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ABSTRACT : We consider the problem of predicting as well as the besalitombina-
tion of d given functions in least squares regression, and varidritgsoproblem includ-
ing constraints on the parameters of the linear combinatMdimen the input distribution
is known, there already exists an algorithm having an exgeekcess risk of ordet/n,
wheren is the size of the training data. Without this strong assionpistandard results
often contain a multiplicativéog n factor, and require some additional assumptions like
uniform boundedness of thiedimensional input representation and exponential mosnent
of the output.

This work provides new risk bounds for the ridge estimatad #me ordinary least
squares estimator, and their variants. It also provideslsige procedures with conver-
gence ratel/n (i.e., without the logarithmic factor) in expectation amddeviations, un-
der various assumptions. The key common surprising faétinese results is the absence
of exponential moment condition on the output distributi@inile achieving exponential
deviations. All risk bounds are obtained through a PAC-B&ye analysis on truncated
differences of losses. Finally, we show that some of thesgltseare not particular to the
least squares loss, but can be generalized to similar $yrongvex loss functions.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 62J05, 62J07.

KEYWORDS. Linear regression, Generalization error, Shrinkage, B&gesian theo-
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INTRODUCTION

OUR STATISTICAL TASK. LetZ; = (X1,Y1),...,Z, = (X,,,Y,) ben > 2
pairs of input-output and assume that each pair has beepéendently drawn
from the same unknown distributia®. Let X denote the input space and let the
output space be the set of real numbRrsso thatP is a probability distribution
on the product spacg = X x R. The target of learning algorithms is to predict
the outputY” associated with an input’ for pairsZ = (X,Y’) drawn from the
distribution P. The quality of a (prediction) functiofi : X — R is measured by
the least squareassk:

R(f) £ Ezwp {[Y — F(X)]*}.

Through the paper, we assume that the output and all thegticedfunctions we
consider are square integrable. Iebe a closed convex setBf!, andy;, . . ., ¢4
bed prediction functions. Consider the regression model

d
= {f9229j<pj;(91,...,0d) € @}.

The best functiorf* in & is defined by

I —Z wjeargmlnR(f)

Such a function always exists but is not necessarily unigasides it is unknown
since the probability generating the data is unknown.

We will study the problem of predicting (at least) as well@sdtionf*. In other
words, we want to deduce from the observatighs. . ., Z, a functionf having
with high probability a risk bounded by the minimal rigK f*) on & plus a small
remainder term, which is typically of ordéyn up to a possible logarithmic factor.
Except in particular settings (e.§. is a simplex andl > /n), it is known that
the convergence rat&/n cannot be improved in a minimax sense (see [17], and
[18] for related results).



More formally, the target of the paper is to develop estirrmfdor which the
excess risk is controlleoh deviationsi.e., such that for an appropriate constant
k > 0, for anye > 0, with probability at least — ¢,

R(P) - R(f7) < wTE1BED),

Note that by integrating the deviations (using the idertity” = f0+°° P(W >
t)dt which holds true for any nonnegative random varidfg Inequality (0.1)
implies

(0.1)

ER(f) — R(f") <
In this work, we do not assume that the function
f(reg) sz E[Y|X = 1],

which minimizes the riskk among all possible measurable functions, belongs to
the modelF. So we might have™* # £ and in this case, bounds of the form

PR 0.2)
n

ER(f) ~ R(f®) < OIR(/") — R(F)] + 5, 0.3)
with a constantC larger thanl do not even ensure th&tR(f) tends toR(f*)
whenn goes to infinity. This kind of bounds with' > 1 have been developed
to analyze nonparametric estimators using linear apprat@n spaces, in which
case the dimensiod is a function ofn chosen so that the bias terR(f*) —
R(f®9) has the ordeii/n of the estimation term (see [9] and references within).
Here we intend to assess the generalization ability of ttimasr even when the
model is misspecified (namely whe®(f*) > R(f9)). Moreover we do not
assume either thaf — f9(X) and X are independent.

Notation. When© = R¢, the functionf* and the spacg will be written f;;,
andd), to emphasize thdt is the whole linear space spanneddy. . ., ¢4:
Fin = span{e, ..., pa} and  fi, € a;g;ninR(f).
€ Jlin
The Euclidean norm will simply be written ds ||, and(-, -) will be its associated
dot product. We will consider the vector valued function X — R¢ defined by

o(X) = [apk(X)]Zzl, so that for any € ©, we have

fo(X) = (0, o(X)).

The Gram matrix is the x d-matrix Q@ = E[p(X)¢(X)T], and its smallest and
largest eigenvalues will respectively be writteryas, andqyay.

The symbok will be used to denote constants, which means here detestigini
guantities not depending @handn but possibly depending on other constants of
the problem. Its value may differ from line to line.
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WHY SHOULD WE BE INTERESTED IN THIS TASK There are three main rea-
sons. First we aim at a better understanding of the parasigieiar least squares
method (classical textbooks can be misleading on this stiagewe will point out
later), and intend to provide a non-asymptotic analysis.of i

Secondly, the task is central in nonparametric estimatotiriear approxima-
tion spaces (piecewise polynomials based on a regulatipartivavelet expan-
sions, trigonometric polynomials. . .)

Thirdly, it naturally arises in two-stage model selectiBrecisely, when facing
the data, the statistician has often to choose several smiedeth are likely to
be relevant for the task. These models can be of similartsires (like embedded
balls of functional spaces) or on the contrary of very ddéfémature (e.g. based on
kernels, splines, wavelets or on parametric approachesgdeh of these models,
we assume that we have a learning scheme which produces @& jg@aliction
function in the sense that it predicts as well as the bestiumof the model up
to some small additive term. Then the question is to decidbamm we use or
combine/aggregate these schemes. One possible answesgkttihe data into
two groups, use the first group to train the prediction funttassociated with
each model, and finally use the second group to build a prediftinction which
is as good as (i) the best of the previously learnt predictiorctions, (i) the
best convex combination of these functions or (iii) the hesar combination of
these functions. This point of view has been introduced byixa/skiin [14] and
optimal rates of aggregation are given in [17] and referemeighin. This paper
focuses more on the linear aggregation task (even if (iigmnin our setting),
assuming implicitly here that the models are given in adeaard are beyond our
control and that the goal is to combine them appropriately.

OUTLINE AND CONTRIBUTIONS. The paper is organized as follows. Section 1
is a survey on risk bounds in linear least squares. Theoregnard 1.5 are the
results which come closer to our target. Section 2 provideswa analysis of
the ridge estimator and the ordinary least squares estijraatd their variants.
Theorem 2.1 provides an asymptotic result for the ridgeregtr while Theorem
2.2 gives a non asymptotic risk bound of the empirical riskimizer, which is
complementary to the theorems put in the survey sectionattiqolar, the result
has the benefit to hold for the ordinary least squares esimaaid for heavy-
tailed outputs. We show quantitatively that the ridge pgnlelads to an implicit
reduction of the input space dimension. Section 3 shows aasgmptoticd/n
exponential deviation risk bound under weak moment coonstion the output”
and on thel-dimensional input representatiqri.X ). Section 4 presents stronger
results under boundedness assumptiop@X ). However the latter results are
concerned with a not easily computable estimator. Sectgines risk bounds for



general loss functions from which the results of Sectioneddarived.

The main contribution of this paper is to show through a PAGHESsian analysis
on truncated differences of losses that the output digtabuwloes not need to
have bounded conditional exponential moments in orderHerexcess risk of
appropriate estimators to concentrate exponentially. r@sults tend to say that
truncation leads to more robust algorithms. Local robiusgrie contamination
is usually invoked to advocate the removal of outliers,rolag that estimators
should be made insensitive to small amounts of spurious @atawork leads
to a different theoretical explanation. The observed diatving unusually large
outputs when compared with the (empirical) variance shbeldlown-weighted
in the estimation of the mean, since they contain less indtion than noise. In
short, huge outputs should be truncated because of thesitpval to noise ratio.

1. VARIANTS OF KNOWN RESULTS

1.1. ORDINARY LEAST SQUARES AND EMPIRICAL RISK MINIMIZATION. The
ordinary least squares estimator is the most standard ohaihhbis case. It mini-
mizes the empirical risk
1 n
r(f) ==Y [Vi— F(X),

n <
=1

among functions ii¥};, and produces

d

JE(oIs) _ Z égOIS)gpj,

j=1
with §©9 = [§°¥]9_, a column vector satisfying
XT'X g9 = X'y, (1.1)

whereY = [V}]7_, andX = (¢;(X;))1<i<n,1<j<a- It is well-known that

¢ the linear system (1.1) has at least one solution, and in tlaetset of so-
lutions is exactly{X" Y +u;u € ker X}; whereX" is the Moore-Penrose
pseudoinverse of and kerX is the kernel of the linear operatir

e X 09 js the (unique) orthogonal projection of the vecibre R™ on the
image of the linear mak,;

o if sup,c Var(Y|X = z) = 02 < +00, we have (see [9, Theorem 11.1))
forany Xq,..., X, in X,



n

{lz [FOS(x,) — oo X ] X1, X, }

=1

S

— min l Z [f(Xz) _ f(reg)(Xi)]2

fE€Tin N £
=1

X
n

<o’

S

, (1.2)

where we recall thaf(™®® : z — E[Y|X = z] is the optimal regression
function, and that when this function belongsdig (i.e., /9 = f), the
minimum term in (1.2) vanishes;

e from Pythagoras’ theorem for the (semi)norin — +/IEW?2 on the space
of the square integrable random variables,

R(f®9) — R(fi)
= B[f9(X) - f19(X)]” = B[fin(X) = f©9(X)]". (1.3)
The analysis of the ordinary least squares often stopssaptint in classical sta-
tistical textbooks. (Besides, to simplify, the strong asption f9 = f is often
made.) This can be misleading since Inequality (1.2) doesmaly ad/n upper

bound on the risk off ©S). Nevertheless the following result holds [9, Theorem
11.3].

THEOREM 1.1 If sup,cy Var(Y|X = z) = 0? < +oc and

11790 = sup | £ )| < H
zeX

for someH > 0, then the truncated estimatgi®® = (9 A H) v — H satisfies

(0% V H?)dlogn

ER(f$®) — R(f™9) < 8[R(fy) — R(f™)] + (1.4)

for some numerical constant

Using PAC-Bayesian inequalities, Catoni [7, Propositio. 5 has proved a
different type of results on the generalization ability/&fs),

THEOREM 1.2 Letd’ C Fy, satisfying for some positive constants\/, M":
e there existy, € ¥’ s.t. foranyz € X,

E{exp[\y fo(X ”X_:c}gM.

b for anyf17f2 € ?/7sup:cEDC|f1<x> - fQ(x)‘ S M/-



LetQ = E[p(X)p(X)T] andQ = [1 37 »(Xi)o(X,)T] be respectively the
expected and empirical Gram matrices.didt ( # 0, then there exist positive
constants’; andC, (depending only on, M and M) such that with probability

at leastl — ¢, as soon as

{f € Fin:r(f) < T’(f(OIS)) + Clg} cC 7, (1.5)

we have

d+log(e™!) + log(jizg)

n

R(fO) — R(fir) < Co

This result can be understood as follows. Let us assume we $@we prior
knowledge suggesting thgf;, belongs to the interior of a s&f' C JFy, (e.g.
a bound on the coefficients of the expansionfgf as a linear combination of
©1,...,pq). Itis likely that (1.5) holds, and it is indeed proved in Qait[7, sec-
tion 5.11] that the probability that it does not hold goesaoozexponentially fast
with n in the case whefi” is a Euclidean ball. If it is the case, then we know that
the excess risk is of ordel/n up to the unpleasant ratio of determinants, which,
fortunately, almost surely tends tcasn goes to infinity.

By usinglocalizedPAC-Bayes inequalities introduced in Catoni [6, 8], one can
derive from Inequality (6.9) and Lemma 4.1 of Alquier [1] ttelowing result.

THEOREM 1.3 Let ¢,;, be the smallest eigenvalue of the Gram matpx=
E[¢(X)e(X)T]. Assume that there exist a functign € Fj, and positive con-
stantsH and C' such that

Hfl:kn - fOHoo < H.

and|Y| < C almost surely.

Then for an appropriate randomized estimator requiring kinewledge off,,
H and C, for anye > 0 with probability at leastl — ¢ w.r.t. the distribution
generating the observations, ..., 7, and the randomized prediction function
f, we have

)d log(3gyt,) + log((logn)e 1)
n .

R(f) — R(fi) < k(H* + C? (1.6)

Using the result of [7, Section 5.11], one can prove that Addsl result still
holds for f = f©9), but with x also depending on the determinant of the prod-
uct matrix Q. The log[log(n)] factor is unimportant and could be removed in
the special case quoted here (it comes from a union bound ordafypos-
sible temperature parameters, whereas the temperatule loeuset here to a
fixed value). The result differs from Theorem 1.2 essentiblf the fact that
the ratio of the determinants of the empirical and expectedyct matrices has

8



been replaced by the inverse of the smallest eigenvalueeofjtfadratic form
0 — R(Z?zl 8;0;) — R(fi). In the case when the expected Gram matrix is
known, (e.qg. in the case of a fixed design, and also in thetgligtiferent context
of transductive inference), this smallest eigenvalue @sdi to one by choosing
the quadratic formd — R(fy) — R(f{,) to define the Euclidean metric on the
parameter space.

Localized Rademacher complexities [11, 3] allow to proweeftillowing prop-

erty of the empirical risk minimizer.

THEOREM 1.4 Assume that the input representatipqX ), the set of parameters
and the outpud” are almost surely bounded, i.e., for some positive constédnt
andC,

sup [|0]] <1
0cO

esssup [|p(X)| < H,

and
Y| <C as.

Lety; > --- > 1, be the eigenvalues of the Gram matfix= E[¢(X)p(X)7].
The empirical risk minimizer satisfies for any- 0, with probability at least —«:

min <h'+‘\/fﬁiiiﬁ'§:i>hlﬁ) + log(e™)

9 0<h<d

R(f™) = R(f*) < x(H + C) -
< w(H + C)Qrank(Q) ; 10g(5—1)7

wherex is a numerical constant.

PROOF The resultis a modified version of Theorem 6.7 in [3] appleethe linear
kernelk(u,v) = (u,v)/(H + C)?. Its proof follows the same lines as in Theorem
6.7 mutatis mutandiCorollary 5.3 and Lemma 6.5 should be used as intermedi-
ate steps instead of Theorem 5.4 and Lemma 6.6, the nonzgnoveiues of the
integral operator induced by the kernel being the nonzeyermialues of). [

When we know that the target functigfij, is inside some.* ball, it is natu-
ral to consider the empirical risk minimizer on this ball.iFallows to compare
Theorem 1.4 to excess risk bounds with respedgfito

Finally, from the work of Birgé and Massart [4], we may derihe following
risk bound for the empirical risk minimizer on/z° ball (see Appendix B).

THEOREM 1.5 Assume thaf has a diametef for L°°-norm, i.e., for anyfi, fo
inF, sup,cx | f1(z) — fo(2)| < H and there exists a functiofy € F satisfying



the exponential moment condition:
foranyz € X, ]E{exp [A‘l\Y - fo(X)” ‘X = :r;} <M, (1.7

for some positive constantsand M. Let

d
- i— 0;0; c2>o
. 152000
P1,¢d geRI—{0} ||9||oo

where the infimum is taken with respect to all possible ortioral basis ofF
for the dot product £, fo) = Efi(X)f2(X). Then the empirical risk minimizer
satisfies for any > 0, with probability at leastl — &:

R(f(erm)) . R(f*) < K(Az + H2)dlog[2 + (B/n) A (n/d)] + 10g(€_1)7

n

whererk is a positive constant depending only bh

This result comes closer to what we are looking for: it givesamential devi-
ation inequalities of order at worgdog(n/d)/n. It shows that, even if the Gram
matrix ) has a very small eigenvalue, there is an algorithm satigfgiconver-
gence rate of orded log(n/d)/n. With this respect, this result is stronger than
Theorem 1.3. However there are cases in which the smallgsibwlue of@ is
of order1, while B is large (i.e.,.B >> n). In these cases, Theorem 1.3 does not
contain the logarithmic factor which appears in Theorem 1.5

1.2. RROJECTION ESTIMATOR When the input distribution is known, an al-
ternative to the ordinary least squares estimator is tHewalg projection esti-
mator. One first finds an orthonormal basis¥gf for the dot product f, f2) =
Ef1(X)f2(X), and then uses the projection estimator on this basis. Bzl
if ¢1,...,¢4 form an orthonormal basis df;,, then the projection estimator on
this basis is: .
f(proj) — Z?;l é;pron i,

with

60D = 137, i (X).
Theorem 4 in [17] gives a simple bound of ordgr. on the expected excess risk
ER(f®) — R(f)-

1.3. FENALIZED LEAST SQUARES ESTIMATOR It is well established that pa-
rameters of the ordinary least squares estimator are ncafignunstable, and that

10



the phenomenon can be corrected by addindgapenalty ([12, 15]). This solu-
tion has been labeled ridge regression in statistics ([80[) consists in replacing
f(ols) by

n d

(1dge) = argmin 1 Vi — fp(X)) A0S 62,

f {fe;gee]Rd} n ; ( f@( )) ; j
where\ is a positive parameter. The typical value)oshould be small to avoid
excessive shrinkage of the coefficients, but not too smatirder to make the
optimization task numerically more stable.

Risk bounds for this estimator can be derived from generallte concerning
penalized least squares on reproducing kernel Hilbertesp§®&]), but as it is
shown in Appendix C, this ends up with complicated resultgrathe desired
d/n rate only under strong assumptions.

Another popular regularizer is the' norm. This procedure is known as Lasso
[16] and is defined as

n

d
f(lasso)e argmin — E (Y; —fG(XZ,»Z + A |9j|.
Jj=1

{fo;0eRrd} T ]

As the L? penalty, theL! penalty shrinks the coefficients. The difference is that
for coefficients which tend to be close to zero, the shrinkagkes them equal to
zero. This allows to select relevant variables (i.e., fireljth such that); # 0).

If we assume that the regression functigff9 is a linear combination of only
d* < d variables/functionsp;’s, the typical result is to prove that the risk of
the Lasso estimator for of order/(log d)/n is of order(d* log d) /n. Since this
quantity is much smaller thai/n, this makes a huge improvement (provided
that the sparsity assumption is true). This kind of resuisally requires strong
conditions on the eigenvalues of submatriceg)okessentially assuming that the
functionsy; are near orthogonal. We do not know to which extent theseitions
are required. However, if we do not consider the specificrilym of Lasso, but
the model selection approach developed in [1], one can ehtregse conditions
into a single condition concerning only the minimal eigdaeaof the submatrix of

() corresponding to relevant variables. In fact, we will sex #ven this condition
can be removed.

1.4. CONCLUSION OF THE SURVEY Previous results clearly leave room to im-
provements. The projection estimator requires the urstgahssumption that the
input distribution is known, and the result holds only in egfation. Results using
L' or L? regularizations require strong assumptions, in partiautethe eigenval-
ues of (submatrices of). Theorem 1.1 provides @ logn)/n convergence rate
only when theR(f;,) — R(f9) is at most of ordefdlogn)/n. Theorem 1.2

11



gives a different type of guarantee: thi¢n is indeed achieved, but the random
ratio of determinants appearing in the bound may raise sgetarews and forbid

an explicit computation of the bound and comparison witleobounds. Theorem
1.3 seems to indicate that the rate of convergence will beadegl when the Gram
matrix ¢ is unknown and ill-conditioned. Theorem 1.4 does not putassump-
tion on ) to reach thel/n rate, but requires particular boundedness constraints
on the parameter set, the input vectdrX ) and the output. Finally, Theorem 1.5
comes closer to what we are looking for. Yet there is still awanted logarithmic
factor, and the result holds only when the output has unifpimounded condi-
tional exponential moments, which as we will show is not seeey.

2. RIDGE REGRESSION AND EMPIRICAL RISK MINIMIZATION

We recall the definition

F={fo=25_05%5 (01,...,00) € O},

where© is a closed convex set, not necessarily bounded (so@hat R? is
allowed). In this section, we provide exponential deviatinequalities for the
empirical risk minimizer ord under weak conditions on the tail of the output
distribution. The empirical risk of a functiofiis

=1
and the ridge regression estimator®is defined by

f(ridge) € arg minT(fe) + )‘HeHZ’
foeT

where )\ is some nonnegative real parameter. In the case when0, the ridge
regressiory9ee) js nothing but the empirical risk minimizgfe™,

In the same way we consider the optimal ridge functfooptimizing the ex-
pected ridge risk

f € arg ?ng{R(fe) + 617}

The most general theorem which can be obtained from the foliteved in
this section is Theorem 6.5 (page 33) stated along with thefplt is expressed
in terms of a series of empirical bounds. The first deductiencan make from
this technical result is of asymptotic nature. It is stateder weak hypotheses,
taking advantage of the weak law of large numbers.

12



THEOREM 2.1 Let us assume that

E[lo(X)[*] < +oo, (2.1)
and E{Hgo(X)||2[f(X) - Y}z} < +o0. 2.2)
Let 1, ..., vy be the eigenvalues of the Gram matéx= E[o(X)p(X)T],

and let@Q, = Q + \I be the ridge regularization ap. Let us define theffective
ridge dimension

d
Dzzyi:i)\]l(ui>0) Te[(Q + A 'Q] = E{[1Q5*o(X)|%].

=1
When\ = 0, D is equal to the rank of) and is otherwise smaller. For any> 0,
there isn., such that for any. > n., with probability at leastl — ¢,
R(j?(ridge)) + )\Hé(ridge)H2
< mi 2
< min {R(fs) + A0}
OB (X P[f(X) - Y]"} D
E{]|Q)"e(X)]1} n
+ 1000 sup E[ OF [ (X } } log(3e™")
verd  E((v, (X))?) + Ajv]]? n
<
< min { R(fs) + Al0]*}

30D + 1000 log(3s™1)
n

+ esssup E{[Y — f(X)]z‘X}

PROOF See Section 6.1 (page 27)]

This theorem shows that the ordinary least squares estir(@ttained when
© = R?and )\ = 0), as well as the empirical risk minimizer on any closed
convex set, asymptotically reached a speed of convergence under very weak
hypotheses. It shows also the regularization effect of ithgerregression. There
emerges aeffective dimensio®, where the ridge penalty has a threshold effect
on the eigenvalues of the Gram matrix.

On the other hand, the weakness of this result is its asyiptature :n.
may be arbitrarily large under such weak hypotheses, asdgtuws even in the
simplest case of the estimation of the mean of a real valuetbra variable by its
empirical mean (which is the case wheénr- 1 andp(X) = 1).

Let us now give some non asymptotic rate under stronger hgget and for
the empirical risk minimizer (i.e ) = 0).

13



THEOREM 2.2 Letd = rank(@). Assume that
E{[Y — f*(X)]'} < +o0

and
B= sup 1F15/E[f(X)?] < +o0.
féespan{p,....0q4}—{0}
Consider the (unique) empirical risk minimiz€f™ = f;em : 2 — (AC™ o (z))
ond for whichg®™ < span{p (X)), ..., ¢(X,)}* Forany values of andn such
that2/n <e <1and

16 B2d"
n > 128052 l?)Bd’ +log(2/€) + 0 ] :
with probability at leastl — ¢,

R(fe™) — R(f*)

< 1920 B\/E[Y — f*(X)]*

Bd' + log(2e~1 4Bd'\?
3Bd’ + log(2e )+< ) . 3)

PROOF. See Section 6.1 (page 27

It is quite surprising that the traditional assumption oifonm boundedness of
the conditional exponential moments of the output can b&acegd by a simple
moment condition for reasonable confidence levels (.ex 2/n). For highest
confidence levels, things are more tricky since we need ttralonith high prob-
ability a term of ordefr(f*) — R(f*)]d/n (see Theorem 6.6). The cost to pay to
get the exponential deviations under only a fourth-ordemmat condition on the
output is the appearance of the geometrical quaitigs a multiplicative factor,
as opposed to Theorems 1.3 and 1.5. More precisely, fromégjuality (3.2)], we
haveB < B < Bd, but the quantity3 appears inside a logarithm in Theorem 1.5.
However, Theorem 1.5 is restricted to the empirical riskiminer on aL> ball,
while the result here is valid for any closed convex@eand in particular applies
to the ordinary least squares estimator.

Theorem 2.2 is still limited in at least three ways: it applanly to uniformly
boundedy(X), the output needs to have a fourth moment, and the confidence
level should be as great as> 2/n.

These limitations will be addressed in the next sectionsdnsiclering algo-
rithms explicitly based on PAC-Bayesian truncation.

X" is the Moore-Penrose pseudoinvers&of

14



3. AN EASILY COMPUTABLE ALGORITHM USING PAC-BAYESIAN
TRUNCATION

This section provides an alternative to the empirical riskimizer with non
asymptotic exponential risk deviations of ordéfn for any confidence level.
Moreover, we will assume only a second order moment condaio the output.
We give two results, the first covering the case of unboundpdtivectors, the
requirement orp(.X ) being only a finite fourth order moment. The computability
of the proposed estimator is discussed at the end of thegecti

We still consider the functiorf = [ optimizing the expected ridge risk

fe arg;l;ég{R(fe) + M16]1%}

for a fixed nonnegative real parameter
THEOREM 3.1 Assume, for some positive constantend,, that

E[(Y - f(0)*|X] < o

E[f7 (X)]

and sup 5 < V2.
vert (E[f2(X)] + Al0)2)° ~

Let py be the Gaussian distribution dR? with meand and diagonal covariance

matrix£ 1 where

£ 2 [452 + 75(qmax + M) [|O]?]
B n(Qmin + )\)

|©]| being the Euclidean diametetip, 4 ¢ ||/ — ¢'|| of the convex closed param-

eter setO. Let us put

Y

1
12[402 + Y2 (gmax + V) [10]7]

o =

and

Wilf. ) = a([¥i = 0] = [Yi= £0)]°).

and consider some estimatbsatisfying

f € arg min sup —— prgl (de") log{fp92 (df) [

01€0 g,co

Wi(for, fo) + Wi (far, fe)] } +a[[6:]1% — (162017

15



For anye > 0, with probability at leastl — e,

A 3202 Gaxd

) NI 9 < . Al 2 77 dmax®

R(f5) + M6I* < min {R(fo) + M6I*} + 7 ==
576’}/2 (Qmax + )\)2d2

40+ 2l + V0] { T L

n

PROOF. See Section 6.2 (page 37)

Theorem 3.1 provides a non asymptotic bound for the excekswmith ad/n
speed of convergence and an exponential tail even when tipeitdd has no
exponential moment. It is even possible to assume on theaibktpothing more
than the sheer existence of the risk function, in the casenvthe inputX is
bounded, as stated in the following theorem. Here we assansrplicity that
A =0, sothatf = f* = argmin,_;R(f).

THEOREM 3.2 Assume thaf has a diametefd for the L>-norm:

sup |fi(z) = fal@)| = H.

f1,f2€F,xeX

Consider again

B = R 1F115/BLf (X))

fespan{p1,....0a}—{0

Assume that we know> (0 such thatR(f*) < o%. Leta = [12B(40*+ BH?)] !
and

Wif, f') = al(Yi = f(X3)* = (V: = f'(X0)7].

Let py be the Gaussian distribution dR? with meand and diagonal covariance
matrix &1 with
- 12B(40? + BH?)

NQmin

Consider the estimatof = f; Where

A . 1 & )
NS Elgglyerr;lng;lgbSt - ; [ pe, (d8") log{fp92(d6’) [1

4WMWH%WMEWH'

16



For anye > 0, with probability at leastl — ¢,

. H?d
R(f) = R(f") <320 —
2 2 -1
+ 968 (40 +BH2){3< H d) | los(2e )}.
GminT? n

PROOF. See Section 6.2 (page 37)

We obtained here stronger results than the non asymptatioccbof Section 2,
at the price of replacing the empirical risk minimizer by armimvolved estimator.

Section 6.2.3 (page 44) addresses the question of compthiggstimator.
It shows that an approximation can be made which involvesroping explicit
quantities given in closed form without the help of Gaussiegrals. Some upper
bound of the precision of this approximation is itself congile in closed form
from observations. It adds, as described in Theorem 6.9%(gay to the bound
on the excess risk, but should not change its order of madgitu

4. A SIMPLE TIGHT RISK BOUND FOR A SOPHISTICATEDPAC-BAYES
ALGORITHM

We recall the definition

? = { Z;’lzl QJQOJ7 ((91, ey Qd) € ("‘)}
In this section, we consider that the convex@es$ bounded so that we can define
the “prior” distributionr as the uniform distribution off (i.e., the one induced by

the Lebesgue distribution g C R? renormalized to get(F) = 1). Let A > 0
and

Wilf, f) = MY — F(X)]° = Vi = F(X0)]°)

Introduce (df )
log/ . 4.1
Hz 1 1 - ) %Wl(f7 f/)2]
We consider the “posterior” dIStrIbutIOIﬂ on the setF with density:

dr " [exp[-E(f)n(df')
To understand intuitively why this distribution conceméson functions with low
risk, one should think that whekis small enough] — W;(f, /') + sW;(f, f)?
is close toe="i(/:/") "and consequently

£(1) = A3 IV~ SO+ los [ n(ar) exof - AZY R

17



and
d7 exp{=AY_1 1Y — f(X)]*}

i) el ALY~ P K0P
The following theorem gives@&/n convergence rate for the randomized algorithm
which draws the prediction function froffiaccording to the distributiofi.

THEOREM 4.1 Assume thaff has a diametefd for L°°-norm:

sup | fi(z) = fale)| = H

f1,f2€F,2€X

and that, for some > 0,

sup E{[Y — f*(X)]*|X =2} < 0” < +o0.

zeX

Let f be a prediction function drawn from the distributiérdefined in(4.2, page
17)and depending on the parameter- 0. Then forany) < n’ < 1—\(20+ H)?
ande > 0, with probability (with respect to the distributiaR®"# generating the
observation,, . . ., Z, and the randomized prediction functighat leastl — ¢,
we have

2 Cld + Cg 10g(2€_1)

n

R(f)— R(f*) < (20 + H)

with

1 2

n(l—n—1)

2

O, = S
' n(l—n—1n)

and C, = and n=\20+ H)>

In particular for A = 0.32(2¢ + H)~2 andn’ = 0.18, we get

, 16.6d + 12.51og(2c71)
n

R(f)— R(f*) < (20 + H)

Besides iff* € argmin,_;. R(f), then with probability at least — ¢, we have

, 8.3d+ 12.5log(2e71)
n

R(f)— R(f*) < (20 + H)

PROOF This is a direct consequence of Theorem 5.5 (page 25), Lemfa
(page 23) and Lemma 5.6 (page 207).

If we know thatf;, belongs to some bounded balldi,, then one can define a
bounded’ as this ball, use the previous theorem and obtain an exsskaund
with respect tof;;,.
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REMARK 4.1 Let us discuss this result. On the positive side, we hal/e.a&on-
vergence rate in expectation and in deviations. It has n@aéagjarithmic factor.
It does not require any particular assumption on the sniadigenvalue of the
covariance matrix. To achieve exponential deviations, ifotmly bounded sec-
ond moment of the output knowing the input is surprisinglffisient: we do not
require the traditional exponential moment condition om dlitput. Appendix A
(page 52) argues that the uniformly bounded conditionalsg@moment assump-
tion cannot be replaced with just a bounded second momeditcam

On the negative side, the estimator is rather complicatddexquires the knowl-
edge of aL>-bounded ball in whiclf;:, lies and an upper bound etip, ., E{ [V —
fin(X)]?|X = z}. The looser this knowledge is, the bigger the constant intfro
of d/nis.

Finally, we propose a randomized algorithm consisting awdng the predic-
tion function according t@. As usual, by convexity of the loss function, the risk of
the deterministic estimatgeem= | f7(df) satisfiesR( foeerm) < [ R(f)7(df),
so that, after some pretty standard computations, one cae gnat for any > 0,
with probability at least — &:

R famarm) — R(fiy) < (20 + 1 2 108ET)

n

for some appropriate numerical constant 0.

5. A GENERIC LOCALIZED PAC-BAYES APPROACH

5.1. NOTATION AND SETTING. In this section, we drop the restrictions of the
linear least squares setting considered in the other sedtiarder to focus on the
ideas underlying the estimator and the results present8ddtion 4. To do this,
we consider that the loss incurred by predictifigvhile the correct output ig is

{(y,y') (and is not necessarily equal t9 — v’)?). The quality of a (prediction)
function f : X — R is measured by its risk

R(P) = B{I]Y. £(X)]}.

We still consider the problem of predicting (at least) adaglthe best function in

a given set of function§ (butJ is not necessarily a subset of a finite dimensional
linear space). Lef* still denote a function minimizing the risk among functions
in J: f* € argmin..4 R(f). For simplicity, we assume that it exists. The excess
risk is defined by



Let/: ZxJF xF — R be afunction suchthdtZ, f, f') representshow worse
f predicts thary’ on the dat& . Let us introduce the real-valued random processes
L (f:f/) = E(meaf/) andLi : (f:f/) = E(Ziafaf/)’ WhereZazla--wZn
denote i.i.d. random variables with distributiéh

Let 7 and7* be two (prior) probability distributions ofi. We assume the fol-
lowing integrability condition.

Condition |. For anyf € &, we have

[ ElesplLir. ) ) < 4o (5.1)

7 (df)
and / TE{exp[L(f. {7 (df")

We consider the real-valued processes

< +00. (5.2)

L(f.f) = Z Li(f, 1), (5.3)
&(f) = log / explL(f. /)" (df'). (5.9)

L(f, f) = —nlog{E[exp[-L(f, f)]] }, (5.5)
L¥(f, f') = nlog{E[exp[L(f, f)]] }, (5.6)
and  &i(f) = 1og{ [ exp[LE(f, f’)}w*(df')}. (5.7)

Essentially, the quantities(f, /'), L*(f, f') andLi(f, ) represent how worse is
the prediction fromf than fromf’ with respect to the training data or in expecta-
tion. By Jensen’s inequality, we have

L’ <nE(L)=E(L) < L*. (5.8)

The quantities (f) and &*(f) should be understood as some kind of (empirical
or expected) excess risk of the prediction functjowith respect to an implicit
reference induced by the integral ogr

For a distributiorp on ¥ absolutely continuous w.r., let d—fr denote the den-
sity of p w.r.t. =. For any real-valued (measurable) functiodefined orn such

SWhile the natural choice in the least squares setting((iX,Y), f, f') = [V — f(X)]? —
[Y — £/(X)]?, we will see that for heavy-tailed outputs, it is preferaiol€onsider the following
soft-truncated version of it, up to a scaling factor 0: £((X,Y), f, f/) = T(A[(Y — f(X))? —
(Y — f/(X))?]), with T'(z) = —log(1 — z + 2*/2). Equality (5.4, page 20) corresponds to (4.1,
page 17) with this choice of functiaghand for the choice™* = .
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that [ exp[h(f)]7(df) < +o0, we define the distribution,, onF by its density:

dmy ) esplh(f)]
ax ) TPy

We will use the posterior distribution:

A

dr o dng o expl-é(f)
e Ly DO YT TS

(5.9)

Finally, for anys > 0, we will use the following measures of the size (or com-
plexity) of F around the target function:

7(8) = —log{ [ exp[~OR()] =" (df) |

and

33) = —log{ f exp[~BR()]m(df) }.

5.2. THE LOCALIZED PAC-BAYES BOUND. With the notation introduced in
the previous section, we have the following risk bound foy eandomized esti-
mator.

THEOREM 5.1 Assume thatr, 7%, F and ¢ satisfy the integrability conditions
(5.1)and (5.2, page 2Q)Let p be a (posterior) probability distribution off ad-
mitting a density with respect todepending o1, . . ., Z,. Let f be a prediction
function drawn from the distributiop. Then for anyy > 0, v* > 0 ande > 0,
with probability (with respect to the distributioR®"p generating the observa-
tions 71, . .., Z, and the randomized prediction functigh at leastl — «:

[ 12D+ RO pldh) = 1R(F)
<T(1) = 9(7) ~ log{ [ exp[-€X()] m(d) }
+ log [d—g (f)] +2log(2e71). (5.10)

PROOF. See Section 6.3 (page 48)]

Some extra work will be needed to prove that Inequality (pbf@vides an
upper bound on the excess FIRKf) of the estimatolf. As we will see in the next
sections, despite theyR(f) term and provided that is sufficiently small, the
lefthand-side will be essentially lower bounded,bgz(f) with A > 0, while, by
choosingp = 7, the estimator does not appear in the righthand-side.
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5.3. APPLICATION UNDER AN EXPONENTIAL MOMENT CONDITION The es-
timator proposed in Section 4 and Theorem 5.1 seems rathetunal (or at least
complicated) at first sight. The goal of this section is twofd-irst it shows that
under exponential moment conditions (i.e., stronger apsioms than the ones in
Theorem 4.1 when the linear least square setting is corsljlesne can have a
much simpler estimator than the one consisting in drawingatfon according to
the distribution (4.2) withe given by (4.1) and yet still obtain@&/n convergence
rate. Secondly it illustrates Theorem 5.1 in a different aimdpler way than the
one we will use to prove Theorem 4.1.

In this section, we consider the following variance and claxipy assumptions.

Condition V1. There exist\ > 0 and0 < n < 1 such that for any function

feTF, we have]E{exp{AE[Y,f X)}}} < 400,

og B {esp {3 7. 7000) - 7. (0] 1}

< AL +n)[R(f) — R(f)],

andlog{E{exp{—A[i[Y»f( )| =Ly (X ]}}}
< A1 =n)[R(f) = R(f)].

Condition C. There exist a probability distribution, and constant® > 0 and
G > 0 such that for any < o < (3,

oo (s —ro ) =7 ()

THEOREM 5.2 Assume tha¥1 andC are satisfied. Let(©bS) be the probability
distribution onJ defined by its density

drr(GPbe) 1) = exp{-A Y1, 1Y, F(X)]}
dm Jexp{=AX, 1Y, (XN} (df)
whereX > 0 and the distributionr are those appearing respectively\ti and C.
Let f € F be a function drawn according to this Gibbs distributionentfor any

n’ such thatd < " < 1 — n (wheren is the constant appearing 1) and any
e > 0, with probability at leastl — ¢, we have

CiD + Chlog(2e1)

n

R(f)— R(f*) <

with G(1+ :
log(=—") 2

C'=——" "' and C/=—F .

! A(l—n ') 2 MN1-n-7)

22



PROOFR We consider[(X,Y), f, '] = ML[Y, f(X)] — £]Y, f'(X)]}, where
A is the constant appearing in the variance assumption. L&gkesy* = 0 and
let 7* be the Dirac distribution af*: 7*({ f*}) = 1. Then Condition V1 implies
Condition | (page 20) and we can apply Theorem 5.1. We have

L(f, f1) = MY, f(X)] = {]Y, f/(X)]},

E(F) =AY (X)) = AD_ L[y, f1(X
= (é;blbs) =
L(f) = —nlog{E|exp[~L(f. )] }
&¢(f) = nlog{E[exp[L(f. ]|}
and Assumption V1 leads to:
tog{E[exp[L(f. /]| } < A1+ n)R(f) — R(f*)
and log{ B [exp [~ L(f, )] | } < X1 = mIR(f) = B(f)].
Thus choosing = 7, (5.10) gives
(1 —1n) —~]R(f) < =I(7) + I[An(1 +n)] + 2log(2e7).
Accordingly by the complexity assumption, for< An(1 + ), we get
_ . G n(1+n) 1
(1 — ) — 2] R(f) < Dlog (f) +2l0g(27Y),

which implies the announced resulil
Let us conclude this section by mentioning settings in wlaiseumptions V1
and C are satisfied.

LEMMA 5.3 Let © be a bounded convex setBf, andy, ..., ¢, bed square
integrable prediction functions. Assume that

F= {f@ j 1 ]@]7(‘917"'7‘96066}7

7 is the uniform distribution o (i.e., the one coming from the uniform distribu-
tion on@) and that there exidt < b; < b, such that for any; € R, the function
éy -y — {(y,y') admits a second derivative satisfying: for ayfye R,

by < 7(y) < by,

Then ConditiorC holds for the above uniform, G = /b2 /b, and D = d.
Besides wherf* = fi (i.e.,mingy R = minycgra R(fy)), ConditionC holds for
the above uniformr, G = by /by and D = d/2.
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PROOF. See Section 6.4 (page 49)]

REMARK 5.1 In particular, for the least squares 166, /) = (y —y')2, we have
by = by = 2 so that condition C holds with the uniform distribution o, D = d
andG =1, and withD = d/2 andG = 1 when f* = fi.

LEMMA 5.4 Assume that there exi8t< b; < by, A > 0 and M > 0 such that
foranyy € R, the functlonSZ cy £(y y') are twice differentiable and satisfy:

foranyy’ € R, by < 0I(y) < by, (5.11)

and for anyr € X, E{exp [A‘l\f}[f*(X)]u )X = x} < M. (5.12)
Assume thaf is convex and has a diametéf for L>°-norm:

sup | fi(z) — fa(2)| = H.
f1,f2€F,2€X

In this case ConditioW1 holds for any(\, n) such that

2

AA
n > o exp [MZ exp(Hbg/A)} :

and0 < \ < (2AH)~! is small enough to ensure< 1.

PROOF. See Section 6.5 (page 51

5.4. APPLICATION WITHOUT EXPONENTIAL MOMENT CONDITION. Whenwe
do not have finite exponential moments as assumed by Conditio(page 22),
e.g., whenE{exp{ \{{[Y, f(X)] — {[Y, f*(X)]}}} = +oc for any X > 0 and
some functionf in &, we cannot apply Theorem 5.1 Wlﬂ{ (X,Y), f, f]

MY, f(X)] —£[Y, f/(X)]} (because of thé* term). However, we can apply it
to the soft truncated excess loss

XYL 0] = T(MEY S(0)] = 1Y, F(X)]}),
with T'(x) = — log(1—x+22/2). This section provides a result similar to Theorem
5.2 in which condition V1 is replaced by the following condit.

Condition V2. For any functionf, the random variablg[Y, f(X)]—([Y, f*(X)]
Is square integrable and there exiBts> 0 such that for any functiorf,

B{ 11, £00) - v, (0] |} < VIR() - RO
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THEOREM 5.5 Assume that Conditioné2 above andC (page 22) are satisfied.
Let0 < A < V~!tand

AXY) LS =T(MIY fO] = Y. /(X)) (513)
with
T(z) = —log(1l — x + 2%/2). (5.14)

Let f € F be a function drawn according to the distributiégndefined in(5.9,

page 21with & defined in(5.4, page 20pnd=* = = the distribution appearing
in ConditionC. Then for any0 < ' < 1 — AV ande > 0, with probability at

leastl — ¢, we have

C1D + Cylog(2e™1)

R(f)—R(f") <V

n
with
log (S 9
C’—# and C)=——— and n=\V.
Yon(l—n—17) > p(l-n—1n)

In particular, for A = 0.32V ! andy’ = 0.18, we get

RF) — R(f) < [ 166D + 12.5log(2v/Ge™1)

n

PROOF We apply Theorem 5.1 fatgiven by (5.13) and™ = . Let
W(f, f') = ME[Y, F(X)] =LY, f'(X)]} foranyf, f' € 7.

Sincelog u < u — 1 for anyu > 0, we have
L' = —nlogE(1 — W +W?/2) > n(EW — EW?/2).
Moreover, from Assumption V2,

w <EW(f, 2 +EW(f, )2 < X2VR(f) + NXVR(f), (5.15)

hence, by introducing = AV,

L(f, ') = Mn[R(f) = R(f) ~ \VR(f) — \WR(f")]
= Xn[(1 = )R(f) — (L+ )R], (5.16)
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Noting that

1 o l4u+d ltut s u?

eXp[T(u)] - 1—u+u2/2 (1+“72)2—u2 Cl+Y T

we see that
L¥ = n1og{E| exp[T(W)]] } < n[BE(W) + E(W?) /2],
Using (5.15) and stilh = AV, we get

LE(f, f') < Mn[R(f) = R(f') +nR(f) + nR(f")]

and )
EH(f) < M1+ n)R(f) — I(An(1 —n)). (5.17)

Plugging (5.16) and (5.17) in (5.10) fpr= 7, we obtain

(1 —=n) = AIR(f) + [v" = (L + )] [R(f)m_yem(df)
<I(v) = I() + I(An(1 +n)) = I(An(1 - n)) + 2log(2e™").

By the complexity assumption, choosing= An(1 + n) andy < An(1 —n), we
get

(1 =) — (7)< Diog (G2 4 g1ogee),

hence the desired result by considering Ann’ withn’ <1 —n. O

REMARK 5.2 The estimator seems abnormally complicated at firstt.sighs
remark aims at explaining why we were not able to considemalgr estimator.

In Section 5.3, in which we consider the exponential momemiddion V1,
we took¢[(X,Y), f, f'] = ML[Y, f(X)] — £[Y, f(X)]} and7* as the Dirac
distribution atf*. For these choices, one can easily check thabes not depend
on f*.

In the absence of an exponential moment condition, we cacwmgider the
function¢[(X,Y), f, f'] = MI[Y, f(X)] —£[Y, f'(X)] } but a truncated version
of it. The truncation functiorf” we use in Theorem 5.5 can be replaced by the
simpler functionu — (u Vv —M) A M for some appropriate constaff > 0
but this would lead to a bound with worse constants, witheatly simplifying
the algorithm. The precise choi@z) = —log(1 — x + x?/2) comes from the
remarkable property: there exist second order polynomtahnd P* such that
P+W < exp[T(u)] < P*(u) andP’(u)P*(u) < 1+ O(u*) for u — 0, which are
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reasonable properties to ask in order to ensure that (h8);@sequently (5.10),
are tight.

Besides, if we take as in (5.13) withT" a truncation function and* as the
Dirac distribution atf*, then7 would depend onf*, and is consequently not
observable. This is the reason why we do not consides the Dirac distribution
at f*, but7* = 7. This lead to the estimator considered in Theorems 5.5 dnd 4.

REMARK 5.3 Theorem 5.5 still holds for the same randomized estinmatohich
(5.14, page 25) is replaced with

T(z) = log(1+ x + 2%/2).

Condition V2 holds under weak assumptions as illustratedhleyfollowing
lemma.

LEMMA 5.6 Consider the least squares settif@y, ') = (y —y')2. Assume that
F is convex and has a diameté&f for L°>°-norm:

sup | fi(z) — fo(2)| = H
f1,f2€F,2€X

and that for some > 0, we have

sup E{[Y — f*(X)]*|X =z} < 0? < +o0. (5.18)

zeX
Then ConditiorvV2 holds forV = (20 + H)?.
PROOF. See Section 6.6 (page 52)

6. PROOFS

6.1. RROOFS OFTHEOREMS2.1AND 2.2. The proofs rely on the use of PAC
Bayesian inequalities. To shorten the formulae, we wilkeul for ¢(X), which
is equivalent to considering without loss of generalityt tthe input space iR¢
and that the functiongy, . . . ,ip4 are the coordinate functions. Therefore, the func-
tion f, maps an input to (0, z). With a slight abuse of notatio®(¢) will denote
the risk of this prediction function.

Let us first assume that the matep = )+ A1 is positive definite. This indeed
does not restrict the generality of our study, even in the easen\ = 0, as we
will discuss later (Remark 6.1). Consider the change ofdioates

X =Q,'*X.
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Let us introduce

so that
D) 1/2
R(Q)?0) = R(0) = E[((6, X) = Y)’]
Let
0={QY%;9co}
Consider
1 & 2
= - X)) =Y A
r(0) = ;(w, )= Yi) (6.1)
1 & —
T(O) =~ (0. X0~ V)", (6.2)
i=1
fo = arg min R(0) + A Q5 /0|2, (6.3)
0cO
0 e argr@rélélr(ﬁ) + A%, (6.4)
0 = QY0 € argminT(0) + Q3" ]* (6.5)
S

Fora > 0, let us introduce the notation
Wi(0) = of (0.3 = ¥i)* = ({60, %) - v3)°},
() = a{(<9,7> —Y)’ = ({0, X) — Y)Q}.

For anyd, € R? and3 > 0, let us consider the Gaussian distribution centered
at92 y
d/2
po, (dO) = (%) exp <—§||9 — 92||2> do.

LEMMA 6.1 Foranyn > 0 anda > 0, with probability at least — exp(—n), for
anyé, € R,

— [ pe, (dO) log{l —E[W(9)] + E[W(6)*] /2}

< =3 (foun(d6) Yo 1 = TW(O) + Wi(6)*/2} ) + Koo, p0,) + 1,

i=1

whereX (py,, pg, ) is the Kullback-Leibler divergence function :

g o) = [ o) o] L2(0)]
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PROOF

" Wi(0) + Wi(0)2/2
E(f%(de)g ETW ()] T [<e>2]/2>§1’

thus with probability at least — exp(—n)

d 0) + W0/
k’g(f%degl EW(0)] + E[W <>]/2>§”‘

We conclude from the convex inequality (see [7, page 159])

log (fpﬁo(de) eXp [h(@)}) > fpﬁz (d@)h(@) - K(pew p@o)'

0]
Let us compute some useful quantities

K(pos» pay) = g”ez — 0lI?, (6.6)
[ 062 (d0) W ()] = a5, (d0)(6 — 6, ) + W(62) = W (o) + a ”);”2,
w0 — 02, Xy = 221 6.7)

S o, (dO)[W (0)2] = 0 [ pg, (d0)(0 — 0y, X)* ({0 + 6y, X) — 2Y)”
= 0 [ oy (d0)[ (0 — B + 02 — 00, ) ({0 — 02 + 02 + 00, ) — 2y)]2
e [ (0~ 0, )7 + 206 — 0, X) (62, X) — V) + W(bo)]
= [ e, (d6) [a (0 — 02, XY+ 402(0 — 05, X)2 ({02, X) — Y)* + W (6,)2

4200 — 6, Y)?W(HQ)}

= 3042227”4 N 20é||67||2 |:20é(<92,7> — Y)2 4 W(Hg)] + W(92)2 (68)

Using the fact that

20 ({62, X) = ¥)" + W(62) = 20((60, X) = Y)* + 317 (62),

and that for any real numbe#isandb, 6ab < 9a* + b%, we get
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LEMMA 6.2

o) W@ = W) + ol (6.9
Jona(an) [ (0)2) = we)? + 2 o (00,3~ v)* 4 3w (0)|
730‘2227”4 B B (6.10)
< 10w oy + I (g %) vy 4 %,
(6.11)

and the same holds true whén is replaced withV; and (X, Y) with (X, ;).

Another important thing to realize is that

E[|X|J?] = B[Tr(X X )] — B[Tr(Q;*XXTQ;"?)]
=E[Tr(Qy' XX")] = Tr[Qy'E(XXT)]
=Tr(QH(Qr— M)  =d-ATr(QyY) =D. (6.12)

We can weaken Lemma 6.1 (page 28) noticing that for any reaibeux,
r < —log(l —z) and

ool 1 +a72 o 142+ 2%/2
— —x R — S
& 2 S\ T tai/4
2

x? x
< log 1—|—m+5 Sx—l—?.

We obtain with probability at least— exp(—n)

nE[W(0)] + %O‘E[Hmﬂ — 5nE [ (62)°]

_ E{Lﬂw ({60, %) — V) + 72”0‘;”27”4}

< i{w,-(ez) £ 50,

al Xol* | 220X, < 2 | 207X
+ 0 X)) —-Y) +——
ﬁ 6 (< 0 > ) 52
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+ §||92 — ol]* + .

Noticing that for any real numbetsandb, 4ab < a® + 4b*, we can then bound

OA_2W(¢92)2 = <¢92 - 90, X) (<92 + 90, - 2Y)
— (0, — 90,Y>2[<92 B0, X) + 2({b0, > )]2
= (03 — 00, X)" + 40 — 00, X)* ({60, X) = Y)

+ 4(65 — B9, X)2({bo, >—Y)2
< 2(0y — 5, X)* + 8(05 — 6, X)2 ({60, X) — V).

THEOREM 6.3 Let us put

1 . _
= §||X-||2 (let us remind thab = E[||X[|*] from (6.12)),
- 2 |: 90, Y)ﬂ y
2 o )
;g[ (60 X0) = %)’
B, = 2B|[X1"].
By= 2 Y I

=1

B; =40 sup{E[(u,Y>2((Ho,7> - Y)2} cu € R [Jul| = 1},

Bg = Sup{lllr? Z(u,72>2(<90,72> — }/;)2 Tu € Rd, ||U|| = 1},

i=1

B, =10 sup{E[(u,Y)ﬂ tu € RY ul| = 1}7

10 —
B4 = Sup{ n Z<U7Xi>4 :u € RY, Jul| = 1}'

=1

With probability at leastl — exp(—n), for anyd, € R?,
E[W(eg)} — {naz(Bg + B\g) + g] ||92 — 90”2
— na*(By + By)||62 — 6o|*
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n 2 2
§2W(92) n;(D—D)+%(B1+§1)—i—ﬂ;.;(Bz—i-Ez)—l—

Let us now assume thdy € © and let us use the fact théktis a convex set
and thatfy = arg min,_g R(0) + A|Q; "/*6||2. Introduced, = arg mingega R +
M@ /%6]12. As we have

R(0) + NQy*0)1* = 16 — 6.]> + R(6.) + A|Qy 6.2,

the vectord, is uniquely defined as the projection @f on © for the Euclidean
distance, and for an§, € ©

QT E[W (62)] + M Q5762 — AQ5 26,2

= R(6;) — R(60) + M| Q) %6051 — A Q5 %60
= (16> — 6.]> — ||6o — 6.
= [|62 — 60| + 2(02 — o, 60 — 0.) > [162 — 6o |*.

This and the inequality
12 Wil61) + nAIQ) 20017 — nA Q5266 1* < 0

proves

THEOREM 6.4 With probability at least — exp(—n),

R(0) + M1 — inf [R(6) + Al|6]°]
= o 'E[W(0)] + M@y 20> — M@y 26|

is not greater than the smallest positive non degenerateabite following poly-
nomial equation as soon as it has one

{1—[ (Bs + B3) + }}x—a(B4+B4)

1, ~ -~ a ~

= E<D - D)+ 5(31 + By) + E(B2 + By) + i
PROOF Let us remark first that when the polynomial appearing inthie®rem
has two distinct roots, they are of the same sign, due to fredfi its constant
coefficient. Let(2 be the event of probability at least— exp(—n) described in
Theorem 6.3 (page 31). For any realization of this event fuctvthe polynomial
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described in Theorem 6.4 does not have two distinct positioes, the statement
of Theorem 6.4 is void, and therefore fulfilled. Let us coesidow the case when
the polynomial in question has two distinct positive roots< z,. Consider in
this case the random closed convex set

O ={0 €0 :RO) +A|0|° < inf [R(O) + X|¢']|°] + =52},

Letfs € argmin,_g R(F)+ A||0]|*> andf, € argmingee R(0) + A||6]|*. We see
from Theorem 6.3 that

.T1—|—JI2

R(63) + MOs[* < R(60) + Mbol* + —5—, (6.13)

because it cannot be larger from the constructio@opn the other hand, since
© C 0, the line segmens, 04] is such thatfs, 0,] N © C argmin, g R(0) +
Al|6]|%. We can therefore apply equation (6.13) to any poiripefé,] N ©, which
proves that it is an open subset|[6f, 0,]. But it is also a closed subset by con-
struction, and therefore, as it is non empty ahdé,| is connected, it proves that
05, 64] N O = 05, 0,], and thus tha#, € ©. This can be applied to any choice
of 05 € argming_g R(0) + A||f||* andf, € argmingg R(0) + A||6]|?, proving
thatarg minge R(6) + A||0]|* C argmin,_g R(0) + A||#||* and therefore that any
6, € argmingeo R(0) + A||0]|? is such that

R(6:) + M6s]]” < inf R(8) + A6 + 1.

because the values betweenandz, are excluded by Theorem 6.8

The actual convergence speed of the least squares estthwater will depend
on the speed of convergence of the “empirical bourfglstowards their expecta-
tions. We can rephrase the previous theorem in the followioge practical way:

THEOREM 6.5 With probability at least

4
1—-P(D>D+mn) — ZIP(Bk: — By > mi) — exp(—1ns),
k=1

R(0)+)0]|> —infoco [R(0)+A||6]1?] is smaller than the smallest non degenerate
positive root of

{1 — [a(2B3 +13) + 5] }x — a(2By + n4)2”

2na

o | & o "5
3 + 5(231 +m) + @(232 +12) + . (6.14)

33



where we can optimize the valuescof> 0 and 3 > 0, since this equation has
non random coefficients. For example, taking for simplicity

1
‘= 8B3 + 4’/]37
no
ﬁ - 77
we obtain
2B4 + 774 2 16770(233 + 773) SBl + 47]1
4B3 + 27]3 n n
n? n )

6.1.1. Proof of Theorem 2.1.Let us now deduce Theorem 2.1 (page 13) from
Theorem 6.5. Let us first remark that with probability at telas ¢ /2

_ B
D<D+y/=2,

EN

because the variance bfis less tharB,. For a givere > 0, let us take), = ,/%,

m = B, TNy = B, N3 = B3 andn4 = By. We get thatR,\(G) — inf9€@ R,\(H) is
smaller than the smallest positive non degenerate root of

B 48B3 | B 128 2888y B 241og(3/¢)B
e 3 _2+ 1+ 23_|_ 0g(3/¢)Bs
2Bs n ne n n? n

Y

with probability at least

4
1-22_N"P(B,>B .
G ; (B e+ k)

According to the weak law of large numbers, there.isuch that for any, > n,.,

4

> P(By > B +m) < /6.

k=1

Thus, increasing.. and the constants to absorb the second order terms, we see
that for somen. and anyn > n., with probability at least — ¢, the excess risk is
less than the smallest positive root of
B4 2 1331 24 lOg(B/E)Bg
= + .
2Bs n n
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Now, as soon asc < 1/4, the smallest positive root of — az* = cis ; m
This means that for large enough, with probability at least- ¢,

15B 251 B
Ry(0) — inf B (0) < 5n1+ 51og(3/¢)Bs

n

which is precisely the statement of Theorem 2.1 (page 13{p spme change of
notation.

6.1.2. Proof of Theorem 2.2L et us now weaken Theorem 6.4 in order to make
a more explicit non asymptotic result and obtain TheoremR2.@m now on, we
will assume that\ = 0. We start by giving bounds on the quantity defined in
Theorem 6.3 in terms of

B= sup LF1I5/ELF (X))

fespan{e1,....0q}—{0}

Since we have
X2 = Q5 *X|? < dB,

)
I
S |-
-
B
A
QU
&

o2
|
3
>
T
=
&
s
|
=
N~—
N
A
[\
U
o>
=
~

ZHX |4 < 24> B?,
By = 40 sup{E[<u,X> (60, X) = V)] s e RY, [lul| = 1} < 40B R(f*),
BS - Sup{%,? ;<u772>2(<90772> - Y;)Z ru € ]Rd> ||u|| = 1} < 4OBT(f*)>

By =10 sup{E[(u,Y)‘l] cu € R |ul| = 1} <108

10 —
B, = sup{ - Z(u,XQ‘l cu € R ul| = 1} <1082

i=1
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Let us put

_ 24B + 4dBa[R(f*) +r(f)] +n 168’0

ag =

an an?
ay = 3/4 — 40aB[R(f*) + r(f*)),

and
as = 20aB?.

Theorem 6.4 applied with = na/2 implies that with probability at least — 7,
the excess risiz(f©™) — R(f*) is upper bounded by the smallest positive root
of a;x — ayx® = ay as soon ag? > 4aga,. In particular, setting = exp(—n)
when (6.15) holds, we have

R(fe™) — R(f*) < 20 209,

0
< < —
a; +\/a? — dagay ~ @

We conclude that

THEOREM 6.6 For anya > 0 ande > 0, with probability at leastl — ¢, if the
inequality

n n

% ((2 +4a[R(f*) + r(f*)))Bd + log(e 1) . <4Bd) 2)

< (% — A0a[R(f) + r( f*)]) (6.15)

holds, then we have

(2 + 4a[R(f*) + r(f*)])Bd + log(s™) N <4Bd)2 |

n

mﬂm%—RUﬂga<

whereJ = 8/(3a — 1602 B[R(f*) + r(f*)])
Now, the Bienaymé-Chebyshev inequality implies

E(r(f*) — R(f))
2

2

P(r(f*) — R(f*) > t) < < E[Y — f(X)]*/nt’.

Under the finite moment assumption of Theorem 2.2, we obkanhfor anys >
1/n, with probability at least — ¢,

r(f) < R(f) + VEY - f(X)]"
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From Theorem 6.6 and a union bound, by taking

a = (S0B2R(f") + VEY — (X))
we get that with probability — 2¢,

R(fe™) — R(f*) < 313<3Bd'“°g(5_1’ + <4Bdl) ) (6.17)

n n

with J; = 640 (23( 1)+ B{1Y - f*(X)]4}). This concludes the proof of
Theorem 2.2.

REMARK 6.1 Let us indicate now how to handle the case wijes degenerate.
Let us consider the linear subspatef R? spanned by the eigenvectors@tcor-
responding to positive eigenvalues. Then almost surelpfpai =1,...,n} C
S. Indeed for any in the kernel ofQ, E((f, X)?) = 0 implies that(d, X) = 0
almost surely, and considering a basis of the kernel, welsgekxt € S almost
surely,S being orthogonal to the kernel Gf. Thus we can restrict the problem to
S, as soon as we choose

A . 2
0 e span{Xl, o ,Xn} N arg memZ((@, X;) — Y;—) ,

i=1

or equivalently with the notatioX = (¢;(X;))1<i<n.1<j<a @NAY = [V}]7_,,

0 e imXTﬁargmGinHX@—Y||2

This proves that the results of this section apply to thicspehoice of the em-
pirical least squares estimator. Since we hife= ker X @im X*, this choice is
unique.

6.2. RROOF OFTHEOREMS3.1AND 3.2. Asin Section 6.1, to shorten the for-
mulae and without loss of generality, we consider that tipaiispace idR? and
that the functiong, . . ., ¢4 are the component functions, so that [p;(z)]7_,.
Therefore, the functiorf, maps an input: to (0, z). With a slight abuse of nota-
tion, R(¢) = E[((9, X) — Y)?] will denote the risk of this prediction function.
Without loss of generality, we may also assume that the radtor belongs t®
(otherwise it suffices to repladé with Y — (6,, X') for some arbitraf, € ©).
Let us come back to the general setting of ridge regressiom the previous

section. The vector of coefficients ¢f the minimizer of the expected ridge risk,

is 6 € argmin,_o R(9) + \||0||>. Leta > 0,3 > 0 and
W0, = a[((Q,X) —Y) - (0, X) - Yﬂ
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=a(f -0, X)((0+60,X)—2Y),
W,(0,6) = a[((@,Xi) —Y)’ = (0, X) — Yﬂ .
As in Section 6.1, we consider the change of coordinates
X =0Q;'’x,

with @, = Q + AI. Let us put for shorf2,(6) = R(6) + )||0]|*. We will use some
constants from the previous section, namely

By = 40 sup{E[<u,7>2(<e,X> ~Y)*] s u e RY |Jul| = 1},

— 40 sup{E[(v,X)2(<9, X)=Y)"] v e REE[(v, X)2] + Av]2 = 1},
By = IOSup{E[<u,Y>4} u e RY [|u]| = }

- 1osup{E[<v,X>4} veRLE[(v, X)) + Ao||> = 1}.

For anyd € ©, we have
SE[IW(6,6)] < o (10E<9 — 0, X)* + 400”E(0 — 0, X)*((0, X) — Y)?)
<a?(BilIQY? (0 - B)II* + By Q)0 - )

and

1 R\(0) — RA(0)
Gmin + )\ Gmin + )\ .

The computations done to obtain Lemma 6.2 are still validifand 6, are
respectively replaced b¥ andd. So we have

16— 4||> < 1QY? (0 —6)|* =

) W0, 00) = W30, 0) + o250
0o, (d0) [Wi(0,0)*] = Wi(0,0)* + %ﬁg”z [2a(<eo,Xi> — )"+ 3Wi(6s, é)]
30| X!
[

By Jensen’s inequality, we get

n

> - log{l + Wi(62,0) + W2(0,,0)/2 + %Hxinz

i=1
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+ S Ra(0.5) - Y+ 30i020)] + 21X
_Z log{fp92 (d0)[1 + Wi(6,0) + W20, ) /2 ”

<Z S0, (d6) log[1 + VW:(6,0) + W2(0,6) /2]

- _M(97§)+m2(979)/2
= ;f,%(d@) log ( W04 )

Now, by using Lemma 6.1 and Inequality (6.6) (up to apprdpnminor changes),
with probability at least — ¢, for anyé, € O,

Z Jpe.(d6) log [1 — W;(6,0) + W2(6,0) /2}

< [ pg, (d6) log[l —E[W(6,0)] + E[W?(, é)}/z] + §||92 — 4|2 —log(e).

Therefore, with probability at least— ¢, the following holds for any, € ©,

n

> - log{l + W;(62,0) + W2(6,,0) /2

=1
- %HXAF - 9||Xir|2 2a((6, X.) = Yi)* + 3Wi(6,0)]
# I+ nan (1012 - el
< [ pg, (d6) 1og[1 —E[W(0,0)] + E[W?(0,0)] /2]

+naX(10]2 = [1621?) + §H92 — 0> log(e)

< —nlog [ pa, (d6)E[W(6,0)] + 3 [ o0, (dO)E[17(6,)]
+naX (1012 - [1621) + §||92 — 0>~ 1og(e)

= —nE[W(f,0)] + 5nE[W2(02,0)] + naX(]|0]]> — [|6=]%)
2na?

+ SSE[IXI?) + ZE-E[IXIP(6.X) - V) + |1 X]]
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+ 2110, — 011 — togc)
< n(Bsa?® —a>u@”2< — )| + nBi?|QY* (6, — 0)|*

2na? 2 4
+F]E[||X|| ] +TE[||X|| (0,X) = Y)" +|IX]| ]
+ 210, - 017 — 1og(e)

g
< |+ m

+nBia?|QY (02 — O)||* +

+ nBsa® —na} ||Q1/2( — )|

B{IX]7]

ﬁ
+ 2B [IXIP(0,X) = V)" + X ] — log(e)

Assuming all the necessary constants are known, we get adeang region
ford :

LEMMA 6.7 With probability at least — ¢, for anyf, € ©, we have

n

> - log{l + W;(62,0) + W2(6,,0) /2

i=1

+ %HXAF + gnxiuz 2a((0, X,) — Vi) + 3Wi(62,0)]

# S+ e (117 - 0a1?)

I} 209 _ G
2(qmm+A)+nB?’a _"QMQ (0=~ O
+nBi?| QY0 = Ol + T B[IX ]

2
+%E[||X|| ({6, X) = ¥)" + |1 X[1*] = log(e).

In order to get an estimator with some known generalizataumid, let us min-
imize the lefthand-side of the lemma éh For this we need to substitufewith
some randomly chosehaccording tgpy, . Unfortunately, we cannot make things
completely explicit.

Let us remark first that

LEMMA 6.8 For anyf; € ©, we have
fp€1 (dﬁ’)fp92 (df) [W(eu ‘9/)} = W(02,01),
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o0 o @0) [2(0,0) = w202, 00) + 2 o0, x) )
+2((62, X) — V)°| + 40‘225(”4.

2

PROOF

S (8 s 8) [W2(6.6)) = o () { 1(62,0)
2] X : 1L 3e2lX )
+ o 3 [204((92,X>—Y) +W(«92,9)]}+ 72
— W2(6y,0,) + 20‘”;(“ [2a(<92,x> —Y)* + W (6o, 61)

2 ? ’
_ a@ +2a((01, X) = Y)* + W(el’%)} = g;XH

2

— W2(6y,6,) + 20‘2%X||2 [2((91,X> )
+2((0, X) — Y)z] v %.

O
We see that with probability at leakt- ¢, for anyf, € ©,

=3 Joa(at" o Fon (a0) [147730,0) 1206, 8)/2] o (1021
< [ ps(d0) [ ps, (d6) log [1 —E[W(0,0)] + E[W2(0,0) /2}]
+naX([16]1° — 162]1%) + gll% — O[> — log(e)

< nE[W (0, 05)] + nar(||6]2 — 62]%) + gE[W2(92, 0)]

LR {Q”O‘EX”Q 20((8.X) = )+ W(0:,0) } + 27;2‘2E[||XH4]

+ 210, - 017~ 1og(e)
< na [Rx(é) — R,\(ez)} + %E[Wz(‘g% éﬂ
Ana? 9015 2] | 3na’ 4
+ T E[IXIP(0.5) - v)] + B (X))

+ 2110, — 011 — togc)
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B 3 Y20 G 1/2 ~
< gy g [ BGY 6~ 0] - 0 1@ - D

4na’ 2 3na? 4
+ =G BIXIP(@,X) = ¥)*] + T B[IX )]~ loa(o)

On the other hand, with probability at ledst ¢, for any6; € ©,

=3 [ on.at) log{ [p5(d6) [1 + W0, 0) + W2(0,0) /z] }
+naX[||6:]* - 116]°]
> —n.[ pp, (d6)) log{ [ps(d) [1 +E[W(0,0)] + E[W(0,0) /2}] }

+naA (10417~ 1817] — 56— 011 + o(e)
> —nE[W(0,6,)] — SE[W2(6,6,)]

+naA {1612 = 1917) — 2 16: — 81" +los(e)

E{IX]"]

> na[R(6h) — Ra(@)] — S E[17(6,5)]

Ana’ 3na?

~ =5 E[IX (0. %) = v)*] - B

— é[|91 — §|| + log(e)

ﬂ 3 1/2 2 o
zn{a—m—ﬁa B3+ BillQY* (61 - 0)] ]} [Ra(61) — Ry (0)]
- (8, X%) — V)] + ZCB[X)) + o)

g 32

We have proved

THEOREM 6.9 Let © be some closed convex setst Letd = argming R, =
arg mingeg R(0) + A||0]]%. Letn > 0 be a quantity that will characterize the
precision in minimizing the empirical criterion. Let us ube notation

arg (min-+n) f(8) = {# € © : f(f) <inf f +n}.
0€o

With probability at least — ¢, for anyn € R, any estimator satisfying
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n

. 1
6 € arg (min+n) sup —— Z [ e, (d8") log{fp92 (df) [1
01€60 606 TN i—1

FW(6.0) + m2<9,9'>/2]} SN

= arg (min+n) sup —— Z [ pe, (d6") log{l + Wi(09,0') + W2 (0,0') /2
6,1€0 02€0 :

+ S+ P 20 (40, 0 — )+ 3060, 0] + S5 1%, a
+ a6 ]” -~ 6.1

Is such that
{am gl — e[+ UG - O] b [sl0) - a0
<swd oD R (Bt B G- DI o 106 - D)
" %E[nxn (0.) )] + %E[nxnﬂ + Zlog(2s) 4.

Moreover

1020 — 0)|> = E((0 — 6, X)2) + A6 — 0]
<6 - éﬂ sup B((v, X)?) + A]

veR? |jv]|=1

6.2.1. Proof of Theorem 3.1From Theorem 6.9, it is enough to remark from the
definitions thatB; < 4002, B, < 10, and to bound

B = 3 S B(xEx?)

k=1 (=1
d d 1 2 1/2
<SOSR PEXD Y < (G + A
k=1 (=1

6.2.2. Proof of Theorem 3.2Let us now concentrate on the case wheg: 0,
meaning that we do not use a ridge penalty. Under the assomsptif Theo-
rem 3.2, we have

Bs < 40B R(f*) < 40B o?,

and
B, < 10B2.

43



Besides we have
1QY2(6 — 0%)|> = E[(6, X) — (0", X)]" < H?
and

d
IXI1* =D 9i(X) < dH?,

Now let us chooser = [12B(40% + BH?)|"! and8 = nagu, so that we have

B 3 5 1205 p*\ (|2
_ — >
T 10a [Bg+B4HQ O =09 > a/4

From Theorem 6.9, we obtain that with probability- ¢,

A 2 24d? H* 8 4
R() — R(6") < 2 (am?o?) + 2000 8 gty 4 2,
Nmin an?¢@..  na «

which is the desired result (when appliedjte- 0).

6.2.3. Computation of the estimator-rom Theorem 6.9, we see that we do not
need to minimize exactly the empirical quantity appearmgheorem 3.2. Let us
show how to make an approximate optimization. With the naetf Section 6.2,
let us introduce

n

F(60,,6,) = —% Z [ pe, (d0") log{fpg2 (df) [1 + Wi(0,6") + W2(6, 9’)/2] }

+na[[6:]1* = [162]7]-

The computation of”” involves computing some expectation with respeat;to
As we need only to compute approximately the minimunsf,, .o £'(01,6-),
we can use the obvious lower bound :

f(b1,00) = —— Zlog{ o, (d6') [ pe, (d) [1 + W;(6,0") + VV,-Q(H, 6")/2] }
+ naX[[|61]* — [162]%]-

This auxiliary functionf can be computed explicitely, using Lemma 6.8 (page
40):

91,82 ———Zlog{l— 81,‘92)+W (91,92)/
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2071 X;*

T

[((91>Xi> — V)" + ({65, X) — Yiﬂ i %}

+na[[|6n]* = [162]%].
The convexity oft — — log(x) ensures that for an§, 6, € R,
f(61,62) < F(61,05).
Therefore, for any;, 6, € ©

sup F(él, 92) — inf sup F(Hl, 92)

62€0 01€0 g,c0
< sup F(61,6,) — inf sup f(61,6,)
62€0 01€0 g,ec0
S sup F(él, 92) — inf f(Hl, ég)
0,0 0,1€0

Since we do not want to computep,, ¢ F(0,,6,) either, we may now introduce
the upper bound
F(61,05) < g(61,6),

where
g(01,05) = % Z log{fpgl(de/)fp92(d9) [1 + Wi(@',0) + W26, 9/)/2] }

+ noz)x“|91||2 - H92H2}'

Of course g can be computed explicitely, similarly ta

1 n
9(61,0,) = Zlog{l W00, 0) + W2(01,02),2
n i=1

2071 X|*
_l’_ -

2OzzllXill“}
s

|:(<917X2> - }/;)2 + (<92,X2> — }/;)2:| + T
+na[[|0u]* — 1162]7].

PROPOSITION6.10 For anyd;, 6, € ©

sup F(6;,0) — inf sup F(6;,6)

6,€0 01€9 g,co
< sup g(61,0,) — inf sup f(6y,0,)
62€0 01€0 g,co
< sup g(b1,6>) — inf f(6y,0).
) 0,€0
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This results shows how to obtain an empirical estimate ofléfault of optimality
n in Theorem 6.9 (page 42). In view of this, a sensible choicesbimator is to
take L

0, =20 i 01,06,).

1 = b5 € arg min 682%%9( 1,62)

6.3. RROOF OF THEOREM 5.1. We use the standard way of obtaining PAC
bounds through upper bounds on Laplace transform of apptemandom vari-
ables. This argument is synthetized in the following result

LEMMA 6.11 For any real-valued random variablé such thatE [exp(V)] < 1,
with probability at leastl — ¢, we have

V <log(e™h).

LetVi(f) = [ [L(F, )+ 7" RO ld) ~ 2R (F)

=3+ 90 +1os ([ ep[-E)]wlan) ~1og (7)),

andV; = —log (/exp [—é(f)]w(df)) + log (/exp[—ﬁ(f)}ﬂ(df))

To prove the theorem, according to Lemma 6.11, it sufficesdoethat

B{ [ exp[Vi(f)]p(df)} <1 and B[ exp(Va)p(df)] <1
These two inequalities are proved in the following two satdi

6.3.1. Proof oﬂE{f exp [Vl(f)}p(df)} < 1. From Jensen's inequality, we have

From Jensen’s inequality again,

~&(f) = ~tog [ explL(F. )] ()
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~ log / exp[L(f. ) + 7" R(A)] " p(df) — log / exp|—7* (/)] (df)
< / (L(F, )+ 7 RO pldf) + (7).

From the two previous inequalities, we get
W < [ LD+ 7 RO ald)
+log / exp[(f, ) = L(f, )7 (df) = vR(f)
=) 490) +log [ expl-E(]atan) ) - 1os| (7).
_ / [L(f, )+ v R(H)|7" . pldf)
+log / exp[L(f, ) = L(f, )7 (df) = v R(f)
~ )+ 90) - €1 - 1os | 207

< log / exp[L'(F, £) — L(F, D] . pldf)(df)

— R +30) - tog| )

A

~tog [ xp[L(.) — LA pld) +1og {dﬁd—fﬂ ,

hence, by using Fubini’s inequality and the equality

E{exp [—f/(f, f)}} = eXp[—Lb(fa f)},
we Obtain]E/exp Vi(H)]p(f)

<B [ ([l = LG pld) )7l
_ / (/Eexp[Lb(f> f)—L(f, f)}ﬂ-i’Y*R(df))ﬂ-—“/R(df) _q

6.3.2. Proof of [f eXp(Vg)p(df)} < 1. ltrelies on the following result.

LEMMA 6.12 Let'W be a real-valued measurable function defined on a product
spaceA; x A, and letu; and s be probability distributions on respectively,
and As.
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o ifE, .y {log [E@Nm {exp[-W(a1, as)] }] } < 400, then we have

B {log [E@NW {exp[—W(ahcm)} }}}

{ as~pi [exp —Eoy o W(al,a2)ﬂ}.

-1
o ifW>0o0nA; xAyandE,,.,, { are | W(aq, ag)}_l} < 400, then

-1 -1
EalNHl {EazNuz |: CL1,CL2 :| } a2~u2 { a1~p1 [W<a17a2)] } .
PROOF

e Let A be a measurable space a@wmddenote the set of probability distribu-
tions onA. The Kullback-Leibler divergence between a distributicand a
distributiony is

dp .
E.-, log {— a } if p < p,
K(p,p) = 108 3, ()
+00 otherwise,

d . :
whereﬁ denotes as usual the densityoiv.r.t. . The Kullback-Leibler

divergence satisfies the duality formula (see e.g. [7, p&$d)1for any
real-valued measurable functidrdefined onA,

inf {E,, h(a) + K(p. 1)} = ~10g Buny {ep[-n(@)]}.  (618)

By using twice (6.18) and Fubini's theorem, we have
By {108] Bayepy [exp[-W(ar, @)]] } }
= Bayopy {i%f {Eq,mp [W(ar,a2)] + K(p, uz)}}
< inf {Eamﬂ [Emp [(W(ay,as)] + K (p, uz)]}
~108{ By |ex0{~Farop [Wlar, a2)]}] }.

e By using twice (6.18) and the first assertion of Lemma 6.12haxee

Ea, o, {]anu2 [W(al, a2)—1] —1}
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= Eq {exp{_log [E%Nuz {exp[- logW(al,az)]}} }}
=2 {exp{n,}f [Ea%p {log[W(ar,a2)] } + K (p, “2)} }}
< i%f{exp (K (p, 112)| By {eXp{ECL?NP [log (a1, a2) }}}
< ir;f{exp [K(P> Mz)} exp{]Ea2~p {1og[ a~ [Wlar, az) }}}
= exp{ir;f{E@Np [IOg{anm [W(al’az } +K(p, 'u2)}}
= eXP{_ 1Og{Eaz~H2 {exp [_ IOg{Eal’V“l (a1, az) } }}}

= Eayrps {E“wm [W(a1,a2)] }_1 -

From Lemma 6.12 and Fubini's theorem, siriéedoes not depend oy, we
have

B[ exp(Va)p(df)] = E[exp<v2>}

= [exp[—&*(f)]m(df {[fexp ] 1}
gfexp[ ()]m(df {fE[exp [E(f) ] )} 1
— [exp[-€ {fE[/exp (F. )] wan}

— Jexp =gl { [ exp (L7 )] w(an)} =1

This concludes the proof that for any> 0, v* > 0 ande > 0, with probability
(with respect to the distributio}‘?@"g generating the observations, . . ., Z,, and
the randomized prediction functigf) at leastl — 2¢:

Vi(f) + Va < 2log(e7Y).
6.4. RROOF OFLEMMA 5.3. Let us look atF from the point of view of f*.

Precisely leSr«(O, 1) be the sphere dR¢ centered at the origin and with radius
1and

d
S={> 8¢ (61,...,604) € Spa(O,1)}.
=1

Introduce
Q={¢e8Iu>0stf +uped}.

49



Forany¢ € Q, letuy = sup{u > 0 : f* + u¢p € F}. Sincer is the uniform
distribution on the convex sét(i.e., the one coming from the uniform distribution
on ©), we have

/exp{—a[R f)— R(f") }7r df)
/ / exp{—a[R(f* + u¢) — R(f*)] }u’""dudg.
$€Q
Lete, — E[6(X)F (f*(X))] anda, — E[¢2(X)]. Since

£ € argmin S E{ly [f(X)]},

¢y, > 0 (andcy = 0 if both —¢ and ¢ belong to(2). Moreover from Taylor’s
expansion,

bl a¢u2 b2a¢u2

< R(f" 4+ ug) — R(f") — ucy <
Introduce .

Jo¢ exp{—alucy + Lbragu®] ju®du
Jo¢ exp{—Blucy + sbsagu?| fud—'du’
For any0 < a < 3, we have

Jexp{—a[R(f) — R(f*)|}(df) it
Jexp{=BIR(f) — R(f*)]}n(df) ~ ses

Yy =

For any¢ > 1, by a change of variable,
bo < Cdfo exp{—a[Cucy + $bi1asC?u?] fut~ du
o exp{—Plucy + 3bragu?] Juttdu
< Cdsup exp{ Blucy + sbaayu’] — afCucy + 1brag(Pu’l}.
u>0

By taking ¢ = +/(b253)/(bi) Whene, = 0 and( = /(b283)/(b1cr) V (B/ )
otherwise, we obtaig, < (¢, hence

d, (b3

dlog (1/ blg g) otherwise,

which proves the announced result.
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6.5. ROOF OFLEMMA 5.4. For—(2AH)™' < A < (2AH)™!, introduce the
random variables

F=fX) P =)
Q= 0 (F*) + (F — F") /1(1 _OEL(F + H(F — F*))t,

L= MY, F) = (Y, F)],
and the quantities
M?A%exp(Hby/A)

"N =R - AR

and
A= Hby/2 + Alog(M) = glog{M2 exp|[Hby/(24)] }.

From Taylor-Lagrange formula, we have
L= \F — F*)Q.
SinceE [exp(|Q|/A) | X] < M exp[Hby/(24)], Lemma D.2 gives

M?a? exp(Hby/A)

lox{ B[ exp{ale ~ B(IX)]/A} | X] } < = 5o 2

forany—1 < a < 1, and .
\ (QX) \ )| < A. (6.19)

By consideringy = A\[f(z) — f*(x)] € [-1/2;1/2] for fixedz € X, we get
1og{E [exp [L— E(LIX)]| X} } < D2(F — F*)2a()). (6.20)
Let us put moreover
L =E(L|IX) + a(MN(F — F*).
Since—(2AH)™' < X\ < (2AH)~', we haveL < [\|HA + a(\)X2H? < I/ with

v = AJ(2A) + M?exp(Hby/A)/(4/7). SinceL — E(L) = L — E(L|X) +
E(L|X) — E(L), by using Lemma D.1, (6.20) and (6.19), we obtain

log{E [exp L E(L)H } < log{E [exp [L - ]E(E)H } + Na(NE[(F — F*)?]
< B(L?)g() + Na(NE[(F - F*)?]
< NE[(F — F*)?] [A29(0) + a(V)],
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with g(u) = [exp(u) — 1 —u]/u?. Computations show that for ary(2AH)~! <
A< (2AH),

2

A%g(V) +a()) < 4 &XP [Mz exp (Hbg/A)i| :
Consequently, for any (2AH)™' <\ < (2AH)~!, we have
1og{E [exp{A[Z(Y, F) -1y, F*)]}} }
< AR(f) = R(f)] + NE[(F — F*)?] A{ exp [M2 exp (Hb, /A)} .

Now it remains to notice tha [(F — F*)?] < 2[R(f) — R(f*)]/b:. Indeed
consider the functior(t) = R(f* + t(f — f*)) — R(f*), where f € F and
t € [0;1]. From the definition off* and the convexity off, we havey > 0 on
[0; 1]. Besides we have(t) = ¢(0) +t¢'(0) + £ ¢"(¢,) for some; €]0; 1[. So we
have¢’(0) > 0, and using the lower bound on the convexity, we obtain ferl

UB(F - P < R() - BUP). (6.21)

6.6. FROOF OFLEMMA 5.6. We have
B{[Y — F(X)P — ¥ — £ (X))
=B([f = FOOP{LY = £(0) + [£(0) = £(0)})
—B([f" — FOOP{E(Y - f1(X)P|X)
FAR(Y — f(X)X)[F(X) = F(X)] + [(X) = F(O]})
<E(If* = SO {40 + o] f(X) = F(X)| + [[(X) = [*(X)})

<E(f - f(X)[20 + H)?)
< (20 + H)'[R(f) = R(f)).

where the last inequality is the usual relation betweensxdek and.? distance
using the convexity off (see above (6.21) for a proof).

2

A. UNIFORMLY BOUNDED CONDITIONAL VARIANCE IS NECESSARY TO
REACH d/n RATE

In this section, we will see that the target (0.2) cannot laehed if we just
assume that” has a finite variance and that the functiongiare bounded.

52



For this, consider an input spagepartitioned into two set¥; andX,: X =
XiUXyandXy NXy = 0. Let (,01(1') = lyex, and(pg(l') = lgex,. LetF =
{0101 + b2009; (61, 62) € [-1,1]*}.

THEOREMA.1 For any estimatorf and any training set size € N*, we have

sup {ER(f) = R(f)} = (A1)

4v/n’
where the supremum is taken with respect to all probabilgyridbutions such that
fed c FandVary < 1.

PROOF Let 3 satisfyingd < 3 < 1 be some parameter to be chosen later.
Let P,, o € {—,+}, be two probability distributions o x R such that for any
o€ {—,+},

Pa(xl) = ]'_ﬁa
P,(Y=0X=2)=1 foranyz € Xy,
and
P(,(Y:%\X:x) :ﬂ
:l—Pg(Y:—L|X:I> foranyz € X,.
VB

One can easily check that for amsye {—,+}, Varp (Y) = 1 — 3% < 1 and
9 (z) = o, € F. To prove Theorem A.1, it suffices to prove (A.1) when the
supremum is taken among € {P_, P, }. This is done by applying Theorem
8.2 of [2]. Indeed, the paifP_, P, ) forms a(1, 3, 3)-hypercube in the sense of
Definition 8.2 with edge discrepancy of type | (see (8.5)118.and (10.20) for

q = 2): d; = 1. We obtain

sup  {ER(f) — R(f*)} = B(1 - Bv/n),

Pe{P_.P.}

which gives the desired result by takigg= 1/(2/n). O

B. EMPIRICAL RISK MINIMIZATION ON A BALL : ANALYSIS DERIVED FROM
THE WORK OFBIRGE AND MASSART

We will use the following covering number upper bound [13frirea 1]
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LEMMA B.1 If ¥ hasadiametefl > 0for L>°-norm (i.e.supy, t,cqrex | f1(2)—
fo(x)| = H), then for any0 < § < H, there exists a set” C 7, of cardinal-
ity |F#| < (3H/§)? such that for anyf € J there existyy € F# such that

We apply a slightly improved version of Theorem 5 in Birg& aiassart [4].
First for homogeneity purpose, we modify Assumption M2 bylaeing the con-
dition “o? > D/n” by “0? > B?D/n” where the constanB is the one appearing
in (5.3) of [4]. This modifies Theorem 5 of [4] to the extenttth&1” should be
replaced with ¢ B2”. Our second modification is to remove the assumption that
W; and X; are independent. A careful look at the proof shows that theltstill
holds when (5.2) is replaced by: for amye X, andm > 2

E;[M™(W)|X; = z] < a, A™, foralli=1,....n

We considetV =Y — f*(X),v(z, f) = (y— f(2))*, Az, u,0) = |u(z ) v(@)l,
and M (w) = 2(Jw| + H). From (1.7), for allm > 2, we haveE{[(2(|W]| +

H)™X = z] < Z[4M(A+ H)]™. Now considerB’ andr such that Assumption
M2 of [4] holds forD = d. Inequality (5.8) forr = 1/2 of [4] implies that
for anyv > k2(A* + H?)log(2B' + B'rv/d/n), with probability at least —

—nv
el

R(fE™) — R(f*) + () — r(J&™) < (B{[fe™(X) - f*(X)]*} v v)/2
for some large enough constantdepending onV/. Now from Proposition 1 of
[4] and Lemma B.1, one can take eith@r= 6 andrv/d = \/E or B'=3y/n/d
andr = 1. By usingE{ [ fe™(X) — f*(X)]*} < R(f™) — R(f*) (sinceT is
convex andf* is the orthogonal projection af on ¥), andr(f*) — r(f©™) > 0
(by definition of /™), the desired result can be derived.

Theorem 1.5 provides &/n rate provided that the geometrical quantityis
at most of ordemn. Inequality (3. 2) of [4] allows to brackeB in terms of B =
how this qdahtlty behaves and to illustrate some of the pteseresults, let us
give the following simple example.

Example 1. Let A, ..., A; be a patrtition ofX, i.e., X = u;.lzlAj. Now con-
sider the indicator functiong; = 14,,7 = 1,...,d: ¢; is equal tol on A;
and zero elsewhere. Consider thdtand Y are independent and that is a
Gaussian random variable with me@mnd variancer?. In this situation:f;;, =

f(rea) — Ejzl ;. According to Theorem 1.1, if we know an upper bouticon
| £e9|| . = 6, we have that the truncated estimatét®'s A H) v —H satisfies
(02 Vv H*)dlogn

n

ER(f®) - R(fiy) <
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for some numerical constant Let us now apply Theorem C.1. Introdugge =
P(X € Aj) andpyi, = min; p;. We have) = (Egpj(X)gpk(X))j’k = Diag(p;),
X = 1 and||#*|| = 6+/d. We can taked = o andM = 2. From Theorem C.1,

for A = dL./n, as soon a3 < pui,, the ridge regression estimator satisfies with
probability at least — ¢:

A d 02d>L?
(%) — () < w5 (o2 + T ) ®.1)
n NPmin
for some numerical constart Whend is large, the ternfd>£?) /(npmm) is felt,
and leads to suboptimal rates. Specifically, sipgg < 1/d, the r.h.s. of (B.1)
is greater tham* /n?, which is much larger thaid/n whend is much larger than
n'/3.1f Y is not Gaussian but almost surely uniformly boundedby. +oc, then
the randomized estimator proposed in Theorem 1.3 satisfeesiter property:
with probability at least — ¢,
R . dlog(3pi. ) + log((logn)et
R(f) _ R(flm) S KJ(HZ _|_02) g( ) g(( g ) )7

n

for some numerical constant In this example, one can check that= B’ =
1/Pmin Wherep,,;, = min; P(X € A;). As long asp.,i, > 1/n, the target (0.1)
is reached from Corollary 1.5. Otherwise, without this asgtion, the rate is in
(dlog(n/d))/n. B

C. RIDGE REGRESSION ANALYSIS FROM THE WORK OKCAPONNETTO AND
De ViTO

From [5], one can derive the following risk bound for the mdgstimator.

THEOREM C.1 Let ¢,,;, be the smallest eigenvalue of tlie< d-product matrix
Q = (Bg;(X)p(X)), - Let X = sup,cy 30, p;(2)?. Let 6| be the Eu-
clidean norm of the vector of parameters fijf = 2?21 0pj. Letd < e < 1/2

andL. = log?(e~"). Assume that for any € X,

Efexp[|[V — fin(X)1/4] | X =2} < M.

For A = (KdL.)/n, if A < gumin, the ridge regression estimator satisfies with
probability at leastl — &:

min

R(f%%9) — R(fi) < ’f’;d (A2 § 2 m||9*||2) (C.1)
for some positive constartdepending only oi/.
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PROOF. One can check that%® e argminy,c r(f) + A X0, || f13, where
H is the reproducing kernel Hilbert space associated withéheel K : (z, ') —
>4 ¢i(@)pr(a’). Introducef® € argminy ., R(f)+A S0, || f|I3. Letus use
Theorem 4 in [5] and the notation defined in their Section5e2¢ be the column
vector of functiongy;|4_,, Diag(a;) denote the diagonal x d-matrix whosej-
th element on the diagonal i5, andI, be thed x d-identity matrix. LetU and
q,---,qq be such thalUT = I and@ = UDiag(q;)U”. We havef, = ¢!6*
andf™ = T(Q + AI)~'Q#*, hence

fin = Y = ©TUDiag(M/(g; + \)UT60".

After some computations, we obtain that the residual, rstraation error and
2 2
effective dimension respectively satisfif\) < 2—[|6*||2, B(\) < qA 16%|12,

Gmin

andN(\) < d. The result is obtained by noticing that the Ieadlng tem(§4j of
[5] are A()\) and the term with the effective dimensidif\). O

The dependence in the sample sizis correct sincd /n is known to be mini-
max optimal. The dependence on the dimengiginot optimal, as it is observed
in the example given page 54. Besides the high probabilijmdd@C.1) holds only
for a regularization parameterdepending on the confidence levelSo we do
not have a single estimator satisfying a PAC bound for evenfidence level.
Finally the dependence on the confidence level is largerekpacted. It contains
an unusual square. The example given page 54 illustratesrdimeC.1.

D. SOME STANDARD UPPER BOUNDS ON LOELAPLACE TRANSFORMS

LEMMA D.1 LetV be a random variable almost surely boundedbby R. Let
g:ur [exp(u) — 1 —u]/u’.
log{E[ exp[V — E(V)]| } < B(V)g(0)

PROOF Sinceg is an increasing function, we hay¢V') < ¢(b). By using the
inequalitylog(1 + u) < u, we obtain

log{Eexp[V — E(V)]| } = ~E(V) + log{E[1 +V + V*g(V)]}

< E[VZ(V)] < E(V?)g(b)

U

LEMMA D.2 LetV be a real-valued random variable such tHafexp(|V])] <
M for someM > 0. Then we hav@E(V)| < log M, and for any—1 < a < 1,

log{E|exp{a[V - E(WV)]}] } < %
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PROOF First note that by Jensen'’s inequality, we hgig€l)| < log(M
usinglog(u) < w — 1 and Stirling’s formula, for any-1 < o < 1, we have

log{E[eXp{oz[V —E(V)] }} } < ]E[exp{oz[v — E(V)] }} } -1

= Blexp{a[V -EW)]} - 1- o[V - E(V)]}
<E{exp[|a||v EV)|] —1- o]V - E(V)|}

< ]E{exp[\v ~E(V ]}sup{ [exp(|afu) — 1 — |afu] exp(— )}

Q m,,m
[exp(|V| + |E(V |)] upz | | exp(—u)
a m—2
< M? Z Jo]™ ililgu ™ exp(—u) = a*M? Z | 7|n! m™ exp(—m)
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