

teresting feature of Nemesis is that network communication

can be added through the use of network modules. As a

whole, the Nemesis channel fulfills our requirements of ex-

cellent performance for intra-node communication and the

ease of porting a new communication layer.

2.1.2 The Nemesis network modules

Nemesis already supports numerous networking technolo-

gies thanks to dedicated network modules. Currently sup-



ported networks are Myrinet (with both GM and MX mod-

ules), QsNet, Infiniband, TCP and PSM. A network mod-

ule implements a relatively small set of routines, especially

when compared to the channel or device approaches. Basi-

cally the four following routines are required to implement a

module: net module init, net module send, net

module poll and net module finalize. There is

no net module recv routine since the net module

poll routine is called by the low-level progress engine in

Nemesis and is actually responsible to retrieve all incoming

messages from the network.

2.1.3 Current limitations in the modules’ design

Implementing a network module implies to use the Nemesis

queue system. However, in some cases, unnecessary copies

are performed, in and from the queue cells. This happens

in the case of short and medium-sized messages and even if

memory copies for such sizes are efficient, a performance

penalty occurs. Also, a library might implement its own

set of protocols such as the eager or more important the

rendezvous protocol. By using the low-level Nemesis mod-

ule approach the library can’t use its own set and has to

rely on the CH3 protocols instead. In the case of a large

message, the CH3 rendezvous protocol starts with a hand-

shake sequence composed of a RTS message from the send-

ing side, followed by a CTS message from the receiving

side. Then the data itself is sent over as shown by Figure 2.

Each time, the underlying communication library is used to

send both messages. In the case of the data message (com-

posed of a single CH3 message) the library might use in-

ternally its own rendezvous protocol to send only the data.

In such case, an additional handshake is employed which

could be avoided, thus improving performance. We want to

use Nemesis but we would like to shortcut it for small net-

work messages. We also want to avoid CH3 protocols when

necessary. The issue is then to be able to expose the under-

lying communication library’s interface without sacrificing

the portability of the code located in higher level layers of

the stack.

2.2 The NewMadeleine multithreaded
communication library

NewMadeleine [3] is the communication library of the

PM2 suite. Most of communication libraries focus only on

sheer latency and bandwidth. Usually data is sent over the

network as soon as it is passed to the library by the upper

layers. NewMadeleine proceeds differently: it works with

the networks’s activity. When a network is already fulfilled

with communication requests, NewMadeleine keeps a win-

dow of packets to send. Thus, when a network becomes

idle, it has the possibility to apply optimizations on the ac-

cumulated communication requests before submitting them
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Figure 2. Nested handshakes in rendezvous

case

to the network. This uncoupled network request submission

permits a more global vision of communication flows and

the various strategies can be applied over the overal set of

messages sharing the same destination. Such strategies may

use, for instance, reordering techniques or messages aggre-

gation. Also, NewMadeleine is able to support several NICs

at the same time and even several (possibly different) pro-

tocols, being natively multirail-enabled. In this case, New-

Madeleine proposes several strategies to efficiently take ad-

vantage of the multiple network resources. A network sam-

pling mechanism is used to compute an adaptive split ratio

tailored to fit each available networks’ abilities [4]. An-

other interesting feature of NewMadeleine lies in its abil-

ity to work in a multithreaded environment. Indeed New-

Madeleine is thread-safe to boot. It also can rely on the

PIOMan I/O manager to handle communication progress in

a sophisticated manner.

2.2.1 The NewMadeleine interface

NewMadeleine supports a wide range of current high-

performance networking technologies thanks to its Infini-

band, Myrinet and Quadrics ports. These low-level inter-

faces are accessible through NewMadeleine’s generic and

message-passing oriented interface. Indeed, some of New-

Madeleine’s routines do closely match MPI’s routines. For

instance, the following functions are used to send and re-

ceive data:

nm_sr_isend( destination, tag, *buffer,

size, *nmad_request );

nm_sr_irecv( destination, tag, *buffer,

size, *nmad_request );



NewMadeleine’s requests are opaque objects allocated

internally each time a send or receive operation is submit-

ted. Once this object is created, the user can query New-

Madeleine in order to get information about a request’s

completion. NewMadeleine, however, does not yet support

the cancellation of a posted request. Any request that has

been previously posted has to be completed at some point

during the application’s execution.

2.2.2 The PIOMan I/O events manager

PIOMan [15] is the I/O manager of the PM2 software suite.

It aims at providing communication libraries with an event

detection service that guaranties a predefined level of reac-

tivity to events. PIOMan works closely with a user-level

thread scheduler called Marcel [10] and thus is able to bal-

ance the processing of event detections across the whole

machine. The collaboration with the thread scheduler al-

lows PIOMan to precisely know the workload of each CPU

used within the process. Therefore, the most appropriate

detection method (polling or interrupt-based blocking call)

is called depending on the context (number of computing

threads, available CPUs, etc.) Marcel also schedules PI-

OMan on some triggers (CPU idleness, context switches,

timer interrupts, etc.) so as to ensure a fast detection of

communication events.

In a multithreaded context, NewMadeleine delegates

communication flow progress to PIOMan. NewMadeleine

can thus concentrate its efforts on optimizing communica-

tion flows whereas PIOMan handles the issues raised by the

use of computing threads. PIOMan is responsible for de-

tecting communication completions, making communica-

tion progress in the background and submitting new packets

to NICs. The submission of data is thus performed by idle

cores when it is possible, reducing the application’s threads’

workload [6] and allowing the overlap of communication

with computation.

2.2.3 Benefits brought by NewMadeleine and PIOMan

The integration of the PM2 software suite within the

MPICH2 software stack provides all of the benefits of PM2

to the MPICH2 library for free. Thanks to NewMadeleine,

aggressive optimizations on communication flows can be

applied to reduce the impact of inter-node communication

on applications. NewMadeleine’s multirail feature allows

MPICH2 to efficiently support modern multirail clusters ex-

ploiting the high bandwidth systems.

NewMadeleine’s multithreaded subsystem also allows

MPICH2 to exploit multicore architectures by offloading

eager messages submission or by using idle cores to poll

networks. The progress of communication flows in the

background and the reactivity to both network and shared-

memory events is provided by PIOMan.

3 Towards an efficient communication core

for MPICH2

In this section, we give details about our NewMadeleine

network module implementation. We also describe how we

manage the case of MPI ANY SOURCE and how this im-

pacts performance. Then we explain how the PIOMan soft-

ware is integrated with the Nemesis communication subsys-

tem.

3.1 NewMadeleine network module inter-
nals

In porting MPICH2 over NewMadeleine, we imple-

mented a NewMadeleine network module. Then in order

to allow MPICH2 to take full advantage of the features

of the NewMadeleine communication library, we modi-

fied the CH3 layer to bypass the Nemesis layer and di-

rectly call NewMadeleine. These modifications are not

NewMadeleine specific and could be used to support other

communication libraries that perform tag matching. Below

we describe these modifications as well as modifications to

NewMadeleine’s interface.

3.1.1 Accessing NewMadeleine’s interface directly

from CH3

In order to avoid unnecessary handshakes during the ren-

dezvous protocol, we must either expose the low-level com-

munication library interface at the CH3 level or force New-

Madeleine to use only certain types of protocols. However,

restricting NewMadeleine in this way, e.g., not utilizing

NewMadeleine’s ability to perform tag matching, results in

suboptimal performance. The solution is to bypass parts

of CH3 and Nemesis and allow CH3 to directly call New-

Madeleine functions. In this way, intra-node messages are

still handled by Nemesis using the shared-memory queues,

while inter-node messages are handled directly from the

CH3 layer by NewMadeleine.

A mechanism is needed to associate an MPI communica-

tion operation with the corresponding NewMadeleine com-

munication operation. When a NewMadeleine communi-

cation is completed we would like to be able to mark the

corresponding MPI communication as completed too. In

the MPICH2 implementation, each communication is man-

aged with a request object. Such objects are queued on

MPICH2’s internal posted receive queue and unexpected

queue. This pair of queues forms the core of the mes-

sage passing management in MPICH2. NewMadeleine has

a similar request object to keep track of its pending com-

munication operations. So to associate the two types of re-

quests, we added a new field to the Nemesis-specific portion



of the MPICH2 request which points to the corresponding

NewMadeleine request.

3.1.2 Sending operations implementation

As mentioned previously, NewMadeleine’s sending and re-

ceiving routines have prototypes that closely match their

CH3 counterparts (e.g MPID Send(), MPID Recv()).

So, we chose to directly call the NewMadeleine functions

in the corresponding CH3 routines. However, the imple-

mentation differs significantly between the sending and re-

ceiving side. On the send side, function pointers were added

to MPICH2’s per-connection virtual connection (VC) struc-

ture to allow the various CH3 send functions to be overrid-

den on a per-destination basis. In this way, a call to MPID

Send() will result in a call directly to the NewMadeleine

send function only when sending to a process on a different

node. Because Nemesis is being bypassed when sending

to processes on remote nodes, the Nemesis layer will only

manage send queues for messages sent to processes on the

same node.

3.1.3 Managing receive queues

Because a process can receive messages either from pro-

cesses on the same node through Nemesis, or from re-

mote nodes through NewMadeleine, receiving messages are

handled differently. In order to take advantage of New-

Madeleine’s tag matching capability, Nemesis does not

manage messages received by NewMadeleine. Instead,

NewMadeleine maintains its own receive queues, performs

tag matching internally, and delivers messages directly to

the user buffers. To accomplish this, when the application

calls MPI Recv() and a receive request is posted in the

CH3 posted receive queue, a corresponding receive oper-

ation is posted to NewMadeleine. A pointer to the CH3

request is included in the NewMadeleine request in order to

associate the NewMadeleine request is associated with the

CH3 request. The NewMadeleine network module period-

ically polls a new NewMadeleine function which returns a

pointer to the CH3 request of any received message. Us-

ing this function, once a message is matched and received

by NewMadeleine, the NewMadeleine network module can

directly mark the corresponding CH3 request as complete,

and allow the MPICH2 progress engine to handle the com-

pleted request as usual.

3.2 Management of multiple sources on
reception

3.2.1 Polling on multiple sources: issues

There is another side effect of bypassing Nemesis for all

network communication. Indeed, the handling of any

source communication gets more complicated. We don’t

use Nemesis’ receive queue that centralizes all incoming

messages from intra and inter-node sources in the case of

network modules. In our case, we have intra-node messages

in the Nemesis receive queue and inter-node messages are

handled internally by NewMadeleine. In both cases, the

corresponding ADI requests are stored in MPICH2’s Un-

expected and Posted Receive Queues. However, we also

create specific NewMadeleine requests that correspond to

ADI3 requests. The issue is to keep consistency between

NewMadeleine and ADI requests. In the case of a regular

request (i.e using a well-defined source for the matching),

as soon as the NewMadeleine request is completed, we also

handle the ADI request and we remove it from the Posted

Receive Queue. This is an easy task because for have an

one-to-one relationship between these requests. In the case

of an ADI request using any source for matching, a solu-

tion would be to create multiple NewMadeleine requests,

one for each possible incoming source. When one of the

NewMadeleine requests that matches its ADI counterpart is

completed, then we would cancel the remaining one. Also,

if a intra-node communication would match the request, we

would cancel all the NewMadeleine requests.

3.2.2 Implementation with requests lists

The major issue here stems from the fact that New-

madeleine does not support the cancellation of requests.

Moreover a posted NewMadeleine request has to be even-

tually matched. So, whenever an any source message ap-

pears, we can’t create NewMadeleine requests for all possi-

ble incoming source. So we created a system where a New-

Madeleine request is dynamically created when a message

is received that could match the current ADI any source re-

quest. We keep track of such pending any source requests in

a separate list. Each time a new any source request is posted,

we check the list and create a new entry if the MPI message

tag hasn’t already been used. Then, every time Nemesis

polls for incoming messages, we probe NewMadeleine to

check if a corresponding message has arrived. In this case,

the NewMadeleine request is posted. Since the message has

arrived and sits in NewMadeleine’s buffers, it will be com-

pleted shortly after its creation and the ADI request will be

marked as completed too. In the meantime, other ADI re-

quests using NewMadeleine and the same MPI tag might

have been created. In order to ensure message ordering,

they are enqueued in the list of pending any sources and

dequeued when the any source NewMadeleine entry is re-

moved. If an other any source request (using the same tag)

is present in the sublist, it replaces the former request as list

head. But there is another case where an intra-node message

might very well match the ADI request also. In that case the

entry in NewMadeleine’s pending any source queue is sim-
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ply removed and all requests that might have been posted

after are created.

3.3 PIOMan’s integration within Nemesis

In this section, we explain the consequence of Nemesis

delegating its polling operations to PIOMan and how Neme-

sis is affected by this change.

3.3.1 Creating a global polling authority

In order to fairly make progress both intra-node and inter-

node communication, it is necessary to centralize the detec-

tion of communication completions. This permits to have a

global view of pending communication and avoids to priv-

ilege one type at expense of another. The progression of

communication within NewMadeleine being already cen-

tralized by PIOMan, the detection of shared memory com-

munication completion has been deferred to PIOMan. This

way, the whole software stack benefits from a global view

of both intra-node and inter-node communication flows and

from the multithreaded polling mechanism provided by PI-

OMan.

3.3.2 Modification to Nemesis’ polling schemes

To make PIOMan handle the detection of completed shared

memory requests, a mailbox mechanism has been added to

the shared memory subsystem: when Nemesis needs to poll

for an incoming message in shared memory, it notifies PI-

OMan and specifies the address of a counter that is incre-

mented when the message is sent to the other side. PIOMan

can thus check the state of shared memory as it checks the

state of networks.

In order to fully benefit from PIOMan’s progression ser-

vice, busy-waiting loops have been replaced by blocking

primitives that can be viewed as semaphores. So, whenever

an application thread waits for a message completion – us-

ing the MPI Wait function for instance – it is blocked on

a semaphore and another thread can be scheduled to make

the application’s computation progress. The detection of

the message completion is performed in the background by

PIOMan during context switches, timer interrupts or when

a CPU is idle. When a communication completion is de-

tected, PIOMan unblocks the corresponding thread that can

be scheduled.

The use of semaphore-like primitives instead of actively

polling will permit interesting features when MPICH2 will

provide a MPI THREAD MULTIPLE thread-safety level:

instead of concurrently polling when several threads invoke

MPI Wait – which would boil down to wasting CPU time

– these threads would relinquish the CPU in order to allow

other threads to compute.

4 Performance evaluation

In this Section, we assess the performance of our

MPICH2-NewMadeleine implementation. First, we show

the basic performance obtained with simple point-to-point

experiments. We produce latency and bandwidth figures in

the Infiniband high-performance network case as well as

in a multirail case where both Infiniband and Myrinet are

used. Then we show the influence of the PIOMan soft-

ware element in terms of both overhead and overlapping

improvement. The second part of this performance eval-

uation is dedicated to application kernels and we consider

the NAS parallel benchmarks to test the behaviour of our

implementation in a more realistic setting. The other MPI

implementations considered for this evaluation are MVA-

PICH2 1.0.3[8] and Open MPI 1.2.7[13].

4.1 Point-to-point evaluations

For this series of experiments, we use two boxes com-

posed each of two quadcore 3.16 GHz Intel Xeon CPUs fea-

turing 4 GB of memory. The OS is Linux 2.6.26 and each

box is equipped with one Myrinet Myri-10G NIC (with the

MX interface) and one ConnectX Infiniband NIC (with the

Verbs interface). In the remaining of the Section we con-

sider one Megabyte (1 MB) as 1024 × 1024 bytes.

4.1.1 Latency and bandwidth evaluations

We now present the results obtained with the Netpipe [14]

test program. Since NewMadeleine is a generic com-

munication libray, we can easily benchmark several high-

performance networks without writing any specific code.



Indeed, we made experiments with Infiniband NICs and

with an heterogeneous multirail featuring both Myrinet and

Infiniband networks.
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Figure 4. Infiniband Performance Compar-
isons

Figure 4 shows the performance comparisons between

several MPI implementations using Infiniband. We tested

MVAPICH2 which is derived from MPICH2, as well as

Open MPI 1.2.7 with its Infiniband support. Actually,

Open MPI uses the openib BTL but also takes advan-

tage of an Infiniband-tailored MTL as well. This ex-

plains why MVAPICH and Open MPI latencies are al-

most identical (1.5µs vs. 1.6µs) and very close to the

hardware’s raw performance (1.2µs, not shown on the

graphs). Because MPICH2-NewMadeleine relies on its

generic layer, the latency is higher (2.1µs) with an over-

head of 300 nanoseconds when compared to NewMadeleine

(1.8µs, not shown on the graph). As far as bandwidth

is concerned, MVAPICH2 outperforms all other solutions

but it is interesting to note that MPICH2-NewMadeleine

is able to reach a higher bandwidth than Open MPI for

medium-sized messages. This performance is very good

since NewMadeleine does not use any caching mechanism

for large messages and registers dynamically and on-the-

fly the needed memory to handle the transfers. As ex-

pected, MPICH2-NewMadeleine’s latency is affected by

a 300 nanoseconds gap when MPI ANY SOURCE is used.

This gap remains constant while message size grows and

bandwidth for large messages remains unaffected (the curve

on the graph is similar to the regular known-source case and

thus not shown). We also did experiments with Myrinet and

the same behaviour is to be observed.

Figure 5 exposes the performance level of our New-

Madeleine module in the case of an heterogeneous multi-

rail system featuring one Myri-10G NIC and one Infiniband

10G NIC each. We compare the multirail performance of

MPICH2-NewMadeleine with the performance obtained in

the Myrinet-only and in the Infiniband-only cases. Actually

the curve corresponding to the Infiniband-only case in Fig-

ure 5 is the same as the one featured in Figure 4. This gives

a point of comparison between both graphs. Open MPI

also features a multirail support[7] but to the extent of our

knowledge, this functionality is not fully operational in the

release we tested. The results clearly confirm the behaviour

of the multirail strategy enforced by NewMadeleine which

is to choose the fastest network for small messages (In-

finiband in our case) and to distribute the message chunks

across the multiple networks in case of large messages. In-

deed, we obtain an aggregated bandwidth that corresponds

almost to the sum of the individual Myrinet and Infiniband

bandwidths. Since both performs equally, each chunk has

the same size (that is, half of the total message size). But

NewMadeleine is able to balance the load according to each

network’s performance when they differ in order to achieve

the best results.

4.1.2 Impact of PIOMan’s integration into Nemesis

We now study the impact of our centralized progression

subsystem on pingpong tests. We also evaluate the pro-

gression of asynchronous communication and the ability to

overlap communication with computation.

PIOMan’s raw overhead We first evaluate the impact

of the centralized progression subsystem within MPICH2

for both intra-node and inter-node communication. Fig-

ure 6 shows the latency results for the Netpipe program over

shared memory and over Myrinet MX. The introduction of

PIOMan within the Nemesis software stack significantly af-
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Figure 5. MultiRail Performance with Myrinet

10G and Infiniband 10G NICs

fects the latency (roughly 450 ns for shared memory). How-

ever, the overhead is constant as the message size grows and

becomes negligible for large messages. The overhead intro-

duced is mainly due to synchronization since the progres-

sion subsystem is totally thread-safe.

The use of PIOMan within the inter-node communica-

tion subsystem also introduces an overhead (roughly 2 µs).

This more expensive impact can be explained by the need

for a stronger synchronization in that case: to poll a net-

work within NewMadeleine it is required to modify lists of

requests that have to be protected from concurrent accesses.

Network drivers also have to be protected against concur-

rent accesses since most of them are not thread-safe.
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Overlapping communication with computation In or-

der to evaluate the ability to overlap communication with

computation for both small (i.e eager) and large messages

(i.e messages that require a rendezvous handshake), we pro-

ceed as follows: the sender calls MPI Isend, computes for

a while and waits for the end of the communication (using

MPI Wait). Then the sender waits for an incoming mes-

sage. We measure the time required to send the message

and to perform the computation.

Figure 7(a) shows the results obtained for eager mes-

sages over Myrinet MX with a computation time of 20 µs.

Open MPI (both the MX BTL and PML CM versions)

and MPICH2 do not overlap communication with compu-

tation: the measured sending time roughly corresponds to

sum(computation, communication). MPICH2 on top of

the multithreaded version of NewMadeleine – that uses PI-



OMan to make communication progress – overlaps commu-

nication with computation: the sending time corresponds to

max(computation, communication).

Figure 7(b) shows the results obtained for large messages

over Infiniband with a computation time of 400 µs. The

goal here is to evaluate the progression of the rendezvous

handshake. Open MPI, MVAPICH2 and MPICH2 do not

detect the handshake during the computation and thus the

communication is not overlapped. MPICH2 on top the the

multithreaded version of NewMadeleine uses an idle core to

poll the network to detect the handshake quickly and thus is

able to overlap communication with computation.
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Figure 7. Asynchronous progression of com-
munication

4.2 NAS parallel benchmarks

Beside the previous point-to-point experiments, we also

evaluate NAS application kernels. on the Grid5000 [1]

testbed. The 10 nodes that we used feature each 4 CPUs

(with 2 cores per CPU). The CPUs are 2.6 GHz AMD

Opteron 2218 with 2 MB of L2 cache. Each node fea-

tures 32GB of memory and one Infiniband 10G NIC. As

previously, we compare MPICH2-NewMadeleine (with and

without the PIOMan support) to both MVAPICH2 and

Open MPI. All are compiled using the same optimization

level, support for shared-memory communication is en-

abled, thread support and error checking are both disabled.

The experiments are carried out with respectively 8, 16, 32

and 64 computing processes (8 and 32 are replaced with 9

and 36 for kernels requiring a square number of processes).

In the 8 (or 9) processes case, only one process runs on a

node and no communication uses shared memory. We gath-

ered data for all NAS benchmarks, except for IS. Indeed,

IS needs datatypes support and MPICH2-NewMadeleine

does not handle yet this functionality. For each kernel, we

tested A,B and C classes. However, the behaviour for all

classes following roughly the same pattern, Figure 8 shows

only class C results. Please note that results for MPICH2-

NewMadeleine with PIOMan are only available for the 8,

16 and 32 processes cases. The 64 processes case as well

as the MG and LU kernels are not yet available due a prob-

lem in the current implementation that leads to deadlocks in

these cases.

Figure 8 shows that for the various NAS kernels con-

sidered, all MPI implementations exhibit a good scalabil-

ity factor as the number of processes is growing. There

is one exception, SP with 36 processes, where the perfor-

mance is rather low for all implementations. It is to be

noted that Open MPI lags behind other implementations in

the EP and the LU kernels cases, regardless of the num-

ber of processes involved. In the 8 processes case, shared

memory is not used so the intra-node communication sup-

port is not the issue here. The LU kernel sends only a lim-

ited percentage of large messages and most of the traffic is

composed of small messages (a few KBytes, size depend-

ing on the class). So, according to Figure 4, latencies and

bandwidths are in the same range for all implementations.

MPICH2-NewMadeleine’s performance level is globally on

par with network-tailored MPI implementations, while us-

ing a generic communication layer. The version featuring

PIOMan delivers the same level of performance, the over-

head is usually less than 3%. In the FT and SP kernels, PI-

OMan improves performance slightly. However, PIOMan’s

ability to overlap communication with computation proves

difficult to test with the NAS. [12] evaluates such a potential

overlap of communication with computation for the NAS

kernels that require application changes. The scheme re-



quired by PIOMan where :

1. a non-blocking communication operation request is

posted

2. some computation is performed

3. the request is completed

is slightly used in the NAS. Yet, the performance of ap-

plications that use more intensively this scheme should be

improved by PIOMan.

5 Conclusion and future work

In this paper, we presented our MPICH2-NewMadeleine

implementation. We showed that the current CH3 device

coupled with the Nemesis channel needs to be modified

in order to fully exploit communication interfaces with ad-

vanced features (e.g tag-matching capabilites). The soft-

ware stack takes advantage of both the Nemesis subsys-

tem for intra-node communication and the NewMadeleine

generic library for inter-node communication involving

high-performance networks. Communication progress is

also enhanced thanks to the PIOMan software. This work

paves the way to an MPI implementation tailored for clus-

ters composed of multicore CPUs nodes featuring multi-

rail networks. The performance achieved is promising, and

compares farouvably to other finely-tuned, specialized MPI

implementations.

Even though the current status of this work allows us to

execute and run MPI applications such as the NAS com-

puting kernels, we do not support the whole set of MPI

functionalities. In particular we think that NewMadeleine’s

optimization schemes might improve performance for non-

contiguous user datatypes. Another challenge would be to

efficiently support MPI2 RMA operations without compro-

mising the optimizations implemented. Also, the perfor-

mance level (latency) obtained when PIOMan is integrated

should be improved in order to reduce the gap with the reg-

ular version of Nemesis. We also intend to exhibit the ben-

efits of PIOMan on real applications, especially in the over-

lapping department.

Since we built our implementation on NewMadeleine

and PIOMan, some multithreading aspects have been ad-

dressed that shall be completed in order to get an MPI im-

plementation that works smoothly with our OpenMP sup-

port based on the Marcel thread library [10]. Indeed, we

think that MPICH2-NewMadeleine is the first step towards

an efficient implementation of an hybrid MPI+Open MP

programming model.
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Figure 8. NAS Benchmark Performance for Class C


