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ABSTRACT : We consider the problem of predicting as well as the best linear combina-
tion of d given functions in least squares regression, and variants of this problem includ-
ing constraints on the parameters of the linear combination. When the input distribution
is known, there already exists an algorithm having an expected excess risk of orderd/n,
wheren is the size of the training data. Without this strong assumption, standard results
often contain a multiplicativelog n factor, and require some additional assumptions like
uniform boundedness of thed-dimensional input representation and exponential moments
of the output.

This work provides new risk bounds for the ridge estimator and the ordinary least
squares estimator, and their variants. It also provides shrinkage procedures with conver-
gence rated/n (i.e., without the logarithmic factor) in expectation and in deviations, un-
der various assumptions. The key common surprising factor of these results is the absence
of exponential moment condition on the output distributionwhile achieving exponential
deviations. All risk bounds are obtained through a PAC-Bayesian analysis on truncated
differences of losses. Finally, we show that some of these results are not particular to the
least squares loss, but can be generalized to similar strongly convex loss functions.
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INTRODUCTION

OUR STATISTICAL TASK. Let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) be n ≥ 2
pairs of input-output and assume that each pair has been independently drawn
from the same unknown distributionP . Let X denote the input space and let the
output space be the set of real numbersR, so thatP is a probability distribution
on the product spaceZ , X × R. The target of learning algorithms is to predict
the outputY associated with an inputX for pairsZ = (X, Y ) drawn from the
distributionP . The quality of a (prediction) functionf : X → R is measured by
the least squaresrisk:

R(f) , EZ∼P

{
[Y − f(X)]2

}
.

Through the paper, we assume that the output and all the prediction functions we
consider are square integrable. LetΘ be a closed convex set ofRd, andϕ1, . . . , ϕd

bed prediction functions. Consider the regression model

F =

{
fθ =

d∑

j=1

θjϕj; (θ1, . . . , θd) ∈ Θ

}
.

The best functionf ∗ in F is defined by

f ∗ =

d∑

j=1

θ∗jϕj ∈ argmin
f∈F

R(f).

Such a function always exists but is not necessarily unique.Besides it is unknown
since the probability generating the data is unknown.

We will study the problem of predicting (at least) as well as functionf ∗. In other
words, we want to deduce from the observationsZ1, . . . , Zn a functionf̂ having
with high probability a risk bounded by the minimal riskR(f ∗) onF plus a small
remainder term, which is typically of orderd/n up to a possible logarithmic factor.
Except in particular settings (e.g.Θ is a simplex andd ≥ √

n), it is known that
the convergence rated/n cannot be improved in a minimax sense (see [17], and
[18] for related results).
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More formally, the target of the paper is to develop estimators f̂ for which the
excess risk is controlledin deviations, i.e., such that for an appropriate constant
κ > 0, for anyε > 0, with probability at least1 − ε,

R(f̂) − R(f ∗) ≤ κ
d+ log(ε−1)

n
. (0.1)

Note that by integrating the deviations (using the identityEW =
∫ +∞
0

P(W >
t)dt which holds true for any nonnegative random variableW ), Inequality (0.1)
implies

ER(f̂) − R(f ∗) ≤ κ
d+ 1

n
. (0.2)

In this work, we do not assume that the function

f (reg) : x 7→ E[Y |X = x],

which minimizes the riskR among all possible measurable functions, belongs to
the modelF. So we might havef ∗ 6= f (reg) and in this case, bounds of the form

ER(f̂) − R(f (reg)) ≤ C[R(f ∗) −R(f (reg))] + κ
d

n
, (0.3)

with a constantC larger than1 do not even ensure thatER(f̂) tends toR(f ∗)
whenn goes to infinity. This kind of bounds withC > 1 have been developed
to analyze nonparametric estimators using linear approximation spaces, in which
case the dimensiond is a function ofn chosen so that the bias termR(f ∗) −
R(f (reg)) has the orderd/n of the estimation term (see [9] and references within).
Here we intend to assess the generalization ability of the estimator even when the
model is misspecified (namely whenR(f ∗) > R(f (reg))). Moreover we do not
assume either thatY − f (reg)(X) andX are independent.

Notation. WhenΘ = R
d, the functionf ∗ and the spaceF will be writtenf ∗

lin

andFlin to emphasize thatF is the whole linear space spanned byϕ1, . . . , ϕd:

Flin = span{ϕ1, . . . , ϕd} and f ∗
lin ∈ argmin

f∈Flin

R(f).

The Euclidean norm will simply be written as‖ · ‖, and〈·, ·〉 will be its associated
dot product. We will consider the vector valued functionϕ : X → R

d defined by
ϕ(X) =

[
ϕk(X)

]d
k=1

, so that for anyθ ∈ Θ, we have

fθ(X) = 〈θ, ϕ(X)〉.
The Gram matrix is thed × d-matrixQ = E

[
ϕ(X)ϕ(X)T

]
, and its smallest and

largest eigenvalues will respectively be written asqmin andqmax.
The symbolκ will be used to denote constants, which means here deterministic

quantities not depending ond andn but possibly depending on other constants of
the problem. Its value may differ from line to line.
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WHY SHOULD WE BE INTERESTED IN THIS TASK. There are three main rea-
sons. First we aim at a better understanding of the parametric linear least squares
method (classical textbooks can be misleading on this subject as we will point out
later), and intend to provide a non-asymptotic analysis of it.

Secondly, the task is central in nonparametric estimation for linear approxima-
tion spaces (piecewise polynomials based on a regular partition, wavelet expan-
sions, trigonometric polynomials. . . )

Thirdly, it naturally arises in two-stage model selection.Precisely, when facing
the data, the statistician has often to choose several models which are likely to
be relevant for the task. These models can be of similar structures (like embedded
balls of functional spaces) or on the contrary of very different nature (e.g. based on
kernels, splines, wavelets or on parametric approaches). For each of these models,
we assume that we have a learning scheme which produces a ’good’ prediction
function in the sense that it predicts as well as the best function of the model up
to some small additive term. Then the question is to decide onhow we use or
combine/aggregate these schemes. One possible answer is tosplit the data into
two groups, use the first group to train the prediction function associated with
each model, and finally use the second group to build a prediction function which
is as good as (i) the best of the previously learnt predictionfunctions, (ii) the
best convex combination of these functions or (iii) the bestlinear combination of
these functions. This point of view has been introduced by Nemirovski in [14] and
optimal rates of aggregation are given in [17] and references within. This paper
focuses more on the linear aggregation task (even if (ii) enters in our setting),
assuming implicitly here that the models are given in advance and are beyond our
control and that the goal is to combine them appropriately.

OUTLINE AND CONTRIBUTIONS. The paper is organized as follows. Section 1
is a survey on risk bounds in linear least squares. Theorems 1.3 and 1.5 are the
results which come closer to our target. Section 2 provides anew analysis of
the ridge estimator and the ordinary least squares estimator, and their variants.
Theorem 2.1 provides an asymptotic result for the ridge estimator while Theorem
2.2 gives a non asymptotic risk bound of the empirical risk minimizer, which is
complementary to the theorems put in the survey section. In particular, the result
has the benefit to hold for the ordinary least squares estimator and for heavy-
tailed outputs. We show quantitatively that the ridge penalty leads to an implicit
reduction of the input space dimension. Section 3 shows a nonasymptoticd/n
exponential deviation risk bound under weak moment conditions on the outputY
and on thed-dimensional input representationϕ(X). Section 4 presents stronger
results under boundedness assumption ofϕ(X). However the latter results are
concerned with a not easily computable estimator. Section 5gives risk bounds for
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general loss functions from which the results of Section 4 are derived.
The main contribution of this paper is to show through a PAC-Bayesian analysis

on truncated differences of losses that the output distribution does not need to
have bounded conditional exponential moments in order for the excess risk of
appropriate estimators to concentrate exponentially. Ourresults tend to say that
truncation leads to more robust algorithms. Local robustness to contamination
is usually invoked to advocate the removal of outliers, claiming that estimators
should be made insensitive to small amounts of spurious data. Our work leads
to a different theoretical explanation. The observed points having unusually large
outputs when compared with the (empirical) variance shouldbe down-weighted
in the estimation of the mean, since they contain less information than noise. In
short, huge outputs should be truncated because of their lowsignal to noise ratio.

1. VARIANTS OF KNOWN RESULTS

1.1. ORDINARY LEAST SQUARES AND EMPIRICAL RISK MINIMIZATION. The
ordinary least squares estimator is the most standard method in this case. It mini-
mizes the empirical risk

r(f) =
1

n

n∑

i=1

[Yi − f(Xi)]
2,

among functions inFlin and produces

f̂ (ols) =

d∑

j=1

θ̂(ols)
j ϕj,

with θ̂(ols) = [θ̂(ols)
j ]dj=1 a column vector satisfying

XT X θ̂(ols) = XT Y, (1.1)

whereY = [Yj ]
d
j=1 andX = (ϕj(Xi))1≤i≤n,1≤j≤d. It is well-known that

• the linear system (1.1) has at least one solution, and in fact, the set of so-
lutions is exactly{X+ Y +u; u ∈ ker X}; whereX+ is the Moore-Penrose
pseudoinverse ofX and kerX is the kernel of the linear operatorX.

• X θ̂(ols) is the (unique) orthogonal projection of the vectorY ∈ R
n on the

image of the linear mapX;
• if supx∈XVar(Y |X = x) = σ2 < +∞, we have (see [9, Theorem 11.1])

for anyX1, . . . , Xn in X,
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E

{
1

n

n∑

i=1

[
f̂ (ols)(Xi) − f (reg)(Xi)

]2∣∣X1, . . . , Xn

}

− min
f∈Flin

1

n

n∑

i=1

[
f(Xi) − f (reg)(Xi)

]2 ≤ σ2 rank(X)

n
≤ σ2 d

n
, (1.2)

where we recall thatf (reg) : x 7→ E[Y |X = x] is the optimal regression
function, and that when this function belongs toFlin (i.e.,f (reg) = f ∗

lin), the
minimum term in (1.2) vanishes;

• from Pythagoras’ theorem for the (semi)normW 7→
√
EW 2 on the space

of the square integrable random variables,

R(f̂ (ols)) − R(f ∗
lin)

= E
[
f̂ (ols)(X) − f (reg)(X)

]2 − E
[
f ∗

lin(X) − f (reg)(X)
]2
. (1.3)

The analysis of the ordinary least squares often stops at this point in classical sta-
tistical textbooks. (Besides, to simplify, the strong assumptionf (reg) = f ∗

lin is often
made.) This can be misleading since Inequality (1.2) does not imply a d/n upper
bound on the risk of̂f (ols). Nevertheless the following result holds [9, Theorem
11.3].

THEOREM 1.1 If supx∈XVar(Y |X = x) = σ2 < +∞ and

‖f (reg)‖∞ = sup
x∈X

|f (reg)(x)| ≤ H

for someH > 0, then the truncated estimator̂f (ols)
H = (f̂ (ols) ∧H) ∨ −H satisfies

ER(f̂ (ols)
H ) − R(f (reg)) ≤ 8[R(f ∗

lin) − R(f (reg))] + κ
(σ2 ∨H2)d logn

n
(1.4)

for some numerical constantκ.

Using PAC-Bayesian inequalities, Catoni [7, Proposition 5.9.1] has proved a
different type of results on the generalization ability off̂ (ols).

THEOREM 1.2 LetF′ ⊂ Flin satisfying for some positive constantsa,M,M ′:

• there existsf0 ∈ F′ s.t. for anyx ∈ X,

E

{
exp
[
a
∣∣Y − f0(X)

∣∣
] ∣∣∣X = x

}
≤M.

• for anyf1, f2 ∈ F′, supx∈X |f1(x) − f2(x)| ≤M ′.
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LetQ = E
[
ϕ(X)ϕ(X)T

]
and Q̂ =

[
1
n

∑n
i=1 ϕ(Xi)ϕ(Xi)

T
]

be respectively the
expected and empirical Gram matrices. IfdetQ 6= 0, then there exist positive
constantsC1 andC2 (depending only ona,M andM ′) such that with probability
at least1 − ε, as soon as

{
f ∈ Flin : r(f) ≤ r(f̂ (ols)) + C1

d

n

}
⊂ F′, (1.5)

we have

R(f̂ (ols)) − R(f ∗
lin) ≤ C2

d+ log(ε−1) + log(det Q̂
det Q

)

n
.

This result can be understood as follows. Let us assume we have some prior
knowledge suggesting thatf ∗

lin belongs to the interior of a setF′ ⊂ Flin (e.g.
a bound on the coefficients of the expansion off ∗

lin as a linear combination of
ϕ1, . . . , ϕd). It is likely that (1.5) holds, and it is indeed proved in Catoni [7, sec-
tion 5.11] that the probability that it does not hold goes to zero exponentially fast
with n in the case whenF′ is a Euclidean ball. If it is the case, then we know that
the excess risk is of orderd/n up to the unpleasant ratio of determinants, which,
fortunately, almost surely tends to1 asn goes to infinity.

By usinglocalizedPAC-Bayes inequalities introduced in Catoni [6, 8], one can
derive from Inequality (6.9) and Lemma 4.1 of Alquier [1] thefollowing result.

THEOREM 1.3 Let qmin be the smallest eigenvalue of the Gram matrixQ =
E
[
ϕ(X)ϕ(X)T

]
. Assume that there exist a functionf0 ∈ Flin and positive con-

stantsH andC such that
‖f ∗

lin − f0‖∞ ≤ H.

and |Y | ≤ C almost surely.
Then for an appropriate randomized estimator requiring theknowledge off0,

H andC, for any ε > 0 with probability at least1 − ε w.r.t. the distribution
generating the observationsZ1, . . . , Zn and the randomized prediction function
f̂ , we have

R(f̂) − R(f ∗
lin) ≤ κ(H2 + C2)

d log(3q−1
min) + log((logn)ε−1)

n
. (1.6)

Using the result of [7, Section 5.11], one can prove that Alquier’s result still
holds for f̂ = f̂ (ols), but with κ also depending on the determinant of the prod-
uct matrixQ. The log[log(n)] factor is unimportant and could be removed in
the special case quoted here (it comes from a union bound on a grid of pos-
sible temperature parameters, whereas the temperature could be set here to a
fixed value). The result differs from Theorem 1.2 essentially by the fact that
the ratio of the determinants of the empirical and expected product matrices has
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been replaced by the inverse of the smallest eigenvalue of the quadratic form
θ 7→ R(

∑d
j=1 θjϕj) − R(f ∗

lin). In the case when the expected Gram matrix is
known, (e.g. in the case of a fixed design, and also in the slightly different context
of transductive inference), this smallest eigenvalue can be set to one by choosing
the quadratic formθ 7→ R(fθ) − R(f ∗

lin) to define the Euclidean metric on the
parameter space.

Localized Rademacher complexities [11, 3] allow to prove the following prop-
erty of the empirical risk minimizer.

THEOREM 1.4 Assume that the input representationϕ(X), the set of parameters
and the outputY are almost surely bounded, i.e., for some positive constantsH
andC,

sup
θ∈Θ

‖θ‖ ≤ 1

ess sup ‖ϕ(X)‖ ≤ H,

and
|Y | ≤ C a.s..

Let ν1 ≥ · · · ≥ νd be the eigenvalues of the Gram matrixQ = E
[
ϕ(X)ϕ(X)T

]
.

The empirical risk minimizer satisfies for anyε > 0, with probability at least1−ε:

R(f̂ (erm)) − R(f ∗) ≤ κ(H + C)2
min

0≤h≤d

(
h+

√
n

(H+C)2

∑
i>h νi

)
+ log(ε−1)

n

≤ κ(H + C)2 rank(Q) + log(ε−1)

n
,

whereκ is a numerical constant.

PROOF. The result is a modified version of Theorem 6.7 in [3] appliedto the linear
kernelk(u, v) = 〈u, v〉/(H +C)2. Its proof follows the same lines as in Theorem
6.7 mutatis mutandi: Corollary 5.3 and Lemma 6.5 should be used as intermedi-
ate steps instead of Theorem 5.4 and Lemma 6.6, the nonzero eigenvalues of the
integral operator induced by the kernel being the nonzero eigenvalues ofQ. �

When we know that the target functionf ∗
lin is inside someL∞ ball, it is natu-

ral to consider the empirical risk minimizer on this ball. This allows to compare
Theorem 1.4 to excess risk bounds with respect tof ∗

lin .
Finally, from the work of Birgé and Massart [4], we may derive the following

risk bound for the empirical risk minimizer on aL∞ ball (see Appendix B).

THEOREM 1.5 Assume thatF has a diameterH for L∞-norm, i.e., for anyf1, f2

in F, supx∈X |f1(x) − f2(x)|∞ ≤ H and there exists a functionf0 ∈ F satisfying
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the exponential moment condition:

for anyx ∈ X, E

{
exp
[
A−1

∣∣Y − f0(X)
∣∣
] ∣∣∣X = x

}
≤M, (1.7)

for some positive constantsA andM . Let

B̃ = inf
φ1,...,φd

sup
θ∈Rd−{0}

‖∑d
j=1 θjφj‖2

∞

‖θ‖2
∞

where the infimum is taken with respect to all possible orthonormal basis ofF
for the dot product〈f1, f2〉 = Ef1(X)f2(X). Then the empirical risk minimizer
satisfies for anyε > 0, with probability at least1 − ε:

R(f̂ (erm)) − R(f ∗) ≤ κ(A2 +H2)
d log[2 + (B̃/n) ∧ (n/d)] + log(ε−1)

n
,

whereκ is a positive constant depending only onM .

This result comes closer to what we are looking for: it gives exponential devi-
ation inequalities of order at worsed log(n/d)/n. It shows that, even if the Gram
matrixQ has a very small eigenvalue, there is an algorithm satisfying a conver-
gence rate of orderd log(n/d)/n. With this respect, this result is stronger than
Theorem 1.3. However there are cases in which the smallest eigenvalue ofQ is
of order1, while B̃ is large (i.e.,B̃ ≫ n). In these cases, Theorem 1.3 does not
contain the logarithmic factor which appears in Theorem 1.5.

1.2. PROJECTION ESTIMATOR. When the input distribution is known, an al-
ternative to the ordinary least squares estimator is the following projection esti-
mator. One first finds an orthonormal basis ofFlin for the dot product〈f1, f2〉 =
Ef1(X)f2(X), and then uses the projection estimator on this basis. Specifically,
if φ1, . . . , φd form an orthonormal basis ofFlin , then the projection estimator on
this basis is:

f̂ (proj) =
∑d

j=1 θ̂
(proj)
j φj ,

with
θ̂(proj) = 1

n

∑n
i=1 Yiφj(Xi).

Theorem 4 in [17] gives a simple bound of orderd/n on the expected excess risk
ER(f̂ (proj)) − R(f ∗

lin).

1.3. PENALIZED LEAST SQUARES ESTIMATOR. It is well established that pa-
rameters of the ordinary least squares estimator are numerically unstable, and that
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the phenomenon can be corrected by adding anL2 penalty ([12, 15]). This solu-
tion has been labeled ridge regression in statistics ([10]), and consists in replacing
f̂ (ols) by

f̂ (ridge) ∈ argmin
{fθ; θ∈Rd}

1

n

n∑

i=1

(
Yi − fθ(Xi)

)2
+ λ

d∑

j=1

θ2
j ,

whereλ is a positive parameter. The typical value ofλ should be small to avoid
excessive shrinkage of the coefficients, but not too small inorder to make the
optimization task numerically more stable.

Risk bounds for this estimator can be derived from general results concerning
penalized least squares on reproducing kernel Hilbert spaces ([5]), but as it is
shown in Appendix C, this ends up with complicated results having the desired
d/n rate only under strong assumptions.

Another popular regularizer is theL1 norm. This procedure is known as Lasso
[16] and is defined as

f̂ (lasso)∈ argmin
{fθ ; θ∈Rd}

1

n

n∑

i=1

(
Yi − fθ(Xi)

)2
+ λ

d∑

j=1

|θj|.

As theL2 penalty, theL1 penalty shrinks the coefficients. The difference is that
for coefficients which tend to be close to zero, the shrinkagemakes them equal to
zero. This allows to select relevant variables (i.e., find the j’s such thatθ∗j 6= 0).
If we assume that the regression functionf (reg) is a linear combination of only
d∗ ≪ d variables/functionsϕj ’s, the typical result is to prove that the risk of
the Lasso estimator forλ of order

√
(log d)/n is of order(d∗ log d)/n. Since this

quantity is much smaller thand/n, this makes a huge improvement (provided
that the sparsity assumption is true). This kind of results usually requires strong
conditions on the eigenvalues of submatrices ofQ, essentially assuming that the
functionsϕj are near orthogonal. We do not know to which extent these conditions
are required. However, if we do not consider the specific algorithm of Lasso, but
the model selection approach developed in [1], one can change these conditions
into a single condition concerning only the minimal eigenvalue of the submatrix of
Q corresponding to relevant variables. In fact, we will see that even this condition
can be removed.

1.4. CONCLUSION OF THE SURVEY. Previous results clearly leave room to im-
provements. The projection estimator requires the unrealistic assumption that the
input distribution is known, and the result holds only in expectation. Results using
L1 orL2 regularizations require strong assumptions, in particular on the eigenval-
ues of (submatrices of)Q. Theorem 1.1 provides a(d logn)/n convergence rate
only when theR(f ∗

lin) − R(f (reg)) is at most of order(d logn)/n. Theorem 1.2
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gives a different type of guarantee: thed/n is indeed achieved, but the random
ratio of determinants appearing in the bound may raise some eyebrows and forbid
an explicit computation of the bound and comparison with other bounds. Theorem
1.3 seems to indicate that the rate of convergence will be degraded when the Gram
matrixQ is unknown and ill-conditioned. Theorem 1.4 does not put anyassump-
tion onQ to reach thed/n rate, but requires particular boundedness constraints
on the parameter set, the input vectorϕ(X) and the output. Finally, Theorem 1.5
comes closer to what we are looking for. Yet there is still an unwanted logarithmic
factor, and the result holds only when the output has uniformly bounded condi-
tional exponential moments, which as we will show is not necessary.

2. RIDGE REGRESSION AND EMPIRICAL RISK MINIMIZATION

We recall the definition

F =
{
fθ =

∑d
j=1 θjϕj; (θ1, . . . , θd) ∈ Θ

}
,

whereΘ is a closed convex set, not necessarily bounded (so thatΘ = R
d is

allowed). In this section, we provide exponential deviation inequalities for the
empirical risk minimizer onF under weak conditions on the tail of the output
distribution. The empirical risk of a functionf is

r(f) =
1

n

n∑

i=1

[
f(Xi) − Yi

]2

and the ridge regression estimator onF is defined by

f̂ (ridge) ∈ arg min
fθ∈F

r(fθ) + λ‖θ‖2,

whereλ is some nonnegative real parameter. In the case whenλ = 0, the ridge
regression̂f (ridge) is nothing but the empirical risk minimizer̂f (erm).

In the same way we consider the optimal ridge functionf̃ optimizing the ex-
pected ridge risk

f̃ ∈ arg min
fθ∈F

{
R(fθ) + λ‖θ‖2

}
.

The most general theorem which can be obtained from the routefollowed in
this section is Theorem 6.5 (page 33) stated along with the proof. It is expressed
in terms of a series of empirical bounds. The first deduction we can make from
this technical result is of asymptotic nature. It is stated under weak hypotheses,
taking advantage of the weak law of large numbers.

12



THEOREM 2.1 Let us assume that

E
[
‖ϕ(X)‖4

]
< +∞, (2.1)

and E

{
‖ϕ(X)‖2

[
f̃(X) − Y

]2}
< +∞. (2.2)

Let ν1, . . . , νd be the eigenvalues of the Gram matrixQ = E
[
ϕ(X)ϕ(X)T

]
,

and letQλ = Q+ λI be the ridge regularization ofQ. Let us define theeffective
ridge dimension

D =

d∑

i=1

νi

νi + λ
1(νi > 0) = Tr

[
(Q+ λI)−1Q

]
= E

{
‖Q−1/2

λ ϕ(X)‖2
]
.

Whenλ = 0,D is equal to the rank ofQ and is otherwise smaller. For anyε > 0,
there isnε, such that for anyn ≥ nε, with probability at least1 − ε,

R(f̂ (ridge)) + λ‖θ̂(ridge)‖2

≤ min
fθ∈F

{
R(fθ) + λ‖θ‖2

}

+
30E

{
‖Q−1/2

λ ϕ(X)‖2
[
f̃(X) − Y

]2}

E
{
‖Q−1/2

λ ϕ(X)‖2
}

D

n

+ 1000 sup
v∈Rd

E

[
〈v, ϕ(X)〉2

[
f̃(X) − Y

]2]

E(〈v, ϕ(X)〉2) + λ‖v‖2

log(3ε−1)

n

≤ min
fθ∈F

{
R(fθ) + λ‖θ‖2

}

+ ess supE
{
[Y − f̃(X)]2

∣∣X
} 30D + 1000 log(3ε−1)

n

PROOF. See Section 6.1 (page 27).�

This theorem shows that the ordinary least squares estimator (obtained when
Θ = R

d andλ = 0), as well as the empirical risk minimizer on any closed
convex set, asymptotically reaches ad/n speed of convergence under very weak
hypotheses. It shows also the regularization effect of the ridge regression. There
emerges aneffective dimensionD, where the ridge penalty has a threshold effect
on the eigenvalues of the Gram matrix.

On the other hand, the weakness of this result is its asymptotic nature :nε

may be arbitrarily large under such weak hypotheses, and this shows even in the
simplest case of the estimation of the mean of a real valued random variable by its
empirical mean (which is the case whend = 1 andϕ(X) ≡ 1).

Let us now give some non asymptotic rate under stronger hypotheses and for
the empirical risk minimizer (i.e.,λ = 0).

13



THEOREM 2.2 Letd′ = rank(Q). Assume that

E
{
[Y − f ∗(X)]4

}
< +∞

and
B = sup

f∈span{ϕ1,...,ϕd}−{0}
‖f‖2

∞/E[f(X)2] < +∞.

Consider the (unique) empirical risk minimizerf̂ (erm) = fθ̂(erm) : x 7→ 〈θ̂(erm), ϕ(x)〉
onF for whichθ̂(erm) ∈ span{ϕ(X1), . . . , ϕ(Xn)}4. For any values ofǫ andn such
that2/n ≤ ε ≤ 1 and

n > 1280B2

[
3Bd′ + log(2/ǫ) +

16B2d′2

n

]
,

with probability at least1 − ε,

R(f̂ (erm)) −R(f ∗)

≤ 1920B
√
E[Y − f ∗(X)]4

[
3Bd′ + log(2ε−1)

n
+

(
4Bd′

n

)2
]

. (2.3)

PROOF. See Section 6.1 (page 27).�

It is quite surprising that the traditional assumption of uniform boundedness of
the conditional exponential moments of the output can be replaced by a simple
moment condition for reasonable confidence levels (i.e.,ε ≥ 2/n). For highest
confidence levels, things are more tricky since we need to control with high prob-
ability a term of order[r(f ∗) − R(f ∗)]d/n (see Theorem 6.6). The cost to pay to
get the exponential deviations under only a fourth-order moment condition on the
output is the appearance of the geometrical quantityB as a multiplicative factor,
as opposed to Theorems 1.3 and 1.5. More precisely, from [4, Inequality (3.2)], we
haveB ≤ B̃ ≤ Bd, but the quantitỹB appears inside a logarithm in Theorem 1.5.
However, Theorem 1.5 is restricted to the empirical risk minimizer on aL∞ ball,
while the result here is valid for any closed convex setΘ, and in particular applies
to the ordinary least squares estimator.

Theorem 2.2 is still limited in at least three ways: it applies only to uniformly
boundedϕ(X), the output needs to have a fourth moment, and the confidence
level should be as great asǫ ≥ 2/n.

These limitations will be addressed in the next sections by considering algo-
rithms explicitly based on PAC-Bayesian truncation.

4WhenF = Flin , we haveθ̂(erm) = X+ Y, with X = (ϕj(Xi))1≤i≤n,1≤j≤d, Y = [Yj ]
d
j=1 and

X+ is the Moore-Penrose pseudoinverse ofX.
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3. AN EASILY COMPUTABLE ALGORITHM USING PAC-BAYESIAN

TRUNCATION

This section provides an alternative to the empirical risk minimizer with non
asymptotic exponential risk deviations of orderd/n for any confidence level.
Moreover, we will assume only a second order moment condition on the output.
We give two results, the first covering the case of unbounded input vectors, the
requirement onϕ(X) being only a finite fourth order moment. The computability
of the proposed estimator is discussed at the end of the section.

We still consider the functioñf = fθ̃ optimizing the expected ridge risk

f̃ ∈ arg min
fθ∈F

{
R(fθ) + λ‖θ‖2

}

for a fixed nonnegative real parameterλ.

THEOREM 3.1 Assume, for some positive constantsσ andγ2, that

E
[(
Y − f̃(X)

)2 |X
]
≤ σ2,

and sup
θ∈Rd

E
[
f 4

θ (X)
]

(
E
[
f 2

θ (X)
]
+ λ‖θ‖2

)2 ≤ γ2.

Let ρθ be the Gaussian distribution onRd with meanθ and diagonal covariance
matrixξI where

ξ =
24
[
4σ2 + γ2(qmax + λ)‖Θ‖2

]

n(qmin + λ)
,

‖Θ‖ being the Euclidean diametersupθ,θ′∈Θ ‖θ− θ′‖ of the convex closed param-
eter setΘ. Let us put

α =
1

12
[
4σ2 + γ2(qmax + λ)‖Θ‖2

]

and
Wi(f, f

′) = α
([
Yi − f(Xi)

]2 −
[
Yi − f ′(Xi)

]2)
,

and consider some estimatorθ̂ satisfying

θ̂ ∈ arg min
θ1∈Θ

sup
θ2∈Θ

−1

n

n∑

i=1

∫
ρθ1

(dθ′) log

{∫
ρθ2

(dθ)
[
1−

Wi(fθ′, fθ) +
1

2
W 2

i (fθ′, fθ)
]}

+ αλ
[
‖θ1‖2 − ‖θ2‖2

]
.

15



For anyǫ > 0, with probability at least1 − ǫ,

R(fθ̂) + λ‖θ̂‖2 ≤ min
fθ∈F

{
R(fθ) + λ‖θ‖2

}
+

32σ2qmaxd

n(qmin + λ)

+
[
4σ2 + γ2(qmax + λ)‖Θ‖2

]{576γ2(qmax + λ)2d2

(qmin + λ)2n2

+
48 log(2/ǫ)

n

}
.

PROOF. See Section 6.2 (page 37).�

Theorem 3.1 provides a non asymptotic bound for the excess risk with ad/n
speed of convergence and an exponential tail even when the output Y has no
exponential moment. It is even possible to assume on the output Y nothing more
than the sheer existence of the risk function, in the case when the inputX is
bounded, as stated in the following theorem. Here we assume for simplicity that
λ = 0, so thatf̃ = f ∗ = argminf∈F

R(f).

THEOREM 3.2 Assume thatF has a diameterH for theL∞-norm:

sup
f1,f2∈F,x∈X

|f1(x) − f2(x)| = H.

Consider again

B = sup
f∈span{ϕ1,...,ϕd}−{0}

‖f‖2
∞/E[f(X)]2.

Assume that we knowσ ≥ 0 such thatR(f ∗) ≤ σ2. Letα = [12B(4σ2 +BH2)]−1

and
Wi(f, f

′) = α[(Yi − f(Xi))
2 − (Yi − f ′(Xi))

2].

Let ρθ be the Gaussian distribution onRd with meanθ and diagonal covariance
matrixξI with

ξ =
12B(4σ2 +BH2)

nqmin
.

Consider the estimator̂f = fθ̂ where

θ̂ ∈ argmin
θ1∈F

max
θ2∈F

− 1

n

n∑

i=1

∫
ρθ1

(dθ′) log

{∫
ρθ2

(dθ)
[
1

−Wi(fθ′ , fθ) +W 2
i (fθ′, fθ)/2

]}
.
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For anyǫ > 0, with probability at least1 − ε,

R(f̂) − R(f ∗) ≤ 32σ2 H
2d

qminn

+ 96B(4σ2 +BH2)

{
3

(
H2d

qminn

)2

+
log(2ε−1)

n

}
.

PROOF. See Section 6.2 (page 37).�

We obtained here stronger results than the non asymptotic bound of Section 2,
at the price of replacing the empirical risk minimizer by a more involved estimator.

Section 6.2.3 (page 44) addresses the question of computingthis estimator.
It shows that an approximation can be made which involves optimizing explicit
quantities given in closed form without the help of Gaussianintegrals. Some upper
bound of the precision of this approximation is itself computable in closed form
from observations. It adds, as described in Theorem 6.9 (page 42), to the bound
on the excess risk, but should not change its order of magnitude.

4. A SIMPLE TIGHT RISK BOUND FOR A SOPHISTICATEDPAC-BAYES

ALGORITHM

We recall the definition

F =
{∑d

j=1 θjϕj ; (θ1, . . . , θd) ∈ Θ
}
.

In this section, we consider that the convex setΘ is bounded so that we can define
the “prior” distributionπ as the uniform distribution onF (i.e., the one induced by
the Lebesgue distribution onΘ ⊂ R

d renormalized to getπ(F) = 1). Let λ > 0
and

Wi(f, f
′) = λ

{[
Yi − f(Xi)

]2 −
[
Yi − f ′(Xi)

]2}
.

Introduce

Ê(f) = log

∫
π(df ′)∏n

i=1[1 −Wi(f, f ′) + 1
2
Wi(f, f ′)2]

. (4.1)

We consider the “posterior” distribution̂π on the setF with density:

dπ̂

dπ
(f) =

exp[−Ê(f)]
∫

exp[−Ê(f ′)]π(df ′)
. (4.2)

To understand intuitively why this distribution concentrates on functions with low
risk, one should think that whenλ is small enough,1 −Wi(f, f

′) + 1
2
Wi(f, f

′)2

is close toe−Wi(f,f ′), and consequently

Ê(f) ≈ λ
n∑

i=1

[Yi − f(Xi)]
2 + log

∫
π(df ′) exp

{
−λ

n∑

i=1

[
Yi − f ′(Xi)

]2}
,
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and
dπ̂

dπ
(f) ≈ exp{−λ∑n

i=1[Yi − f(Xi)]
2}∫

exp{−λ∑n
i=1[Yi − f ′(Xi)]2}π(df ′)

.

The following theorem gives ad/n convergence rate for the randomized algorithm
which draws the prediction function fromF according to the distribution̂π.

THEOREM 4.1 Assume thatF has a diameterH for L∞-norm:

sup
f1,f2∈F,x∈X

|f1(x) − f2(x)| = H

and that, for someσ > 0,

sup
x∈X

E
{
[Y − f ∗(X)]2

∣∣X = x
}
≤ σ2 < +∞.

Let f̂ be a prediction function drawn from the distributionπ̂ defined in(4.2, page
17)and depending on the parameterλ > 0. Then for any0 < η′ < 1−λ(2σ+H)2

andε > 0, with probability (with respect to the distributionP⊗nπ̂ generating the
observationsZ1, . . . , Zn and the randomized prediction function̂f ) at least1− ε,
we have

R(f̂) − R(f ∗) ≤ (2σ +H)2 C1d+ C2 log(2ε−1)

n

with

C1 =
log( (1+η)2

η′(1−η)
)

η(1 − η − η′)
and C2 =

2

η(1 − η − η′)
and η = λ(2σ +H)2.

In particular for λ = 0.32(2σ +H)−2 andη′ = 0.18, we get

R(f̂) − R(f ∗) ≤ (2σ +H)2 16.6 d+ 12.5 log(2ε−1)

n
.

Besides iff ∗ ∈ argminf∈Flin
R(f), then with probability at least1 − ε, we have

R(f̂) − R(f ∗) ≤ (2σ +H)2 8.3 d+ 12.5 log(2ε−1)

n
.

PROOF. This is a direct consequence of Theorem 5.5 (page 25), Lemma5.3
(page 23) and Lemma 5.6 (page 27).�

If we know thatf ∗
lin belongs to some bounded ball inFlin , then one can define a

boundedF as this ball, use the previous theorem and obtain an excess risk bound
with respect tof ∗

lin .
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REMARK 4.1 Let us discuss this result. On the positive side, we have ad/n con-
vergence rate in expectation and in deviations. It has no extra logarithmic factor.
It does not require any particular assumption on the smallest eigenvalue of the
covariance matrix. To achieve exponential deviations, a uniformly bounded sec-
ond moment of the output knowing the input is surprisingly sufficient: we do not
require the traditional exponential moment condition on the output. Appendix A
(page 52) argues that the uniformly bounded conditional second moment assump-
tion cannot be replaced with just a bounded second moment condition.

On the negative side, the estimator is rather complicated and requires the knowl-
edge of aL∞-bounded ball in whichf ∗

lin lies and an upper bound onsupx∈XE
{
[Y−

f ∗
lin(X)]2

∣∣X = x
}

. The looser this knowledge is, the bigger the constant in front
of d/n is.

Finally, we propose a randomized algorithm consisting in drawing the predic-
tion function according tôπ. As usual, by convexity of the loss function, the risk of
the deterministic estimator̂fdeterm=

∫
fπ̂(df) satisfiesR(f̂determ) ≤

∫
R(f)π̂(df),

so that, after some pretty standard computations, one can prove that for anyε > 0,
with probability at least1 − ε:

R(f̂determ) − R(f ∗
lin) ≤ κ(2σ +H)2d+ log(ε−1)

n
,

for some appropriate numerical constantκ > 0.

5. A GENERIC LOCALIZED PAC-BAYES APPROACH

5.1. NOTATION AND SETTING. In this section, we drop the restrictions of the
linear least squares setting considered in the other sections in order to focus on the
ideas underlying the estimator and the results presented inSection 4. To do this,
we consider that the loss incurred by predictingy′ while the correct output isy is
ℓ̃(y, y′) (and is not necessarily equal to(y − y′)2). The quality of a (prediction)
functionf : X → R is measured by its risk

R(f) = E
{
ℓ̃
[
Y, f(X)

]}
.

We still consider the problem of predicting (at least) as well as the best function in
a given set of functionsF (butF is not necessarily a subset of a finite dimensional
linear space). Letf ∗ still denote a function minimizing the risk among functions
in F: f ∗ ∈ argminf∈F

R(f). For simplicity, we assume that it exists. The excess
risk is defined by

R̄(f) = R(f) −R(f ∗).
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Let ℓ : Z×F×F → R be a function such thatℓ(Z, f, f ′) represents5 how worse
f predicts thanf ′ on the dataZ. Let us introduce the real-valued random processes
L : (f, f ′) 7→ ℓ(Z, f, f ′) andLi : (f, f ′) 7→ ℓ(Zi, f, f

′), whereZ,Z1, . . . , Zn

denote i.i.d. random variables with distributionP .
Let π andπ∗ be two (prior) probability distributions onF. We assume the fol-

lowing integrability condition.
Condition I. For anyf ∈ F, we have

∫
E
{
exp[L(f, f ′)]

}n
π∗(df ′) < +∞, (5.1)

and
∫

π(df)∫
E
{
exp[L(f, f ′)]

}n
π∗(df ′)

< +∞. (5.2)

We consider the real-valued processes

L̂(f, f ′) =
n∑

i=1

Li(f, f
′), (5.3)

Ê(f) = log

∫
exp[L̂(f, f ′)]π∗(df ′), (5.4)

L♭(f, f ′) = −n log
{
E
[
exp[−L(f, f ′)]

]}
, (5.5)

L♯(f, f ′) = n log
{
E
[
exp[L(f, f ′)]

]}
, (5.6)

and E♯(f) = log
{∫

exp
[
L♯(f, f ′)

]
π∗(df ′)

}
. (5.7)

Essentially, the quantitieŝL(f, f ′), L♭(f, f ′) andL♯(f, f ′) represent how worse is
the prediction fromf than fromf ′ with respect to the training data or in expecta-
tion. By Jensen’s inequality, we have

L♭ ≤ nE(L) = E(L̂) ≤ L♯. (5.8)

The quantitieŝE(f) andE♯(f) should be understood as some kind of (empirical
or expected) excess risk of the prediction functionf with respect to an implicit
reference induced by the integral overF.

For a distributionρ onF absolutely continuous w.r.t.π, let
dρ

dπ
denote the den-

sity of ρ w.r.t. π. For any real-valued (measurable) functionh defined onF such

5While the natural choice in the least squares setting isℓ((X, Y ), f, f ′) = [Y − f(X)]2 −
[Y − f ′(X)]2, we will see that for heavy-tailed outputs, it is preferableto consider the following
soft-truncated version of it, up to a scaling factorλ > 0: ℓ((X, Y ), f, f ′) = T

(
λ
[
(Y − f(X))2 −

(Y − f ′(X))2
])

, with T (x) = − log(1 − x + x2/2). Equality (5.4, page 20) corresponds to (4.1,
page 17) with this choice of functionℓ and for the choiceπ∗ = π.
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that
∫

exp[h(f)]π(df) < +∞, we define the distributionπh onF by its density:

dπh

dπ
(f) =

exp[h(f)]∫
exp[h(f ′)]π(df ′)

.

We will use the posterior distribution:

dπ̂

dπ
(f) =

dπ−Ê

dπ
(f) =

exp[−Ê(f)]
∫

exp[−Ê(f ′)]π(df ′)
. (5.9)

Finally, for anyβ ≥ 0, we will use the following measures of the size (or com-
plexity) of F around the target function:

I∗(β) = − log
{∫

exp
[
−βR̄(f)

]
π∗(df)

}

and
I(β) = − log

{∫
exp
[
−βR̄(f)

]
π(df)

}
.

5.2. THE LOCALIZED PAC-BAYES BOUND. With the notation introduced in
the previous section, we have the following risk bound for any randomized esti-
mator.

THEOREM 5.1 Assume thatπ, π∗, F and ℓ satisfy the integrability conditions
(5.1) and (5.2, page 20). Let ρ be a (posterior) probability distribution onF ad-
mitting a density with respect toπ depending onZ1, . . . , Zn. Let f̂ be a prediction
function drawn from the distributionρ. Then for anyγ ≥ 0, γ∗ ≥ 0 andε > 0,
with probability (with respect to the distributionP⊗nρ generating the observa-
tionsZ1, . . . , Zn and the randomized prediction function̂f ) at least1 − ε:

∫ [
L♭(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df) − γR̄

(
f̂
)

≤ I∗(γ∗) − I(γ) − log
{∫

exp
[
−E♯(f)

]
π(df)

}

+ log
[dρ
dπ̂

(
f̂
)]

+ 2 log(2ε−1). (5.10)

PROOF. See Section 6.3 (page 46).�

Some extra work will be needed to prove that Inequality (5.10) provides an
upper bound on the excess riskR̄(f̂) of the estimator̂f . As we will see in the next
sections, despite the−γR̄(f̂) term and provided thatγ is sufficiently small, the
lefthand-side will be essentially lower bounded byλR̄(f̂) with λ > 0, while, by
choosingρ = π̂, the estimator does not appear in the righthand-side.

21



5.3. APPLICATION UNDER AN EXPONENTIAL MOMENT CONDITION. The es-
timator proposed in Section 4 and Theorem 5.1 seems rather unnatural (or at least
complicated) at first sight. The goal of this section is twofold. First it shows that
under exponential moment conditions (i.e., stronger assumptions than the ones in
Theorem 4.1 when the linear least square setting is considered), one can have a
much simpler estimator than the one consisting in drawing a function according to
the distribution (4.2) witĥE given by (4.1) and yet still obtain ad/n convergence
rate. Secondly it illustrates Theorem 5.1 in a different andsimpler way than the
one we will use to prove Theorem 4.1.

In this section, we consider the following variance and complexity assumptions.
Condition V1. There existλ > 0 and0 < η < 1 such that for any function

f ∈ F, we haveE
{

exp
{
λ ℓ̃
[
Y, f(X)

]}}
< +∞,

log
{
E

{
exp
{
λ
[
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ∗(X)

]]}}}

≤ λ(1 + η)[R(f) − R(f ∗)],

and log
{
E

{
exp
{
−λ
[
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ∗(X)

]]}}}

≤ −λ(1 − η)[R(f) − R(f ∗)].

Condition C. There exist a probability distributionπ, and constantsD > 0 and
G > 0 such that for any0 < α < β,

log

(∫
exp{−α[R(f) −R(f ∗)]}π(df)∫
exp{−β[R(f) −R(f ∗)]}π(df)

)
≤ D log

(
Gβ

α

)
.

THEOREM 5.2 Assume thatV1 andC are satisfied. Let̂π(Gibbs) be the probability
distribution onF defined by its density

dπ̂(Gibbs)

dπ
(f) =

exp{−λ∑n
i=1 ℓ̃[Yi, f(Xi)]}∫

exp{−λ∑n
i=1 ℓ̃[Yi, f ′(Xi)]}π(df ′)

,

whereλ > 0 and the distributionπ are those appearing respectively inV1 andC.
Let f̂ ∈ F be a function drawn according to this Gibbs distribution. Then for any
η′ such that0 < η′ < 1 − η (whereη is the constant appearing inV1) and any
ε > 0, with probability at least1 − ε, we have

R(f̂) −R(f ∗) ≤ C ′
1D + C ′

2 log(2ε−1)

n

with

C ′
1 =

log(G(1+η)
η′

)

λ(1 − η − η′)
and C ′

2 =
2

λ(1 − η − η′)
.
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PROOF. We considerℓ
[
(X, Y ), f, f ′] = λ

{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
, where

λ is the constant appearing in the variance assumption. Let ustakeγ∗ = 0 and
let π∗ be the Dirac distribution atf ∗: π∗({f ∗}) = 1. Then Condition V1 implies
Condition I (page 20) and we can apply Theorem 5.1. We have

L(f, f ′) = λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
,

Ê(f) = λ

n∑

i=1

ℓ̃
[
Yi, f(Xi)

]
− λ

n∑

i=1

ℓ̃
[
Yi, f

∗(Xi)
]
,

π̂ = π̂(Gibbs),

L♭(f) = −n log
{
E

[
exp
[
−L(f, f ∗)

]]}
,

E♯(f) = n log
{
E

[
exp
[
L(f, f ∗)

]]}

and Assumption V1 leads to:

log
{
E

[
exp
[
L(f, f ∗)

]]}
≤ λ(1 + η)[R(f) − R(f ∗)]

and log
{
E

[
exp
[
−L(f, f ∗)

]]}
≤ −λ(1 − η)[R(f) − R(f ∗)].

Thus choosingρ = π̂, (5.10) gives

[λn(1 − η) − γ]R̄(f̂) ≤ −I(γ) + I
[
λn(1 + η)

]
+ 2 log(2ε−1).

Accordingly by the complexity assumption, forγ ≤ λn(1 + η), we get

[λn(1 − η) − γ]R̄(f̂) ≤ D log

(
Gλn(1 + η)

γ

)
+ 2 log(2ε−1),

which implies the announced result.�

Let us conclude this section by mentioning settings in whichassumptions V1
and C are satisfied.

LEMMA 5.3 Let Θ be a bounded convex set ofR
d, andϕ1, . . . , ϕd bed square

integrable prediction functions. Assume that

F =
{
fθ =

∑d
j=1 θjϕj; (θ1, . . . , θd) ∈ Θ

}
,

π is the uniform distribution onF (i.e., the one coming from the uniform distribu-
tion onΘ), and that there exist0 < b1 ≤ b2 such that for anyy ∈ R, the function
ℓ̃y : y′ 7→ ℓ̃(y, y′) admits a second derivative satisfying: for anyy′ ∈ R,

b1 ≤ ℓ̃′′y(y
′) ≤ b2.

Then ConditionC holds for the above uniformπ,G =
√
b2/b1 andD = d.

Besides whenf ∗ = f ∗
lin (i.e.,minFR = minθ∈Rd R(fθ)), ConditionC holds for

the above uniformπ,G = b2/b1 andD = d/2.
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PROOF. See Section 6.4 (page 49).�

REMARK 5.1 In particular, for the least squares lossℓ̃(y, y′) = (y−y′)2, we have
b1 = b2 = 2 so that condition C holds withπ the uniform distribution onF,D = d
andG = 1, and withD = d/2 andG = 1 whenf ∗ = f ∗

lin .

LEMMA 5.4 Assume that there exist0 < b1 ≤ b2, A > 0 andM > 0 such that
for anyy ∈ R, the functions̃ℓy : y′ 7→ ℓ̃(y, y′) are twice differentiable and satisfy:

for anyy′ ∈ R, b1 ≤ ℓ̃′′y(y
′) ≤ b2, (5.11)

and for anyx ∈ X, E

{
exp
[
A−1

∣∣ℓ̃′Y [f ∗(X)]
∣∣
] ∣∣∣X = x

}
≤M. (5.12)

Assume thatF is convex and has a diameterH for L∞-norm:

sup
f1,f2∈F,x∈X

|f1(x) − f2(x)| = H.

In this case ConditionV1 holds for any(λ, η) such that

η ≥ λA2

2b1
exp
[
M2 exp

(
Hb2/A

)]
.

and0 < λ ≤ (2AH)−1 is small enough to ensureη < 1.

PROOF. See Section 6.5 (page 51).�

5.4. APPLICATION WITHOUT EXPONENTIAL MOMENT CONDITION. When we
do not have finite exponential moments as assumed by Condition V1 (page 22),
e.g., whenE

{
exp
{
λ
{
ℓ̃[Y, f(X)] − ℓ̃[Y, f ∗(X)]

}}}
= +∞ for anyλ > 0 and

some functionf in F, we cannot apply Theorem 5.1 withℓ
[
(X, Y ), f, f ′] =

λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
(because of theE♯ term). However, we can apply it

to the soft truncated excess loss

ℓ
[
(X, Y ), f, f ′] = T

(
λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]})
,

with T (x) = − log(1−x+x2/2).This section provides a result similar to Theorem
5.2 in which condition V1 is replaced by the following condition.

Condition V2. For any functionf , the random variablẽℓ
[
Y, f(X)

]
−ℓ̃
[
Y, f ∗(X)

]

is square integrable and there existsV > 0 such that for any functionf ,

E

{[
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ∗(X)

]]2}
≤ V [R(f) −R(f ∗)].
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THEOREM 5.5 Assume that ConditionsV2 above andC (page 22) are satisfied.
Let 0 < λ < V −1 and

ℓ
[
(X, Y ), f, f ′] = T

(
λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]})
, (5.13)

with
T (x) = − log(1 − x+ x2/2). (5.14)

Let f̂ ∈ F be a function drawn according to the distribution̂π defined in(5.9,
page 21)with Ê defined in(5.4, page 20)andπ∗ = π the distribution appearing
in ConditionC. Then for any0 < η′ < 1 − λV and ε > 0, with probability at
least1 − ε, we have

R(f̂) − R(f ∗) ≤ V
C ′

1D + C ′
2 log(2ε−1)

n

with

C ′
1 =

log(G(1+η)2

η′(1−η)
)

η(1 − η − η′)
and C ′

2 =
2

η(1 − η − η′)
and η = λV.

In particular, forλ = 0.32V −1 andη′ = 0.18, we get

R(f̂) −R(f ∗) ≤ V
16.6D + 12.5 log(2

√
Gε−1)

n
.

PROOF. We apply Theorem 5.1 forℓ given by (5.13) andπ∗ = π. Let

W (f, f ′) = λ
{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
for anyf, f ′ ∈ F.

Sincelog u ≤ u− 1 for anyu > 0, we have

L♭ = −n logE(1 −W +W 2/2) ≥ n(EW − EW 2/2).

Moreover, from Assumption V2,

EW (f, f ′)2

2
≤ EW (f, f ∗)2 + EW (f ′, f ∗)2 ≤ λ2V R̄(f) + λ2V R̄(f ′), (5.15)

hence, by introducingη = λV ,

L♭(f, f ′) ≥ λn
[
R̄(f) − R̄(f ′) − λV R̄(f) − λV R̄(f ′)

]

= λn
[
(1 − η)R̄(f) − (1 + η)R̄(f ′)

]
. (5.16)
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Noting that

exp
[
T (u)

]
=

1

1 − u+ u2/2
=

1 + u+ u2

2(
1 + u2

2

)2 − u2
=

1 + u+ u2

2

1 + u4

4

≤ 1 + u+
u2

2
,

we see that

L♯ = n log
{
E

[
exp
[
T (W )

]]}
≤ n

[
E
(
W
)

+ E
(
W 2
)
/2
]
.

Using (5.15) and stillη = λV , we get

L♯(f, f ′) ≤ λn
[
R̄(f) − R̄(f ′) + ηR̄(f) + ηR̄(f ′)

]

= λn(1 + η)R̄(f) − λn(1 − η)R̄(f ′),

and
E♯(f) ≤ λn(1 + η)R̄(f) − I(λn(1 − η)). (5.17)

Plugging (5.16) and (5.17) in (5.10) forρ = π̂, we obtain

[λn(1 − η) − γ]R̄(f̂) + [γ∗ − λn(1 + η)]
∫
R̄(f)π−γ∗R̄(df)

≤ I(γ∗) − I(γ) + I(λn(1 + η)) − I(λn(1 − η)) + 2 log(2ε−1).

By the complexity assumption, choosingγ∗ = λn(1 + η) andγ < λn(1 − η), we
get

[λn(1 − η) − γ]R̄(f̂) ≤ D log

(
G
λn(1 + η)2

γ(1 − η)

)
+ 2 log(2ε−1),

hence the desired result by consideringγ = λnη′ with η′ < 1 − η. �

REMARK 5.2 The estimator seems abnormally complicated at first sight. This
remark aims at explaining why we were not able to consider a simpler estimator.

In Section 5.3, in which we consider the exponential moment condition V1,
we tookℓ

[
(X, Y ), f, f ′] = λ

{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
andπ∗ as the Dirac

distribution atf ∗. For these choices, one can easily check thatπ̂ does not depend
onf ∗.

In the absence of an exponential moment condition, we cannotconsider the
functionℓ

[
(X, Y ), f, f ′] = λ

{
ℓ̃
[
Y, f(X)

]
− ℓ̃
[
Y, f ′(X)

]}
but a truncated version

of it. The truncation functionT we use in Theorem 5.5 can be replaced by the
simpler functionu 7→ (u ∨ −M) ∧ M for some appropriate constantM > 0
but this would lead to a bound with worse constants, without really simplifying
the algorithm. The precise choiceT (x) = − log(1 − x + x2/2) comes from the
remarkable property: there exist second order polynomialP ♭ andP ♯ such that

1
P ♭(u)

≤ exp
[
T (u)

]
≤ P ♯(u) andP ♭(u)P ♯(u) ≤ 1 + O(u4) for u → 0, which are
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reasonable properties to ask in order to ensure that (5.8), and consequently (5.10),
are tight.

Besides, if we takeℓ as in (5.13) withT a truncation function andπ∗ as the
Dirac distribution atf ∗, then π̂ would depend onf ∗, and is consequently not
observable. This is the reason why we do not considerπ∗ as the Dirac distribution
atf ∗, butπ∗ = π. This lead to the estimator considered in Theorems 5.5 and 4.1.

REMARK 5.3 Theorem 5.5 still holds for the same randomized estimator in which
(5.14, page 25) is replaced with

T (x) = log(1 + x+ x2/2).

Condition V2 holds under weak assumptions as illustrated bythe following
lemma.

LEMMA 5.6 Consider the least squares setting:ℓ̃(y, y′) = (y− y′)2. Assume that
F is convex and has a diameterH for L∞-norm:

sup
f1,f2∈F,x∈X

|f1(x) − f2(x)| = H

and that for someσ > 0, we have

sup
x∈X

E
{
[Y − f ∗(X)]2

∣∣X = x
}
≤ σ2 < +∞. (5.18)

Then ConditionV2 holds forV = (2σ +H)2.

PROOF. See Section 6.6 (page 52)�

6. PROOFS

6.1. PROOFS OFTHEOREMS 2.1 AND 2.2. The proofs rely on the use of PAC
Bayesian inequalities. To shorten the formulae, we will writeX for ϕ(X), which
is equivalent to considering without loss of generality that the input space isRd

and that the functionsϕ1, . . . ,ϕd are the coordinate functions. Therefore, the func-
tion fθ maps an inputx to 〈θ, x〉. With a slight abuse of notation,R(θ) will denote
the risk of this prediction function.

Let us first assume that the matrixQλ = Q+λI is positive definite. This indeed
does not restrict the generality of our study, even in the case whenλ = 0, as we
will discuss later (Remark 6.1). Consider the change of coordinates

X = Q
−1/2
λ X.
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Let us introduce
R(θ) = E

[
(〈θ,X〉 − Y )2

]
,

so that
R(Q

1/2
λ θ) = R(θ) = E

[
(〈θ,X〉 − Y )2

]
.

Let
Θ =

{
Q

1/2
λ θ; θ ∈ Θ

}
.

Consider

r(θ) =
1

n

n∑

i=1

(
〈θ,Xi〉 − Yi

)2
, (6.1)

r(θ) =
1

n

n∑

i=1

(
〈θ,Xi〉 − Yi

)2
, (6.2)

θ0 = arg min
θ∈Θ

R(θ) + λ‖Q−1/2
λ θ‖2, (6.3)

θ̂ ∈ arg min
θ∈Θ

r(θ) + λ‖θ‖2, (6.4)

θ1 = Q
1/2
λ θ̂ ∈ arg min

θ∈Θ
r(θ) + λ‖Q−1/2

λ θ‖2. (6.5)

Forα > 0, let us introduce the notation

Wi(θ) = α
{(

〈θ,Xi〉 − Yi

)2 −
(
〈θ0, Xi〉 − Yi

)2}
,

W (θ) = α
{(

〈θ,X〉 − Y
)2 −

(
〈θ0, X〉 − Y

)2}
.

For anyθ2 ∈ R
d andβ > 0, let us consider the Gaussian distribution centered

at θ2

ρθ2
(dθ) =

(
β

2π

)d/2

exp

(
−β

2
‖θ − θ2‖2

)
dθ.

LEMMA 6.1 For anyη > 0 andα > 0, with probability at least1− exp(−η), for
anyθ2 ∈ R

d,

− n
∫
ρθ2

(dθ) log
{

1 − E
[
W (θ)

]
+ E

[
W (θ)2

]
/2
}

≤ −
n∑

i=1

(∫
ρθ2

(dθ) log
{

1 −Wi(θ) +Wi(θ)
2/2
})

+ K(ρθ2
, ρθ0

) + η,

whereK(ρθ2
, ρθ0

) is the Kullback-Leibler divergence function :

K(ρθ2
, ρθ0

) =

∫
ρθ2

(dθ) log

[
dρθ2

dρθ0

(θ)

]
.
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PROOF.

E

(
∫
ρθ0

(dθ)
n∏

i=1

1 −Wi(θ) +Wi(θ)
2/2

1 −E
[
W (θ)

]
+ E

[
W (θ)2

]
/2

)
≤ 1,

thus with probability at least1 − exp(−η)

log

(
∫
ρθ0

(dθ)

n∏

i=1

1 −Wi(θ) +Wi(θ)
2/2

1 − E
[
W (θ)

]
+ E

[
W (θ)2

]
/2

)

≤ η.

We conclude from the convex inequality (see [7, page 159])

log
(∫
ρθ0

(dθ) exp
[
h(θ)

])
≥
∫
ρθ2

(dθ)h(θ) − K(ρθ2
, ρθ0

).

�

Let us compute some useful quantities

K(ρθ2
, ρθ0

) =
β

2
‖θ2 − θ0‖2, (6.6)

∫
ρθ2

(dθ)
[
W (θ)

]
= α

∫
ρθ2

(dθ)〈θ − θ2, X〉2 +W (θ2) = W (θ2) + α
‖X‖2

β
,

∫
ρθ2(dθ)〈θ − θ2, X〉4 =

3‖X‖4

β2
, (6.7)

∫
ρθ2

(dθ)
[
W (θ)2

]
= α2

∫
ρθ2

(dθ)〈θ − θ0, X〉2
(
〈θ + θ0, X〉 − 2Y

)2

= α2
∫
ρθ2

(dθ)
[
〈θ − θ2 + θ2 − θ0, X〉

(
〈θ − θ2 + θ2 + θ0, X〉 − 2Y

)]2

=
∫
ρθ2

(dθ)
[
α〈θ − θ2, X〉2 + 2α〈θ − θ2, X〉

(
〈θ2, X〉 − Y

)
+W (θ2)

]2

=
∫
ρθ2

(dθ)
[
α2〈θ − θ2, X〉4 + 4α2〈θ − θ2, X〉2

(
〈θ2, X〉 − Y

)2
+W (θ2)

2

+ 2α〈θ − θ2, X〉2W (θ2)
]

=
3α2‖X‖4

β2
+

2α‖X‖2

β

[
2α
(
〈θ2, X〉 − Y

)2
+W (θ2)

]
+W (θ2)

2. (6.8)

Using the fact that

2α
(
〈θ2, X〉 − Y

)2
+W (θ2) = 2α

(
〈θ0, X〉 − Y

)2
+ 3W (θ2),

and that for any real numbersa andb, 6ab ≤ 9a2 + b2, we get
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LEMMA 6.2

∫
ρθ2

(dθ)
[
W (θ)

]
= W (θ2) + α

‖X‖2

β
, (6.9)

∫
ρθ2

(dθ)
[
W (θ)2

]
= W (θ2)

2 +
2α‖X‖2

β

[
2α
(
〈θ0, X〉 − Y

)2
+ 3W (θ2)

]

+
3α2‖X‖4

β2
(6.10)

≤ 10W (θ2)
2 +

4α2‖X‖2

β

(
〈θ0, X〉 − Y

)2
+

4α2‖X‖4

β2
,

(6.11)

and the same holds true whenW is replaced withWi and(X, Y ) with (X i, Yi).

Another important thing to realize is that

E
[
‖X‖2

]
= E

[
Tr
(
XX

T )]
= E

[
Tr
(
Q

−1/2
λ XXTQ

−1/2
λ

)]

= E
[
Tr
(
Q−1

λ XXT
)]

= Tr
[
Q−1

λ E(XXT )
]

= Tr
(
Q−1

λ (Qλ − λI)
)

= d− λTr(Q−1
λ ) = D . (6.12)

We can weaken Lemma 6.1 (page 28) noticing that for any real numberx,
x ≤ − log(1 − x) and

− log

(
1 − x+

x2

2

)
= log

(
1 + x+ x2/2

1 + x4/4

)

≤ log

(
1 + x+

x2

2

)
≤ x+

x2

2
.

We obtain with probability at least1 − exp(−η)

nE
[
W (θ2)

]
+
nα

β
E
[
‖X‖2

]
− 5nE

[
W (θ2)

2
]

−E

{
2nα2‖X‖2

β

(
〈θ0, X〉 − Y

)2
+

2nα2‖X‖4

β2

}

≤
n∑

i=1

{
Wi(θ2) + 5Wi(θ2)

2

+
α‖Xi‖2

β
+

2α2‖Xi‖2

β

(
〈θ0, Xi〉 − Y

)2
+

2α2‖X i‖4

β2

}
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+
β

2
‖θ2 − θ0‖2 + η.

Noticing that for any real numbersa andb, 4ab ≤ a2 + 4b2, we can then bound

α−2W (θ2)
2 = 〈θ2 − θ0, X〉2

(
〈θ2 + θ0, X〉 − 2Y

)2

= 〈θ2 − θ0, X〉2
[
〈θ2 − θ0, X〉 + 2

(
〈θ0, X〉 − Y

)]2

= 〈θ2 − θ0, X〉4 + 4〈θ2 − θ0, X〉3
(
〈θ0, X〉 − Y

)

+ 4〈θ2 − θ0, X〉2
(
〈θ0, X〉 − Y

)2

≤ 2〈θ2 − θ0, X〉4 + 8〈θ2 − θ0, X〉2
(
〈θ0, X〉 − Y

)2
.

THEOREM 6.3 Let us put

D̂ =
1

n

n∑

i=1

‖X i‖2 (let us remind thatD = E
[
‖X‖2

]
from (6.12)),

B1 = 2E
[
‖X‖2

(
〈θ0, X〉 − Y

)2]
,

B̂1 =
2

n

n∑

i=1

[
‖X i‖2

(
〈θ0, X i〉 − Yi

)2]
,

B2 = 2E
[
‖X‖4

]
,

B̂2 =
2

n

n∑

i=1

‖X i‖4,

B3 = 40 sup
{
E
[
〈u,X〉2

(
〈θ0, X〉 − Y

)2]
: u ∈ R

d, ‖u‖ = 1
}
,

B̂3 = sup

{
40

n

n∑

i=1

〈u,Xi〉2
(
〈θ0, X i〉 − Yi

)2
: u ∈ R

d, ‖u‖ = 1
}
,

B4 = 10 sup
{
E

[
〈u,X〉4

]
: u ∈ R

d, ‖u‖ = 1
}
,

B̂4 = sup

{
10

n

n∑

i=1

〈u,Xi〉4 : u ∈ R
d, ‖u‖ = 1

}
.

With probability at least1 − exp(−η), for anyθ2 ∈ R
d,

nE
[
W (θ2)

]
−
[
nα2(B3 + B̂3) +

β

2

]
‖θ2 − θ0‖2

− nα2(B4 + B̂4)‖θ2 − θ0‖4
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≤
n∑

i=1

Wi(θ2) +
nα

β
(D̂ −D) +

nα2

β
(B1 + B̂1) +

nα2

β2
(B2 + B̂2) + η.

Let us now assume thatθ2 ∈ Θ and let us use the fact thatΘ is a convex set
and thatθ0 = arg minθ∈ΘR(θ) + λ‖Q−1/2

λ θ‖2. Introduceθ∗ = arg minθ∈Rd R +

λ‖Q−1/2
λ θ‖2. As we have

R(θ) + λ‖Q−1/2
λ θ‖2 = ‖θ − θ∗‖2 +R(θ∗) + λ‖Q−1/2

λ θ∗‖2,

the vectorθ0 is uniquely defined as the projection ofθ∗ on Θ for the Euclidean
distance, and for anyθ2 ∈ Θ

α−1
E
[
W (θ2)

]
+ λ‖Q−1/2

λ θ2‖2 − λ‖Q−1/2
λ θ0‖2

= R(θ2) − R(θ0) + λ‖Q−1/2
λ θ2‖2 − λ‖Q−1/2

λ θ0‖2

= ‖θ2 − θ∗‖2 − ‖θ0 − θ∗‖2

= ‖θ2 − θ0‖2 + 2〈θ2 − θ0, θ0 − θ∗〉 ≥ ‖θ2 − θ0‖2.

This and the inequality

α−1
n∑

i=1

Wi(θ1) + nλ‖Q−1/2
λ θ1‖2 − nλ‖Q−1/2

λ θ0‖2 ≤ 0

proves

THEOREM 6.4 With probability at least1 − exp(−η),

R(θ̂) + λ‖θ̂‖2 − inf
θ∈Θ

[
R(θ) + λ‖θ‖2

]

= α−1
E
[
W (θ1)

]
+ λ‖Q−1/2

λ θ1‖2 − λ‖Q−1/2
λ θ0‖2

is not greater than the smallest positive non degenerate root of the following poly-
nomial equation as soon as it has one

{
1 −

[
α(B3 + B̂3) + β

2nα

]}
x− α(B4 + B̂4)x

2

=
1

β
(D̂ −D) +

α

β
(B1 + B̂1) +

α

β2
(B2 + B̂2) +

η

nα
.

PROOF. Let us remark first that when the polynomial appearing in thetheorem
has two distinct roots, they are of the same sign, due to the sign of its constant
coefficient. LetΩ̂ be the event of probability at least1 − exp(−η) described in
Theorem 6.3 (page 31). For any realization of this event for which the polynomial
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described in Theorem 6.4 does not have two distinct positiveroots, the statement
of Theorem 6.4 is void, and therefore fulfilled. Let us consider now the case when
the polynomial in question has two distinct positive rootsx1 < x2. Consider in
this case the random closed convex set

Θ̂ =
{
θ ∈ Θ : R(θ) + λ‖θ‖2 ≤ inf

θ′∈Θ

[
R(θ′) + λ‖θ′‖2

]
+ x1+x2

2

}
.

Let θ3 ∈ arg minθ∈bΘR(θ)+λ‖θ‖2 andθ4 ∈ arg minθ∈ΘR(θ)+λ‖θ‖2. We see
from Theorem 6.3 that

R(θ3) + λ‖θ3‖2 < R(θ0) + λ‖θ0‖2 +
x1 + x2

2
, (6.13)

because it cannot be larger from the construction ofΘ̂. On the other hand, since
Θ̂ ⊂ Θ, the line segment[θ3, θ4] is such that[θ3, θ4] ∩ Θ̂ ⊂ arg minθ∈bΘR(θ) +

λ‖θ‖2. We can therefore apply equation (6.13) to any point of[θ3, θ4] ∩ Θ̂, which
proves that it is an open subset of[θ3, θ4]. But it is also a closed subset by con-
struction, and therefore, as it is non empty and[θ3, θ4] is connected, it proves that
[θ3, θ4] ∩ Θ̂ = [θ3, θ4], and thus thatθ4 ∈ Θ̂. This can be applied to any choice
of θ3 ∈ arg minθ∈bΘR(θ) + λ‖θ‖2 andθ4 ∈ arg minθΘR(θ) + λ‖θ‖2, proving
thatarg minθΘR(θ) + λ‖θ‖2 ⊂ arg minθ∈bΘR(θ) + λ‖θ‖2 and therefore that any
θ4 ∈ arg minθ∈ΘR(θ) + λ‖θ‖2 is such that

R(θ4) + λ‖θ4‖2 ≤ inf
θ∈Θ

R(θ) + λ‖θ‖2 + x1.

because the values betweenx1 andx2 are excluded by Theorem 6.3.�
The actual convergence speed of the least squares estimatorθ̂ onΘ will depend

on the speed of convergence of the “empirical bounds”B̂k towards their expecta-
tions. We can rephrase the previous theorem in the followingmore practical way:

THEOREM 6.5 With probability at least

1 − P(D̂ > D + η0) −
4∑

k=1

P(B̂k − Bk > ηk) − exp(−η5),

R(θ̂)+λ‖θ̂‖2− infθ∈Θ

[
R(θ)+λ‖θ‖2

]
is smaller than the smallest non degenerate

positive root of

{
1 −

[
α(2B3 + η3) + β

2nα

]}
x− α(2B4 + η4)x

2

=
η0

β
+
α

β
(2B1 + η1) +

α

β2
(2B2 + η2) +

η5

nα
, (6.14)

33



where we can optimize the values ofα > 0 andβ > 0, since this equation has
non random coefficients. For example, taking for simplicity

α =
1

8B3 + 4η3
,

β =
nα

2
,

we obtain

x− 2B4 + η4

4B3 + 2η3

x2 =
16η0(2B3 + η3)

n
+

8B1 + 4η1

n

+
32(2B3 + η3)(2B2 + η2)

n2
+

8η5(2B3 + η3)

n
.

6.1.1. Proof of Theorem 2.1.Let us now deduce Theorem 2.1 (page 13) from
Theorem 6.5. Let us first remark that with probability at least 1 − ε/2

D̂ ≤ D +

√
B2

εn
,

because the variance of̂D is less thanB2. For a givenε > 0, let us takeη0 =
√

B2

εn
,

η1 = B1, η2 = B2, η3 = B3 andη4 = B4. We get thatRλ(θ̂) − infθ∈ΘRλ(θ) is
smaller than the smallest positive non degenerate root of

x− B4

2B3
x2 =

48B3

n

√
B2

nε
+

12B1

n
+

288B2B3

n2
+

24 log(3/ε)B3

n
,

with probability at least

1 − 5 ε

6
−

4∑

k=1

P(B̂k > Bk + ηk).

According to the weak law of large numbers, there isnε such that for anyn ≥ nε,

4∑

k=1

P(B̂k > Bk + ηk) ≤ ε/6.

Thus, increasingnε and the constants to absorb the second order terms, we see
that for somenε and anyn ≥ nε, with probability at least1 − ε, the excess risk is
less than the smallest positive root of

x− B4

2B3

x2 =
13B1

n
+

24 log(3/ε)B3

n
.
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Now, as soon asac < 1/4, the smallest positive root ofx − ax2 = c is 2c
1+

√
1−4ac

.
This means that forn large enough, with probability at least1 − ε,

Rλ(θ̂) − inf
θ
Rλ(θ) ≤

15B1

n
+

25 log(3/ε)B3

n
,

which is precisely the statement of Theorem 2.1 (page 13), upto some change of
notation.

6.1.2. Proof of Theorem 2.2.Let us now weaken Theorem 6.4 in order to make
a more explicit non asymptotic result and obtain Theorem 2.2. From now on, we
will assume thatλ = 0. We start by giving bounds on the quantity defined in
Theorem 6.3 in terms of

B = sup
f∈span{ϕ1,...,ϕd}−{0}

‖f‖2
∞/E[f(X)]2.

Since we have
‖X‖2 = ‖Q−1/2

λ X‖2 ≤ dB,

we get

d̂ =
1

n

n∑

i=1

‖Xi‖2 ≤ dB,

B1 = 2E
[
‖X‖2

(
〈θ0, X〉 − Y

)2] ≤ 2dB R(f ∗),

B̂1 =
2

n

n∑

i=1

[
‖Xi‖2

(
〈θ0, Xi〉 − Yi

)2] ≤ 2dB r(f ∗),

B2 = 2E
[
‖X‖4

]
≤ 2d2B2,

B̂2 =
2

n

n∑

i=1

‖Xi‖4 ≤ 2d2B2,

B3 = 40 sup
{
E
[
〈u,X〉2

(
〈θ0, X〉 − Y

)2]
: u ∈ R

d, ‖u‖ = 1
}
≤ 40BR(f ∗),

B̂3 = sup

{
40

n

n∑

i=1

〈u,Xi〉2
(
〈θ0, Xi〉 − Yi

)2
: u ∈ R

d, ‖u‖ = 1
}
≤ 40B r(f ∗),

B4 = 10 sup
{
E

[
〈u,X〉4

]
: u ∈ R

d, ‖u‖ = 1
}
≤ 10B2,

B̂4 = sup

{
10

n

n∑

i=1

〈u,Xi〉4 : u ∈ R
d, ‖u‖ = 1

}
≤ 10B2.
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Let us put

a0 =
2dB + 4dBα[R(f ∗) + r(f ∗)] + η

αn
+

16B2d2

αn2
,

a1 = 3/4 − 40αB[R(f ∗) + r(f ∗)],

and
a2 = 20αB2.

Theorem 6.4 applied withβ = nα/2 implies that with probability at least1 − η
the excess riskR(f̂ (erm)) − R(f ∗) is upper bounded by the smallest positive root
of a1x − a2x

2 = a0 as soon asa2
1 > 4a0a2. In particular, settingε = exp(−η)

when (6.15) holds, we have

R(f̂ (erm)) − R(f ∗) ≤ 2a0

a1 +
√
a2

1 − 4a0a2

≤ 2a0

a1
.

We conclude that

THEOREM 6.6 For anyα > 0 andε > 0, with probability at least1 − ε, if the
inequality

80

(
(2 + 4α[R(f ∗) + r(f ∗)])Bd+ log(ε−1)

n
+

(
4Bd

n

)2
)

<

(
3

4B
− 40α[R(f ∗) + r(f ∗)]

)2

(6.15)

holds, then we have

R(f̂ (erm)) − R(f ∗) ≤ J

(
(2 + 4α[R(f ∗) + r(f ∗)])Bd+ log(ε−1)

n
+

(
4Bd

n

)2
)
,

(6.16)
whereJ = 8/(3α− 160α2B[R(f ∗) + r(f ∗)])

Now, the Bienaymé-Chebyshev inequality implies

P
(
r(f ∗) −R(f ∗) ≥ t

)
≤ E

(
r(f ∗) − R(f ∗)

)2

t2
≤ E[Y − f ∗(X)]4/nt2.

Under the finite moment assumption of Theorem 2.2, we obtain that for anyε ≥
1/n, with probability at least1 − ε,

r(f ∗) < R(f ∗) +
√

E[Y − f ∗(X)]4.
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From Theorem 6.6 and a union bound, by taking

α =
(
80B[2R(f ∗) +

√
E[Y − f ∗(X)]4

)−1

,

we get that with probability1 − 2ε,

R(f̂ (erm)) − R(f ∗) ≤ J1B

(
3Bd′ + log(ε−1)

n
+

(
4Bd′

n

)2
)

, (6.17)

with J1 = 640
(
2R(f ∗) +

√
E
{
[Y − f ∗(X)]4

})
. This concludes the proof of

Theorem 2.2.

REMARK 6.1 Let us indicate now how to handle the case whenQ is degenerate.
Let us consider the linear subspaceS of Rd spanned by the eigenvectors ofQ cor-
responding to positive eigenvalues. Then almost surely Span{Xi, i = 1, . . . , n} ⊂
S. Indeed for anyθ in the kernel ofQ, E

(
〈θ,X〉2

)
= 0 implies that〈θ,X〉 = 0

almost surely, and considering a basis of the kernel, we see thatX ∈ S almost
surely,S being orthogonal to the kernel ofQ. Thus we can restrict the problem to
S, as soon as we choose

θ̂ ∈ span
{
X1, . . . , Xn

}
∩ arg min

θ

n∑

i=1

(
〈θ,Xi〉 − Yi

)2
,

or equivalently with the notationX = (ϕj(Xi))1≤i≤n,1≤j≤d andY = [Yj]
d
j=1,

θ̂ ∈ im XT ∩ arg min
θ

‖X θ − Y ‖2

This proves that the results of this section apply to this special choice of the em-
pirical least squares estimator. Since we haveR

d = ker X⊕im XT , this choice is
unique.

6.2. PROOF OFTHEOREMS3.1 AND 3.2. As in Section 6.1, to shorten the for-
mulae and without loss of generality, we consider that the input space isRd and
that the functionsϕ1, . . . , ϕd are the component functions, so thatx = [ϕj(x)]

d
j=1.

Therefore, the functionfθ maps an inputx to 〈θ, x〉. With a slight abuse of nota-
tion, R(θ) = E

[
(〈θ,X〉 − Y )2

]
will denote the risk of this prediction function.

Without loss of generality, we may also assume that the null vector belongs toΘ
(otherwise it suffices to replaceY with Y − 〈θ0, X〉 for some arbitrarθ0 ∈ Θ).

Let us come back to the general setting of ridge regression asin the previous
section. The vector of coefficients of̃f , the minimizer of the expected ridge risk,
is θ̃ ∈ argminθ∈ΘR(θ) + λ‖θ‖2. Letα > 0, β > 0 and

W (θ, θ′) = α
[(
〈θ,X〉 − Y

)2 −
(
〈θ′, X〉 − Y

)2]

37



= α〈θ − θ′, X〉
(
〈θ + θ′, X〉 − 2Y

)
,

Wi(θ, θ
′) = α

[(
〈θ,Xi〉 − Yi

)2 −
(
〈θ′, Xi〉 − Yi

)2]
.

As in Section 6.1, we consider the change of coordinates

X = Q
−1/2
λ X,

withQλ = Q+λI. Let us put for shortRλ(θ) = R(θ)+λ‖θ‖2. We will use some
constants from the previous section, namely

B3 = 40 sup
{
E
[
〈u,X〉2

(
〈θ̃, X〉 − Y

)2]
: u ∈ R

d, ‖u‖ = 1
}
,

= 40 sup
{
E
[
〈v,X〉2

(
〈θ̃, X〉 − Y

)2]
: v ∈ R

d,E
[
〈v,X〉2

]
+ λ‖v‖2 = 1

}
,

B4 = 10 sup
{
E

[
〈u,X〉4

]
: u ∈ R

d, ‖u‖ = 1
}

= 10 sup
{
E
[
〈v,X〉4

]
: v ∈ R

d,E
[
〈v,X〉2

]
+ λ‖v‖2 = 1

}
.

For anyθ ∈ Θ, we have

5E
[
W 2(θ, θ̃)] ≤ α2

(
10E〈θ − θ̃, X〉4 + 40α2

E〈θ − θ̃, X〉2(〈θ̃, X〉 − Y )2
)

≤ α2
(
B4‖Q1/2

λ (θ − θ̃)‖4 +B3‖Q1/2
λ (θ − θ̃)‖2

)

and

‖θ − θ̃‖2 ≤ 1

qmin + λ
‖Q1/2

λ (θ − θ̃)‖2 =
Rλ(θ) −Rλ(θ̃)

qmin + λ
.

The computations done to obtain Lemma 6.2 are still valid ifX and θ0 are
respectively replaced byX andθ̃. So we have

∫
ρθ2

(dθ)
[
Wi(θ, θ̃)

]
= Wi(θ2, θ̃) + α

‖Xi‖2

β
,

∫
ρθ2

(dθ)
[
Wi(θ, θ̃)

2
]

= Wi(θ2, θ̃)
2 +

2α‖Xi‖2

β

[
2α
(
〈θ0, Xi〉 − Y

)2
+ 3Wi(θ2, θ̃)

]

+
3α2‖Xi‖4

β2
.

By Jensen’s inequality, we get

n∑

i=1

− log

{
1 +Wi(θ2, θ̃) +W 2

i (θ2, θ̃)/2 +
α

β
‖Xi‖2
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+
α

β
‖Xi‖2

[
2α
(
〈θ̃, Xi〉 − Yi

)2
+ 3Wi(θ2, θ̃)

]
+

3α2

2β2
‖Xi‖4

}

=
n∑

i=1

− log

{∫
ρθ2

(dθ)
[
1 +Wi(θ, θ̃) +W 2

i (θ, θ̃)/2
]}

≤
n∑

i=1

−
∫
ρθ2

(dθ) log
[
1 +Wi(θ, θ̃) +W 2

i (θ, θ̃)/2
]

=

n∑

i=1

∫
ρθ2

(dθ) log

(
1 −Wi(θ, θ̃) +W 2

i (θ, θ̃)/2

1 +W 4
i (θ, θ̃)/4

)

≤
n∑

i=1

∫
ρθ2

(dθ) log
[
1 −Wi(θ, θ̃) +W 2

i (θ, θ̃)/2
]
.

Now, by using Lemma 6.1 and Inequality (6.6) (up to appropriate minor changes),
with probability at least1 − ε, for anyθ2 ∈ Θ,

n∑

i=1

∫
ρθ2

(dθ) log
[
1 −Wi(θ, θ̃) +W 2

i (θ, θ̃)/2
]

≤ n
∫
ρθ2

(dθ) log
[
1 −E

[
W (θ, θ̃)

]
+ E

[
W 2(θ, θ̃)

]
/2
]

+
β

2
‖θ2 − θ̃‖2 − log(ε).

Therefore, with probability at least1 − ε, the following holds for anyθ2 ∈ Θ,

n∑

i=1

− log

{
1 +Wi(θ2, θ̃) +W 2

i (θ2, θ̃)/2

+
α

β
‖Xi‖2 +

α

β
‖Xi‖2

[
2α
(
〈θ̃, Xi〉 − Yi

)2
+ 3Wi(θ2, θ̃)

]

+
3α2

2β2
‖Xi‖4

}
+ nαλ

(
‖θ̃‖2 − ‖θ2‖2

)

≤ n
∫
ρθ2

(dθ) log
[
1 − E

[
W (θ, θ̃)

]
+ E

[
W 2(θ, θ̃)

]
/2
]

+ nαλ
(
‖θ̃‖2 − ‖θ2‖2

)
+
β

2
‖θ2 − θ̃‖2 − log(ε)

≤ −n log
∫
ρθ2

(dθ)E
[
W (θ, θ̃)

]
+
n

2

∫
ρθ2

(dθ)E
[
W 2(θ, θ̃)

]

+ nαλ
(
‖θ̃‖2 − ‖θ2‖2

)
+
β

2
‖θ2 − θ̃‖2 − log(ǫ)

= −nE
[
W (θ2, θ̃)

]
+ 5nE

[
W 2(θ2, θ̃)

]
+ nαλ

(
‖θ̃‖2 − ‖θ2‖2

)

+
nα

β
E
[
‖X‖2

]
+

2nα2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2
+ ‖X‖4

]
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+
β

2
‖θ2 − θ̃‖2 − log(ε)

≤ n(B3α
2 − α)‖Q1/2

λ (θ2 − θ̃)‖2 + nB4α
2‖Q1/2

λ (θ2 − θ̃)‖4

+
nα

β
E
[
‖X‖2

]
+

2nα2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2
+ ‖X‖4

]

+
β

2
‖θ2 − θ̃‖2 − log(ε)

≤
[ β

2(qmin + λ)
+ nB3α

2 − nα
]
‖Q1/2

λ (θ2 − θ̃)‖2

+ nB4α
2‖Q1/2

λ (θ2 − θ̃)‖4 +
nα

β
E
[
‖X‖2

]

+
2nα2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2
+ ‖X‖4

]
− log(ε).

Assuming all the necessary constants are known, we get a confidence region
for θ̃ :

LEMMA 6.7 With probability at least1 − ε, for anyθ2 ∈ Θ, we have

n∑

i=1

− log

{
1 +Wi(θ2, θ̃) +W 2

i (θ2, θ̃)/2

+
α

β
‖Xi‖2 +

α

β
‖Xi‖2

[
2α
(
〈θ̃, Xi〉 − Yi

)2
+ 3Wi(θ2, θ̃)

]

+
3α2

2β2
‖Xi‖4

}
+ nαλ

(
‖θ̃‖2 − ‖θ2‖2

)

≤
[ β

2(qmin + λ)
+ nB3α

2 − nα
]
‖Q1/2

λ (θ2 − θ̃)‖2

+ nB4α
2‖Q1/2

λ (θ2 − θ̃)‖4 +
nα

β
E
[
‖X‖2

]

+
2nα2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2
+ ‖X‖4

]
− log(ε).

In order to get an estimator with some known generalization bound, let us min-
imize the lefthand-side of the lemma iñθ. For this we need to substitutẽθ with
some randomly chosenθ according toρθ1

. Unfortunately, we cannot make things
completely explicit.

Let us remark first that

LEMMA 6.8 For anyθ1 ∈ Θ, we have
∫
ρθ1

(dθ′)
∫
ρθ2

(dθ)
[
W (θ, θ′)

]
= W (θ2, θ1),
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∫
ρθ1

(dθ′)
∫
ρθ2

(dθ)
[
W 2(θ, θ′)

]
= W 2(θ2, θ1) +

2α2‖X‖2

β

[
2
(
〈θ1, X〉 − Y

)2

+ 2
(
〈θ2, X〉 − Y

)2]
+

4α2‖X‖4

β2
.

PROOF.

∫
ρθ1

(dθ′)
∫
ρθ2

(dθ)
[
W 2(θ, θ′)

]
=
∫
ρθ1

(dθ′)

{
W 2(θ2, θ

′)

+ α
2‖X‖2

β

[
2α
(
〈θ2, X〉 − Y

)2
+W (θ2, θ

′)
]}

+
3α2‖X‖4

β2

= W 2(θ2, θ1) +
2α‖X‖2

β

[
2α
(
〈θ2, X〉 − Y

)2
+W (θ2, θ1)

− α
‖X‖2

β
+ 2α

(
〈θ1, X〉 − Y

)2
+W (θ1, θ2)

]
+

6α2‖X‖4

β2

= W 2(θ2, θ1) +
2α2‖X‖2

β

[
2
(
〈θ1, X〉 − Y

)2

+ 2
(
〈θ2, X〉 − Y

)2]
+

4α2‖X‖4

β2
.

�

We see that with probability at least1 − ε, for anyθ2 ∈ Θ,

−
n∑

i=1

∫
ρθ̃(dθ

′) log

{∫
ρθ2

(dθ)
[
1+Wi(θ, θ

′)+W 2
i (θ, θ′)/2

]}
+nαλ

(
‖θ̃‖2−‖θ2‖2

)

≤ n
∫
ρθ̃(dθ

′)
∫
ρθ2

(dθ) log
[
1 − E

[
W (θ, θ′)

]
+ E

[
W 2(θ, θ′)/2

]]

+ nαλ
(
‖θ̃‖2 − ‖θ2‖2

)
+
β

2
‖θ2 − θ̃‖2 − log(ε)

≤ nE
[
W (θ̃, θ2)

]
+ nαλ

(
‖θ̃‖2 − θ2‖2

)
+
n

2
E
[
W 2(θ2, θ̃)

]

+ E

{
2nα‖X‖2

β

[
2α
(
〈θ̃, X〉 − Y

)2
+W (θ2, θ̃)

]}
+

2nα2

β2
E
[
‖X‖4

]

+
β

2
‖θ2 − θ̃‖2 − log(ε)

≤ nα
[
Rλ(θ̃) − Rλ(θ2)

]
+

3n

2
E
[
W 2(θ2, θ̃)

]

+
4nα2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2]
+

3nα2

β2
E
[
‖X‖4

]

+
β

2
‖θ2 − θ̃‖2 − log(ε)
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≤ n

{
β

2n(qmin + λ)
+

3

10
α2
[
B3 +B4‖Q1/2

λ (θ2 − θ̃)‖2
]
− α

}
‖Q1/2

λ (θ2 − θ̃)‖2

+
4nα2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2]
+

3nα2

β2
E
[
‖X‖4

]
− log(ε).

On the other hand, with probability at least1 − ε, for anyθ1 ∈ Θ,

−
n∑

i=1

∫
ρθ1

(dθ′) log

{∫
ρθ̃(dθ)

[
1 +Wi(θ, θ

′) +W 2
i (θ, θ′)/2

]}

+ nαλ
[
‖θ1‖2 − ‖θ̃‖2

]

≥ −n
∫
ρθ1

(dθ′) log

{∫
ρθ̃(dθ)

[
1 + E

[
W (θ, θ′)

]
+ E

[
W 2(θ, θ′)/2

]]}

+ nαλ
[
‖θ1‖2 − ‖θ̃‖2

]
− β

2
‖θ1 − θ̃‖2 + log(ε)

≥ −nE
[
W (θ̃, θ1)

]
− n

2
E
[
W 2(θ̃, θ1)

]

− E

{
2nα‖X‖2

β

[
2α
(
〈θ̃, X〉 − Y

)2
+W (θ1, θ̃)

]}
− 2nα2

β2
E
[
‖X‖4

]

+ nαλ
[
‖θ1‖2 − ‖θ̃‖2

]
− β

2
‖θ1 − θ̃‖2 + log(ǫ)

≥ nα
[
Rλ(θ1) − Rλ(θ̃)

]
− 3n

2
E
[
W 2(θ1, θ̃)

]

− 4nα2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2]− 3nα2

β2
E
[
‖X‖4

]

− β

2
‖θ1 − θ̃‖ + log(ε)

≥ n

{
α− β

2n(qmin + λ)
− 3

10
α2
[
B3 +B4‖Q1/2

λ (θ1 − θ̃)‖2
]}[

Rλ(θ1) −Rλ(θ̃)
]

− 4nα2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2]
+

3nα2

β2
E
[
‖X‖4

]
+ log(ε).

We have proved

THEOREM 6.9 Let Θ be some closed convex set ofR
d. Let θ̃ = arg minΘRλ =

arg minθ∈ΘR(θ) + λ‖θ‖2. Let η ≥ 0 be a quantity that will characterize the
precision in minimizing the empirical criterion. Let us usethe notation

arg (min+η)
θ∈Θ

f(θ) =
{
θ ∈ Θ : f(θ) ≤ inf f + η

}
.

With probability at least1 − ε, for anyη ∈ R+, any estimator satisfying
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θ̂ ∈ arg (min+η)
θ1∈Θ

sup
θ2∈Θ

−1

n

n∑

i=1

∫
ρθ1

(dθ′) log

{∫
ρθ2

(dθ)
[
1

+Wi(θ, θ
′) +W 2

i (θ, θ′)/2
]}

+ αλ
[
‖θ1‖2 − ‖θ2‖2

]

= arg (min+η)
θ1∈Θ

sup
θ2∈Θ

−1

n

n∑

i=1

∫
ρθ1

(dθ′) log

{
1 +Wi(θ2, θ

′) +W 2
i (θ2, θ

′)/2

+
α

β
‖Xi‖2 +

α

β
‖Xi‖2

[
2α
(
〈θ′, Xi〉 − Yi

)2
+ 3Wi(θ2, θ

′)
]
+

3α2

2β2
‖Xi‖4

}

+ αλ
[
‖θ1‖2 − ‖θ2‖2

]

is such that
{
α− β

2n(qmin + λ)
− 3

10
α2
[
B3 +B4‖Q1/2

λ (θ̂ − θ̃)‖2
]}[

Rλ(θ̂) − Rλ(θ̃)
]

≤ sup
θ2∈Θ

{
β

2n(qmin + λ)
+

3

10
α2
[
B3 +B4‖Q1/2

λ (θ2 − θ̃)‖2
]
−α

}
‖Q1/2

λ (θ2 − θ̃)‖2

+
8α2

β
E

[
‖X‖2

(
〈θ̃, X〉 − Y

)2]
+

6α2

β2
E
[
‖X‖4

]
+

2

n
log(2ε−1) + η.

Moreover

‖Q1/2
λ (θ̂ − θ̃)‖2 = E

(
〈θ̂ − θ̃, X〉2

)
+ λ‖θ̂ − θ̃‖2

≤ ‖θ̂ − θ̃‖2
[

sup
v∈Rd,‖v‖=1

E
(
〈v,X〉2

)
+ λ
]
.

6.2.1. Proof of Theorem 3.1.From Theorem 6.9, it is enough to remark from the
definitions thatB3 ≤ 40σ2, B4 ≤ 10γ2 and to bound

E
(
‖X‖4

)
=

d∑

k=1

d∑

ℓ=1

E
(
X2

kX
2
ℓ

)

≤
d∑

k=1

d∑

ℓ=1

E
(
X4

k

)1/2
E
(
X4

ℓ

)1/2 ≤ d2γ2(qmax + λ)2

6.2.2. Proof of Theorem 3.2.Let us now concentrate on the case whenλ = 0,
meaning that we do not use a ridge penalty. Under the assumptions of Theo-
rem 3.2, we have

B3 ≤ 40BR(f ∗) ≤ 40B σ2,

and
B4 ≤ 10B2.
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Besides we have

‖Q1/2(θ − θ∗)‖2 = E
[
〈θ,X〉 − 〈θ∗, X〉

]2 ≤ H2

and

‖X‖2 =

d∑

j=1

ϕ2
j(X) ≤ dH2.

Now let us chooseα = [12B(4σ2 +BH2)]−1 andβ = nαqmin so that we have

α− β

2nqmin
− 3

10
α2
[
B3 +B4‖Q1/2(θ̂ − θ∗)‖2

]
≥ α/4

From Theorem 6.9, we obtain that with probability1 − ε,

R(θ̂) −R(θ∗) ≤ 32

nqmin

(dH2σ2) +
24d2H4

αn2q2
min

+
8

nα
log(2ε−1) +

4η

α
,

which is the desired result (when applied toη = 0).

6.2.3. Computation of the estimator.From Theorem 6.9, we see that we do not
need to minimize exactly the empirical quantity appearing in Theorem 3.2. Let us
show how to make an approximate optimization. With the notation of Section 6.2,
let us introduce

F (θ1, θ2) = −1

n

n∑

i=1

∫
ρθ1

(dθ′) log

{∫
ρθ2

(dθ)
[
1 +Wi(θ, θ

′) +W 2
i (θ, θ′)/2

]}

+ nαλ
[
‖θ1‖2 − ‖θ2‖2

]
.

The computation ofF involves computing some expectation with respect toθ1.
As we need only to compute approximately the minimum ofsupθ2∈Θ F (θ1, θ2),
we can use the obvious lower bound :

f(θ1, θ2) = −1

n

n∑

i=1

log

{∫
ρθ1

(dθ′)
∫
ρθ2

(dθ)
[
1 +Wi(θ, θ

′) +W 2
i (θ, θ′)/2

]}

+ nαλ
[
‖θ1‖2 − ‖θ2‖2

]
.

This auxiliary functionf can be computed explicitely, using Lemma 6.8 (page
40):

f(θ1, θ2) = −1

n

n∑

i=1

log

{
1 −Wi(θ1, θ2) +W 2

i (θ1, θ2)/2
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+
2α2‖Xi‖2

β

[(
〈θ1, Xi〉 − Yi

)2
+
(
〈θ2, Xi〉 − Yi

)2]
+

2α2‖Xi‖4

β2

}

+ nαλ
[
‖θ1‖2 − ‖θ2‖2

]
.

The convexity ofx 7→ − log(x) ensures that for anyθ1, θ2 ∈ R
d,

f(θ1, θ2) ≤ F (θ1, θ2).

Therefore, for anŷθ1, θ̂2 ∈ Θ

sup
θ2∈Θ

F (θ̂1, θ2) − inf
θ1∈Θ

sup
θ2∈Θ

F (θ1, θ2)

≤ sup
θ2∈Θ

F (θ̂1, θ2) − inf
θ1∈Θ

sup
θ2∈Θ

f(θ1, θ2)

≤ sup
θ2∈Θ

F (θ̂1, θ2) − inf
θ1∈Θ

f(θ1, θ̂2).

Since we do not want to computesupθ2∈Θ F (θ̂1, θ2) either, we may now introduce
the upper bound

F (θ1, θ2) ≤ g(θ1, θ2),

where

g(θ1, θ2) =
1

n

n∑

i=1

log

{∫
ρθ1

(dθ′)
∫
ρθ2

(dθ)
[
1 +Wi(θ

′, θ) +W 2
i (θ, θ′)/2

]}

+ nαλ
[
‖θ1‖2 − ‖θ2‖2

]
.

Of course,g can be computed explicitely, similarly tof :

g(θ1, θ2) =
1

n

n∑

i=1

log

{
1 +Wi(θ1, θ2) +W 2

i (θ1, θ2)/2

+
2α2‖Xi‖2

β

[(
〈θ1, Xi〉 − Yi

)2
+
(
〈θ2, Xi〉 − Yi

)2]
+

2α2‖Xi‖4

β2

}

+ nαλ
[
‖θ1‖2 − ‖θ2‖2

]
.

PROPOSITION6.10 For any θ̂1, θ̂2 ∈ Θ

sup
θ2∈Θ

F (θ̂1, θ2) − inf
θ1∈Θ

sup
θ2∈Θ

F (θ1, θ2)

≤ sup
θ2∈Θ

g(θ̂1, θ2) − inf
θ1∈Θ

sup
θ2∈Θ

f(θ1, θ2)

≤ sup
θ2∈Θ

g(θ̂1, θ2) − inf
θ1∈Θ

f(θ1, θ̂2).
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This results shows how to obtain an empirical estimate of thedefault of optimality
η in Theorem 6.9 (page 42). In view of this, a sensible choice ofestimator is to
take

θ̂1 = θ̂2 ∈ arg min
θ1∈Θ

sup
θ2∈Θ

g(θ1, θ2).

6.3. PROOF OF THEOREM 5.1. We use the standard way of obtaining PAC
bounds through upper bounds on Laplace transform of appropriate random vari-
ables. This argument is synthetized in the following result.

LEMMA 6.11 For any real-valued random variableV such thatE
[
exp(V )

]
≤ 1,

with probability at least1 − ε, we have

V ≤ log(ε−1).

Let V1(f̂) =

∫ [
L♭(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df) − γR̄(f̂)

− I∗(γ∗) + I(γ) + log

(∫
exp
[
−Ê(f)

]
π(df)

)
− log

[
dρ

dπ̂

(
f̂
)]
,

andV2 = − log

(∫
exp
[
−Ê(f)

]
π(df)

)
+ log

(∫
exp
[
−E♯(f)

]
π(df)

)

To prove the theorem, according to Lemma 6.11, it suffices to prove that

E

{∫
exp
[
V1(f̂)

]
ρ(df̂)

}
≤ 1 and E

[∫
exp(V2)ρ(df̂)

]
≤ 1.

These two inequalities are proved in the following two sections.

6.3.1. Proof ofE
{∫

exp
[
V1(f̂)

]
ρ(df̂)

}
≤ 1. From Jensen’s inequality, we have

∫ [
L♭(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df)

=

∫ [
L̂(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df) +

∫ [
L♭(f̂ , f) − L̂(f̂ , f)

]
π∗
−γ∗R̄(df)

≤
∫ [

L̂(f̂ , f) + γ∗R̄(f)
]
π∗
−γ∗R̄(df) + log

∫
exp
[
L♭(f̂ , f) − L̂(f̂ , f)

]
π∗
−γ∗R̄(df).

From Jensen’s inequality again,

−Ê(f̂) = − log

∫
exp
[
L̂(f̂ , f)

]
π∗(df)
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= − log

∫
exp
[
L̂(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df) − log

∫
exp
[
−γ∗R̄(f)

]
π∗(df)

≤ −
∫

[L̂(f̂ , f) + γ∗R̄(f)]π∗
−γ∗R̄(df) + I∗(γ∗).

From the two previous inequalities, we get

V1(f̂) ≤
∫ [

L̂(f̂ , f) + γ∗R̄(f)
]
π∗
−γ∗R̄(df)

+ log

∫
exp
[
L♭(f̂ , f) − L̂(f̂ , f)

]
π∗(df) − γR̄(f̂)

− I∗(γ∗) + I(γ) + log

(∫
exp
[
−Ê(f)

]
π(df)

)
− log

[
dρ

dπ̂
(f̂)

]
,

=

∫ [
L̂(f̂ , f) + γ∗R̄(f)

]
π∗
−γ∗R̄(df)

+ log

∫
exp
[
L♭(f̂ , f) − L̂(f̂ , f)

]
π∗(df) − γR̄(f̂)

− I∗(γ∗) + I(γ) − Ê(f̂) − log

[
dρ

dπ
(f̂)

]
,

≤ log

∫
exp
[
L♭(f̂ , f) − L̂(f̂ , f)

]
π∗
−γ∗R̄(df)(df)

− γR̄(f̂) + I(γ) − log

[
dρ

dπ
(f̂)

]

= log

∫
exp
[
L♭(f̂ , f) − L̂(f̂ , f)

]
π∗
−γ∗R̄(df) + log

[
dπ−γR̄

dρ
(f̂)

]
,

hence, by using Fubini’s inequality and the equality

E

{
exp
[
−L̂(f̂ , f)

]}
= exp

[
−L♭(f̂ , f)

]
,

we obtainE
∫

exp
[
V1(f̂)

]
ρ(f̂)

≤ E

∫ (∫
exp
[
L♭(f̂ , f) − L̂(f̂ , f)

]
π∗
−γ∗R̄(df)

)
π−γR̄(df̂)

=

∫ (∫
E exp

[
L♭(f̂ , f) − L̂(f̂ , f)

]
π∗
−γ∗R̄(df)

)
π−γR̄(df̂) = 1.

6.3.2. Proof ofE
[∫

exp(V2)ρ(df̂)
]
≤ 1. It relies on the following result.

LEMMA 6.12 Let W be a real-valued measurable function defined on a product
spaceA1 × A2 and letµ1 andµ2 be probability distributions on respectivelyA1

andA2.
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• if Ea1∼µ1

{
log
[
Ea2∼µ2

{
exp
[
−W(a1, a2)

]}]}
< +∞, then we have

− Ea1∼µ1

{
log
[
Ea2∼µ2

{
exp
[
−W(a1, a2)

]}]}

≤ − log
{
Ea2∼µ2

[
exp
[
−Ea1∼µ1

W(a1, a2)
]]}

.

• if W > 0 onA1 ×A2 andEa2∼µ2

{
Ea1∼µ1

[
W(a1, a2)

]−1
}−1

< +∞, then

Ea1∼µ1

{
Ea2∼µ2

[
W(a1, a2)

−1
]−1}

≤ Ea2∼µ2

{
Ea1∼µ1

[
W(a1, a2)

]−1
}−1

.

PROOF.

• Let A be a measurable space andM denote the set of probability distribu-
tions onA. The Kullback-Leibler divergence between a distributionρ and a
distributionµ is

K(ρ, µ) ,





Ea∼ρ log

[
dρ

dµ
(a)

]
if ρ≪ µ,

+∞ otherwise,

where
dρ

dµ
denotes as usual the density ofρ w.r.t. µ. The Kullback-Leibler

divergence satisfies the duality formula (see e.g. [7, page 159]): for any
real-valued measurable functionh defined onA,

inf
ρ∈M

{
Ea∼ρ h(a) +K(ρ, µ)

}
= − logEa∼µ

{
exp
[
−h(a)

]}
. (6.18)

By using twice (6.18) and Fubini’s theorem, we have

−Ea1∼µ1

{
log
{
Ea2∼µ2

[
exp
[
−W(a1, a2)

]]}}

= Ea1∼µ1

{
inf
ρ

{
Ea2∼ρ

[
W(a1, a2)

]
+K(ρ, µ2)

}}

≤ inf
ρ

{
Ea1∼µ1

[
Ea2∼ρ

[
W(a1, a2)

]
+K(ρ, µ2)

]}

= − log
{
Ea2∼µ2

[
exp
{
−Ea1∼µ1

[
W(a1, a2)

]}]}
.

• By using twice (6.18) and the first assertion of Lemma 6.12, wehave

Ea1∼µ1

{
Ea2∼µ2

[
W(a1, a2)

−1
]−1}
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= Ea1∼µ1

{
exp
{
− log

[
Ea2∼µ2

{
exp
[
− log W(a1, a2)

]}]}}

= Ea1∼µ1

{
exp
{

inf
ρ

[
Ea2∼ρ

{
log
[
W(a1, a2)

]}
+K(ρ, µ2)

]}}

≤ inf
ρ

{
exp
[
K(ρ, µ2)

]
Ea1∼µ1

{
exp
{
Ea2∼ρ

[
log
[
W(a1, a2)

]]}}

≤ inf
ρ

{
exp
[
K(ρ, µ2)

]
exp
{
Ea2∼ρ

{
log
[
Ea1∼µ1

[
W(a1, a2)

]]}}

= exp
{

inf
ρ

{
Ea2∼ρ

[
log
{
Ea1∼µ1

[
W(a1, a2)

]}]
+K(ρ, µ2)

}}

= exp
{
− log

{
Ea2∼µ2

{
exp
[
− log

{
Ea1∼µ1

[
W(a1, a2)

]}]}}}

= Ea2∼µ2

{
Ea1∼µ1

[
W(a1, a2)

]−1
}−1

. �

From Lemma 6.12 and Fubini’s theorem, sinceV2 does not depend on̂f , we
have

E

[∫
exp(V2)ρ(df̂)

]
= E

[
exp(V2)

]

=
∫

exp
[
−E♯(f)

]
π(df)E

{[∫
exp
[
−Ê(f)

]
π(df)

]−1}

≤
∫

exp
[
−E♯(f)

]
π(df)

{∫
E

[
exp
[
Ê(f)

]]−1

π(df)
}−1

=
∫

exp
[
−E♯(f)

]
π(df)

{∫
E

[∫
exp
[
L̂(f, f ′)

]
π∗(df ′)

]−1

π(df)
}−1

=
∫

exp
[
−E♯(f)

]
π(df)

{∫ [∫
exp
[
L♯(f, f ′)

]
π∗(df ′)

]−1

π(df)
}−1

= 1.

This concludes the proof that for anyγ ≥ 0, γ∗ ≥ 0 andε > 0, with probability
(with respect to the distributionP⊗nρ generating the observationsZ1, . . . , Zn and
the randomized prediction function̂f ) at least1 − 2ε:

V1(f̂) + V2 ≤ 2 log(ε−1).

6.4. PROOF OF LEMMA 5.3. Let us look atF from the point of view off ∗.
Precisely letSRd(O, 1) be the sphere ofRd centered at the origin and with radius
1 and

S =
{ d∑

j=1

θjϕj ; (θ1, . . . , θd) ∈ SRd(O, 1)
}
.

Introduce
Ω =

{
φ ∈ S; ∃u > 0 s.t.f ∗ + uφ ∈ F

}
.
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For anyφ ∈ Ω, let uφ = sup{u > 0 : f ∗ + uφ ∈ F}. Sinceπ is the uniform
distribution on the convex setF (i.e., the one coming from the uniform distribution
onΘ), we have

∫
exp
{
−α[R(f) − R(f ∗)]

}
π(df)

=

∫

φ∈Ω

∫ uφ

0

exp
{
−α[R(f ∗ + uφ) − R(f ∗)]

}
ud−1dudφ.

Let cφ = E[φ(X)ℓ̃′Y (f ∗(X))] andaφ = E
[
φ2(X)

]
. Since

f ∗ ∈ argminf∈F
E
{
ℓ̃Y
[
f(X)

]}
,

cφ ≥ 0 (and cφ = 0 if both −φ andφ belong toΩ). Moreover from Taylor’s
expansion,

b1aφu
2

2
≤ R(f ∗ + uφ) − R(f ∗) − ucφ ≤ b2aφu

2

2
.

Introduce

ψφ =

∫ uφ

0
exp
{
−α[ucφ + 1

2
b1aφu

2]
}
ud−1du∫ uφ

0
exp
{
−β[ucφ + 1

2
b2aφu2]

}
ud−1du

.

For any0 < α < β, we have
∫

exp
{
−α[R(f) − R(f ∗)]

}
π(df)∫

exp
{
−β[R(f) − R(f ∗)]

}
π(df)

≤ inf
φ∈S

ψφ.

For anyζ > 1, by a change of variable,

ψφ < ζd

∫ uφ

0
exp
{
−α[ζucφ + 1

2
b1aφζ

2u2]
}
ud−1du∫ uφ

0
exp
{
−β[ucφ + 1

2
b2aφu2]

}
ud−1du

≤ ζdsup
u>0

exp
{
β[ucφ + 1

2
b2aφu

2] − α[ζucφ + 1
2
b1aφζ

2u2]
}
.

By taking ζ =
√

(b2β)/(b1α) when cφ = 0 and ζ =
√

(b2β)/(b1α) ∨ (β/α)
otherwise, we obtainψφ < ζd, hence

log

(∫
exp
{
−α[R(f) − R(f ∗)]

}
π(df)∫

exp
{
−β[R(f) − R(f ∗)]

}
π(df)

)
≤






d

2
log
(b2β
b1α

)
when sup

φ∈Ω
cφ = 0,

d log
(
√
b2β

b1α
∨ β

α

)
otherwise,

which proves the announced result.
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6.5. PROOF OFLEMMA 5.4. For−(2AH)−1 ≤ λ ≤ (2AH)−1, introduce the
random variables

F = f(X) F ∗ = f ∗(X),

Ω = ℓ̃′Y (F ∗) + (F − F ∗)

∫ 1

0

(1 − t)ℓ̃′′Y (F ∗ + t(F − F ∗))dt,

L = λ[ℓ̃(Y, F ) − ℓ̃(Y, F ∗)],

and the quantities

a(λ) =
M2A2 exp(Hb2/A)

2
√
π(1 − |λ|AH)

and

Ã = Hb2/2 + A log(M) =
A

2
log
{
M2 exp

[
Hb2/(2A)

]}
.

From Taylor-Lagrange formula, we have

L = λ(F − F ∗)Ω.

SinceE
[
exp
(
|Ω|/A

)
|X
]
≤M exp

[
Hb2/(2A)

]
, Lemma D.2 gives

log
{
E

[
exp
{
α[Ω − E(Ω|X)]/A

}
|X
]}

≤ M2α2 exp
(
Hb2/A

)

2
√
π(1 − |α|)

for any−1 < α < 1, and ∣∣E(Ω|X)
∣∣ ≤ Ã. (6.19)

By consideringα = Aλ[f(x) − f ∗(x)] ∈ [−1/2; 1/2] for fixedx ∈ X, we get

log
{
E

[
exp
[
L− E(L|X)

]
|X
]}

≤ λ2(F − F ∗)2a(λ). (6.20)

Let us put moreover

L̃ = E(L|X) + a(λ)λ2(F − F ∗)2.

Since−(2AH)−1 ≤ λ ≤ (2AH)−1, we haveL̃ ≤ |λ|HÃ+ a(λ)λ2H2 ≤ b′ with
b′ = Ã/(2A) + M2 exp

(
Hb2/A

)
/(4

√
π). SinceL − E(L) = L − E(L|X) +

E(L|X) − E(L), by using Lemma D.1, (6.20) and (6.19), we obtain

log
{
E

[
exp
[
L−E(L)

]]}
≤ log

{
E

[
exp
[
L̃− E(L̃)

]]}
+ λ2a(λ)E

[
(F − F ∗)2

]

≤ E
(
L̃2
)
g(b′) + λ2a(λ)E

[
(F − F ∗)2

]

≤ λ2
E
[
(F − F ∗)2

][
Ã2g(b′) + a(λ)

]
,
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with g(u) =
[
exp(u)−1−u

]
/u2. Computations show that for any−(2AH)−1 ≤

λ ≤ (2AH)−1,

Ã2g(b′) + a(λ) ≤ A2

4
exp
[
M2 exp

(
Hb2/A

)]
.

Consequently, for any−(2AH)−1 ≤ λ ≤ (2AH)−1, we have

log
{
E

[
exp
{
λ[ℓ̃(Y, F ) − ℓ̃(Y, F ∗)]

}]}

≤ λ[R(f) −R(f ∗)] + λ2
E
[
(F − F ∗)2

]A2

4
exp
[
M2 exp

(
Hb2/A

)]
.

Now it remains to notice thatE
[
(F − F ∗)2

]
≤ 2[R(f) − R(f ∗)]/b1. Indeed

consider the functionφ(t) = R(f ∗ + t(f − f ∗)) − R(f ∗), wheref ∈ F and
t ∈ [0; 1]. From the definition off ∗ and the convexity ofF, we haveφ ≥ 0 on
[0; 1]. Besides we haveφ(t) = φ(0)+ tφ′(0)+ t2

2
φ′′(ζt) for someζt ∈]0; 1[. So we

haveφ′(0) ≥ 0, and using the lower bound on the convexity, we obtain fort = 1

b1
2
E(F − F ∗)2 ≤ R(f) − R(f ∗). (6.21)

6.6. PROOF OFLEMMA 5.6. We have

E
{
[Y − f(X)]2 − [Y − f ∗(X)]2

}2

= E

(
[f ∗ − f(X)]2

{
2[Y − f ∗(X)] + [f(X) − f ∗(X)]

}2
)

= E

(
[f ∗ − f(X)]2

{
4E
(
[Y − f ∗(X)]2

∣∣X
)

+ 4E(Y − f ∗(X)|X)[f(X) − f ∗(X)] + [f(X) − f ∗(X)]2
})

≤ E

(
[f ∗ − f(X)]2

{
4σ2 + 4σ|f(X) − f ∗(X)| + [f(X) − f ∗(X)]2

})

≤ E

(
[f ∗ − f(X)]2(2σ +H)2

)

≤ (2σ +H)2[R(f) − R(f ∗)],

where the last inequality is the usual relation between excess risk andL2 distance
using the convexity ofF (see above (6.21) for a proof).

A. UNIFORMLY BOUNDED CONDITIONAL VARIANCE IS NECESSARY TO

REACH d/n RATE

In this section, we will see that the target (0.2) cannot be reached if we just
assume thatY has a finite variance and that the functions inF are bounded.
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For this, consider an input spaceX partitioned into two setsX1 andX2: X =
X1 ∪ X2 andX1 ∩ X2 = ∅. Let ϕ1(x) = 1x∈X1

andϕ2(x) = 1x∈X2
. Let F ={

θ1ϕ1 + θ2ϕ2; (θ1, θ2) ∈ [−1, 1]2
}
.

THEOREM A.1 For any estimatorf̂ and any training set sizen ∈ N∗, we have

sup
P

{
ER(f̂) − R(f ∗)

}
≥ 1

4
√
n
, (A.1)

where the supremum is taken with respect to all probability distributions such that
f (reg) ∈ F andVarY ≤ 1.

PROOF. Let β satisfying0 < β ≤ 1 be some parameter to be chosen later.
Let Pσ, σ ∈ {−,+}, be two probability distributions onX × R such that for any
σ ∈ {−,+},

Pσ(X1) = 1 − β,

Pσ(Y = 0|X = x) = 1 for anyx ∈ X1,

and

Pσ

(
Y =

1√
β
|X = x

)
=

1 + σ
√
β

2

= 1 − Pσ

(
Y = − 1√

β
|X = x

)
for anyx ∈ X2.

One can easily check that for anyσ ∈ {−,+}, VarPσ(Y ) = 1 − β2 ≤ 1 and
f (reg)(x) = σϕ2 ∈ F. To prove Theorem A.1, it suffices to prove (A.1) when the
supremum is taken amongP ∈ {P−, P+}. This is done by applying Theorem
8.2 of [2]. Indeed, the pair(P−, P+) forms a(1, β, β)-hypercube in the sense of
Definition 8.2 with edge discrepancy of type I (see (8.5), (8.11) and (10.20) for
q = 2): dI = 1. We obtain

sup
P∈{P−,P+}

{
ER(f̂) − R(f ∗)

}
≥ β(1 − β

√
n),

which gives the desired result by takingβ = 1/(2
√
n). �

B. EMPIRICAL RISK MINIMIZATION ON A BALL : ANALYSIS DERIVED FROM

THE WORK OFBIRGÉ AND MASSART

We will use the following covering number upper bound [13, Lemma 1]
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LEMMA B.1 If F has a diameterH > 0 forL∞-norm (i.e.,supf1,f2∈F,x∈X |f1(x)−
f2(x)| = H), then for any0 < δ ≤ H, there exists a setF# ⊂ F, of cardinal-
ity |F#| ≤ (3H/δ)d such that for anyf ∈ F there existsg ∈ F# such that
‖f − g‖∞ ≤ δ.

We apply a slightly improved version of Theorem 5 in Birgé and Massart [4].
First for homogeneity purpose, we modify Assumption M2 by replacing the con-
dition “σ2 ≥ D/n” by “σ2 ≥ B2D/n” where the constantB is the one appearing
in (5.3) of [4]. This modifies Theorem 5 of [4] to the extent that “∨1” should be
replaced with “∨B2”. Our second modification is to remove the assumption that
Wi andXi are independent. A careful look at the proof shows that the result still
holds when (5.2) is replaced by: for anyx ∈ X, andm ≥ 2

Es[M
m(Wi)|Xi = x] ≤ amA

m, for all i = 1, . . . , n

We considerW = Y −f ∗(X), γ(z, f) = (y−f(x))2, ∆(x, u, v) = |u(x)−v(x)|,
andM(w) = 2(|w| + H). From (1.7), for allm ≥ 2, we haveE

{
[(2(|W | +

H)]m|X = x] ≤ m!
2

[4M(A+H)]m. Now considerB′ andr such that Assumption
M2 of [4] holds forD = d. Inequality (5.8) forτ = 1/2 of [4] implies that
for any v ≥ κ d

n
(A2 + H2) log(2B′ + B′r

√
d/n), with probability at least1 −

κ exp
[ −nv
κ(A2 +H2)

]
,

R(f̂ (erm)) − R(f ∗) + r(f ∗) − r(f̂ (erm)) ≤
(
E
{[
f̂ (erm)(X) − f ∗(X)

]2} ∨ v
)
/2

for some large enough constantκ depending onM . Now from Proposition 1 of

[4] and Lemma B.1, one can take eitherB′ = 6 andr
√
d =

√
B̃ orB′ = 3

√
n/d

andr = 1. By usingE
{[
f̂ (erm)(X) − f ∗(X)

]2} ≤ R(f̂ (erm)) − R(f ∗) (sinceF is
convex andf ∗ is the orthogonal projection ofY onF), andr(f ∗) − r(f̂ (erm)) ≥ 0
(by definition off̂ (erm)), the desired result can be derived.

Theorem 1.5 provides ad/n rate provided that the geometrical quantityB̃ is
at most of ordern. Inequality (3.2) of [4] allows to bracket̃B in terms ofB =
supf∈span{ϕ1,...,ϕd} ‖f‖2

∞/E[f(X)]2, namelyB ≤ B̃ ≤ Bd. To understand better
how this quantity behaves and to illustrate some of the presented results, let us
give the following simple example.

Example 1. Let A1, . . . , Ad be a partition ofX, i.e., X = ⊔d
j=1Aj. Now con-

sider the indicator functionsϕj = 1Aj
, j = 1, . . . , d: ϕj is equal to1 on Aj

and zero elsewhere. Consider thatX and Y are independent and thatY is a
Gaussian random variable with meanθ and varianceσ2. In this situation:f ∗

lin =
f (reg) =

∑d
j=1 θϕj . According to Theorem 1.1, if we know an upper boundH on

‖f (reg)‖∞ = θ, we have that the truncated estimator(f̂ (ols) ∧H) ∨−H satisfies

ER(f̂ (ols)
H ) −R(f ∗

lin) ≤ κ
(σ2 ∨H2)d logn

n
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for some numerical constantκ. Let us now apply Theorem C.1. Introducepj =
P(X ∈ Aj) andpmin = minj pj. We haveQ =

(
Eϕj(X)ϕk(X)

)
j,k

= Diag(pj),

K = 1 and‖θ∗‖ = θ
√
d. We can takeA = σ andM = 2. From Theorem C.1,

for λ = dLε/n, as soon asλ ≤ pmin, the ridge regression estimator satisfies with
probability at least1 − ε:

R(f̂ (ridge)) −R(f ∗
lin) ≤ κLε

d

n

(
σ2 +

θ2d2L2
ε

npmin

)
(B.1)

for some numerical constantκ. Whend is large, the term(d2L2
ε)/(npmin) is felt,

and leads to suboptimal rates. Specifically, sincepmin ≤ 1/d, the r.h.s. of (B.1)
is greater thand4/n2, which is much larger thand/n whend is much larger than
n1/3. If Y is not Gaussian but almost surely uniformly bounded byC < +∞, then
the randomized estimator proposed in Theorem 1.3 satisfies the nicer property:
with probability at least1 − ε,

R(f̂) −R(f ∗
lin) ≤ κ(H2 + C2)

d log(3p−1
min) + log((logn)ε−1)

n
,

for some numerical constantκ. In this example, one can check thatB̃ = B̃′ =
1/pmin wherepmin = minj P(X ∈ Aj). As long aspmin ≥ 1/n, the target (0.1)
is reached from Corollary 1.5. Otherwise, without this assumption, the rate is in
(d log(n/d))/n. �

C. RIDGE REGRESSION ANALYSIS FROM THE WORK OFCAPONNETTO AND

DE V ITO

From [5], one can derive the following risk bound for the ridge estimator.

THEOREM C.1 Let qmin be the smallest eigenvalue of thed × d-product matrix
Q =

(
Eϕj(X)ϕk(X)

)
j,k

. Let K = supx∈X

∑d
j=1 ϕj(x)

2. Let ‖θ∗‖ be the Eu-

clidean norm of the vector of parameters off ∗
lin =

∑d
j=1 θ

∗
jϕj. Let 0 < ε < 1/2

andLε = log2(ε−1). Assume that for anyx ∈ X,

E

{
exp
[
|Y − f ∗

lin(X)|/A
]
|X = x

}
≤M.

For λ = (KdLε)/n, if λ ≤ qmin, the ridge regression estimator satisfies with
probability at least1 − ε:

R(f̂ (ridge)) −R(f ∗
lin) ≤ κLεd

n

(
A2 +

λ

qmin
KLε‖θ∗‖2

)
(C.1)

for some positive constantκ depending only onM .

55



PROOF. One can check that̂f (ridge) ∈ argminf∈H
r(f) + λ

∑d
j=1 ‖f‖2

H
, where

H is the reproducing kernel Hilbert space associated with thekernelK : (x, x′) 7→∑d
j=1 ϕj(x)ϕk(x

′). Introducef (λ) ∈ argminf∈H
R(f)+λ

∑d
j=1 ‖f‖2

H
. Let us use

Theorem 4 in [5] and the notation defined in their Section 5.2.Letϕ be the column
vector of functions[ϕj]

d
j=1, Diag(aj) denote the diagonald × d-matrix whosej-

th element on the diagonal isaj , andId be thed × d-identity matrix. LetU and
q1, . . . , qd be such thatUUT = I andQ = UDiag(qj)UT . We havef ∗

lin = ϕT θ∗

andf (λ) = ϕT (Q+ λI)−1Qθ∗, hence

f ∗
lin − f (λ) = ϕTUDiag(λ/(qj + λ))UT θ∗.

After some computations, we obtain that the residual, reconstruction error and
effective dimension respectively satisfyA(λ) ≤ λ2

qmin
‖θ∗‖2, B(λ) ≤ λ2

q2
min

‖θ∗‖2,

andN(λ) ≤ d. The result is obtained by noticing that the leading terms in(34) of
[5] areA(λ) and the term with the effective dimensionN(λ). �

The dependence in the sample sizen is correct since1/n is known to be mini-
max optimal. The dependence on the dimensiond is not optimal, as it is observed
in the example given page 54. Besides the high probability bound (C.1) holds only
for a regularization parameterλ depending on the confidence levelε. So we do
not have a single estimator satisfying a PAC bound for every confidence level.
Finally the dependence on the confidence level is larger thanexpected. It contains
an unusual square. The example given page 54 illustrates Theorem C.1.

D. SOME STANDARD UPPER BOUNDS ON LOG-LAPLACE TRANSFORMS

LEMMA D.1 Let V be a random variable almost surely bounded byb ∈ R. Let
g : u 7→

[
exp(u) − 1 − u

]
/u2.

log
{
E

[
exp
[
V − E(V )

]]}
≤ E

(
V 2
)
g(b).

PROOF. Sinceg is an increasing function, we haveg(V ) ≤ g(b). By using the
inequalitylog(1 + u) ≤ u, we obtain

log
{
E

[
exp
[
V − E(V )

]]}
= −E(V ) + log

{
E
[
1 + V + V 2g(V )

]}

≤ E
[
V 2g(V )

]
≤ E

(
V 2
)
g(b).

�

LEMMA D.2 Let V be a real-valued random variable such thatE
[
exp
(
|V |
)]

≤
M for someM > 0. Then we have|E(V )| ≤ logM , and for any−1 < α < 1,

log
{
E

[
exp
{
α
[
V − E(V )

]}]}
≤ α2M2

2
√
π(1 − |α|) .
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PROOF. First note that by Jensen’s inequality, we have|E(V )| ≤ log(M). By
usinglog(u) ≤ u− 1 and Stirling’s formula, for any−1 < α < 1, we have

log
{
E

[
exp
{
α
[
V − E(V )

]}]}
≤ E

[
exp
{
α
[
V − E(V )

]}]}
− 1

= E

{
exp
{
α
[
V −E(V )

]}
− 1 − α

[
V − E(V )

]}

≤ E

{
exp
[
|α||V − E(V )|

]
− 1 − |α||V − E(V )|

}

≤ E

{
exp
[
|V − E(V )|

]}
sup
u≥0

{[
exp(|α|u) − 1 − |α|u

]
exp(−u)

}

≤ E

[
exp
(
|V | + |E(V )|

)]
sup
u≥0

∑

m≥2

|α|mum

m!
exp(−u)

≤M2
∑

m≥2

|α|m
m!

sup
u≥0

um exp(−u) = α2M2
∑

m≥2

|α|m−2

m!
mm exp(−m)

≤ α2M2
∑

m≥2

|α|m−2

√
2πm

≤ α2M2

2
√
π(1 − |α|) .

�
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