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A ROBUST STATISTICAL ESTIMATION OF INTERNET
TRAFFIC

YOUSRA CHABCHOUB, CHRISTINE FRICKER, FABRICE GUILLEMIN,
AND PHILIPPE ROBERT

ABSTRACT. A new method of estimating flow characteristics in the Internet
is developped in this paper. For this purpose, a new set of random variables
(referred to as observables) is defined. When dealing with sampled traffic,
these observables can easily be computed from sampled data. By adopting a
convenient mouse/elephant dichotomy also dependent on traffic, it is shown
how these variables give a robust statistical information of long flows. A
mathematical framework is developed to estimate the accuracy of the method.
As an application, it is shown how one can estimate the number of long TCP
flows when only sampled traffic is available. The algorithm proposed is tested
against experimental data collected from different types of IP traffic.
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1. INTRODUCTION

We investigate in this paper how to empirically characterize voluminous flows
in Internet traffic, in particular the tail behavior of their size. It is commonly
observed in the technical literature and in real experiments that the total size (in
packets or bytes) of such flows has a heavy tailed distribution. In practice, however,
this characterization holds only for very large values of the flow size and in order
to accurately estimate the tail of the size probability distribution a large number
of voluminous flows is necessary. To increase the sample size when empirically
estimating probability distribution tails, one is led to increase the length of the
observation period. But the counterpart is that the distribution of the flow size
cannot be longer described by means of simple probability distributions of the
Pareto type for example. This is due to the fact that traffic is not stationary
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and generated by a wide variety of applications which give rise to flows with very
different characteristics.

Actually, numerous approaches have been proposed in the technical literature in
order to model voluminous flows as well as their superposition properties. One can
roughly classify them in two categories: signal processing models and statistical
models. Using ideas from signal processing, Abry and Veitch ], see also Feldman
et al. [E, and Crovella and Bestravos [@], describe the spectral properties of the
time series associated with IP traffic by using wavelets. In this way, a characteriza-
tion of long range dependence, the Hurst parameter for example, can be provided.
Straight lines in the log-log plot of the power spectrum support some of the “frac-
tal” properties of the IP traffic, even if they may simply be due to packet bursts in
data flows Rolland et al. [ﬁ] Signal processing tools provide information on aggre-
gated traffic but not on characteristics on individual TCP flows, like the number
of packets or their transmission time. For statistical models, a representation with
Poisson shot noise processes (and therefore some independence properties) has been
used to describe the dynamics of IP traffic, see Hohn and Veitch [H], Gong et al. [ﬂ],
Barakat et al. [§] and Krunz and Makowski [{] for example. Models using Pareto
distributions to represent the distribution of the size of large flows are proposed in
Mitzenmacher [E], see also Gong et al. [ﬁ], however it is noted in the latter paper
that the representation is not robust.

Robust Statistics. We develop in this paper an alternative method to get a ro-
bust statistical description by means of a unique heavy tailed distribution, namely
a Pareto distribution: statistics are collected during successive time windows of lim-
ited length (instead of one single time window for the whole trace). The advantage
of this method is that, with a careful procedure, a simple statistical characteriza-
tion is possible and reveals to be quite robust as shown by our experiments for
various sets of traffic traces. The intuitive reason for considering short time periods
is that in short time windows, volumes of flows exhibit only one major statistical
mode (typically a Pareto behavior). In larger time windows, different modes due to
the wide variety of flows in IP traffic necessarily appear. (See Feldman et al. [f.)
This approach allows us to establish a robust statistical characterization of flows
which can be used for instance to infer information from sampled traffic as it will
be seen. The counterpart is that the statistics of the total size of a flow (obtained
when considering the complete traffic trace) cannot be computed directly in this
way since the trace is cut into small pieces.

An algorithm is proposed to get the statistical representation of voluminous flows
when all the packets of the trace are available. A special care has been devoted
to the choice of constants: Length of the observation window, definition of TCP
flows referred to as elephants, etc. This is, in our view, one important aspect which
is quite often neglected in the literature: the procedure invoked to estimate flow
statistics should not depend on some hidden pre-processing of the trace.

Application to Sampled Traffic. The basic motivation for developing such heuris-
tics is to infer flow characteristics from sampled data. This is notably the case
for sampling processes such as the 1-out-of-k sampling scheme implemented by
CISCO’s NetFlow [@], which greatly degrades information on flows. What we ad-
vocate in this paper is that it is still possible to infer relevant characteristics on
flows from sampled data if some characteristics of the flow size can be described in
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a robust way by means of a simple Pareto distribution. By using the robust statis-
tical representation described above, we propose a method of inferring the number
of long flows from sampled traffic. It relies on a new set of random variables, re-
ferred to as observables and computed in successive time intervals with fixed length.
Specifically, these random variables count the number of flows sampled once, twice
or more in the successive observation windows. The properties of these variables can
be obtained through robust characteristics, in particular mean values of variables
instead of remote quantiles of the tail distribution, which are much more difficult
to accurately estimate. By developing a convenient mathematical setting (Poisson
approximation methods), it is moreover possible to show that quantities related
to the observables under consideration are close to Poisson random variables with
an explicit bound on the error. This Poisson approximation is the key result to
estimate the total number of long flows.

The organization of the paper is as follows. A statistical description of long
TCP flows is presented in Section E, this representation is tested against five ex-
haustive sets of traffic traces: three from the France Telecom (FT) commercial TP
network carrying residential ADSL traffic and two others from Abilene network.
An algorithm is developed in this section to compute the characteristics of the
Pareto distributions describing flows. In Section E, some assumptions on sampled
traffic are introduced and the observables for describing traffic are defined. The
mathematical properties are analyzed in light of Poisson approximation methods
in Section E The results developed in this section are crucial to infer the statis-
tics of an IP traffic from sampled data. Experiments with the five sets of sampled
traces used in this paper are presented and discussed in Section E Some concluding
remarks are presented in Section E

2. STATISTICAL PROPERTIES OF FLOWS

This section is devoted to a statistical study of the size of flows in a limited time
window of duration A. The goal of this section is show that some robust statistical
behavior of voluminous flows can quite generally be exhibited, i.e., for various sets
of traffic traces.

2.1. Assumptions and Experimental Conditions.

The sets of traces used for testing theoretical results. For the experiments carried
out in the following sections, several sets of traces will be considered: Commercial
IP traffic, namely ADSL traces from the France Telecom (FT) IP collect network,
and traffic issued from campus networks (Abilene III traces). Their characteristics
are given in Table [l.

TABLE 1. Characteristics of traffic traces considered in experiments.

Name Nb. IP packets Nb. TCP Flows Duration
ADSL Trace A 271 455 718 20 949 331 2 hours
ADSL Trace B Upstream 54 396 226 2 648 193 2 hours
ADSL Trace B Downstream 53 391 874 2 107 379 2 hours
Abilene IIT Trace A 62 875 146 1 654 410 8 minutes

Abilene IIT Trace B 47 706 252 1 826 380 8 minutes
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The Abilene traces 20040601-193121-1.gz (trace A) and 20040601-194000-0.gz
(trace B) can be found at the url http://pma.nlanr.net/Traces/Traces/long/ipls/3/.

Time Windows. Traffic will be observed in successive time windows with length
A. In practice, the quantity A can vary from a few seconds to several minutes
depending upon traffic characteristics on the link considered.

The ideal value of A actually depends on the targeted application. For the
design of network elements considering the flow level (e.g., flow aware routers,
measurement devices, etc.), it is necessary to estimate the requirements in terms
of memory to store the different flow descriptors. In this context, A may be of the
order of a few seconds. The same order of magnitude is also adapted to anomaly
detection, for instance for detecting a sudden increase in the number of flows. For
the computation of traffic matrices, A can be several minutes long (typically 15
minutes). In our study, the “adequate” values for A are of the order of several
seconds. See the discussion below.

Mice and Elephants. With regard to the analysis of the composition of traffic, in
light of earlier studies on IP traffic (see Estan and Varghese [[1J], Papagiannaki et
al. [ or Ben Azzouna et al. [[L4]), two types of flows are identified: small flows
(referred to as mice) and voluminous flows (referred to as elephants). In commercial
IP traffic, this simple traffic decomposition is justified by the predominance of web
browsing and peer-to-peer traffic giving rise to either signaling or small file transfers
(mice) or file downloads (elephants).

This dichotomy may be more delicate to verify in a different context than the one
considered in Ben Azzouna et al. [@] For LAN traffic, for example, there may be
very large amounts of data transferred at very high speed. As it will be seen in the
various IP traces used in our analysis, the distinction between mice and elephants
has to be handled with care. In particular, to reach our goal, it is dependent on
the type of traffic considered. The distinction between the constants depending on
the trace and “universal” constants is, in our view, a crucial issue. It amounts to
precisely stating which constants depend on traffic. This aspect is generally (unduly
in our opinion) neglected in traffic measurement studies. In particular, the variable
A and the dichotomy mice/elephants are dependent on the trace, as explained in
the next section.

2.2. Heavy Tails. The fact that the distribution of the size S of a voluminous TCP
flow is heavy tailed is a folk result. Although the heavy tailed property of the size
of voluminous flows is commonly admitted, little attention has been paid to identify
properly a class of heavy tailed distributions so that the corresponding parameters
can be estimated for an arbitrary traffic trace with a significant duration.

One of the reasons for this situation is that the most common heavy tailed
distributions G(x) = P(S > z) (e.g., Pareto, i.e., G(z) = C/x* for > b and some
a > 0, or Weibull, i.e., G(z) = exp(—vz?®) for some 3 > 0 and v > 0) have a
very small number of parameters and consequently a limited of number of possible
degrees of freedom for the distribution of the sizes of flows. For this reason, such
a distribution can hardly represent the statistics of the total number of packets
transmitted by a flow in a trace of arbitrary duration.

As a matter of fact, if a traffic trace is sufficiently long, some non stationary
phenomena may arise and the diversity of file sizes may not be captured by one or
two parameters. For example, with a Pareto distribution, the function z — G(x)
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in a log-log scale should be a straight line. The statistics of the file sizes in the
traces used in our experiments are depicted in Figure [ll and E for an ADSL traffic
trace from the France Telecom backbone IP collect network and for a traffic trace
from Abilene network, respectively.
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FIGURE 1. Statistics of the number of packets .S of a flow for ADSL
A (2 hours): the quantity —log(P(S > z)) as a function of log(z).
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FIGURE 2. Statistics of the number of packets S of a flow for
ABILENE A trace (8 minutes): the quantity —log(P(S > z)) as a
function of log(x).

Figure [] and | clearly show that for the two traffic traces considered, the file size
exhibits a multimodal behavior: at least several straight lines should be necessary
to describe properly these distributions. These figures also exhibit the (intuitive)
fact that has been noticed in earlier experiments: the longer the trace is, the more
marked is the multimodal phenomenon. (See Ben Azzouna et al. L] for a discus-
sion.)

The key observation when characterizing a traffic trace is the fact that if the
duration A of the successive time intervals used for computing traffic parameters is
appropriately chosen, then the distribution of the size of the main contributing flows
in the time interval can be represented by a Pareto distribution. More precisely,
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there exist A, Bmin, Bmaz and a > 0 such that if S is the number of packets
transmitted by a flow in A time units, then

Bmin ¢
(1) P(S Z x | S Z Bmzn) = <—> 9 fOI‘ Bmzn S X S Bmal‘;
T

and furthermore the proportion of long flows of size greater than B,,,, is less than
5%. The parameter B, is usually referred to as the location parameter and a as
the shape parameter.

In other words, if the time interval is sufficiently small then the distribution of
the number of packets transmitted by a long flow has one dominant Pareto mode
and therefore can be characterized in a robust way. The algorithm used to validate
this result is described in Table E It is run from the beginning of the trace; in
practice a couple of minutes is sufficient to obtain results for the constants A,
Brin, Bmaz- The algorithm is of course valid when the total trace is available for
at least an interval of several minutes. In the case of sampled traffic for which this
algorithm cannot be used, another method will be proposed in Section E

TABLE 2. Algorithm for Identifying A and the Pareto Distribution.

— A is fixed so that at least 1000 flows have more than 20 packets.

— Binaz is defined as the smallest integer such that less than 5% of the flows
have a size greater than B, 4.

— A Least Square Method is performed to get a linear interpolation in a log-
log scale of the distribution of sizes between B,,;, and Bj,q,. The constant
Binin is chosen as the smallest integer such that the distance with the
approximating straight line is less than 2.1073. The slope of the line gives
the value of the parameter a.

The quantity By, defines the boundary between mice and elephants in the
trace. A mouse is a flow with a number of packets less than B,,;,. An elephant is
a flow such that its number of packets during a time interval of length A is greater
than or equal to By,;n,. By definition of B4, flows whose size is greater than
Binaex represent a small fraction of the elephants.

Experimental results for the ADSL A and Abilene A traffic traces are displayed
in Figures E and @, respectively. The same algorithm has been run for the ADSL
trace B Upstream and Downstream as well as for the Abilene III B trace. The
benefit of the algorithm is that the number of packets in elephants can always be
approximated by a unimodal Pareto distribution if the duration of A is adequately
chosen by using the algorithm given in Table E Results are summarized in Table .

TABLE 3. Statistics of the elephants for the different traffic traces.

ADSL A ADSL B Up ADSL B Down Abilene A Abilene B

A (sec) 5 15 15 2 2
Bin 20 29 39 89 79
Braa 94 154 128 324 312
a 1.85 1.97 1.50 1.30 1.28

Discussion on the choice of parameters.
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FIGURE 3. Statistics of the flow size (number of packets) in a time
interval of length A =15

Parameter By,ip. It turns out that for commercial (ADSL) traffic, the value of Byin
is close to 20. This value has been used in earlier studies [@, @] for classifying
ADSL traffic. Note that this is not the case for the Abilene traces, which contain
significantly bigger elephants. The two types of traffic are intrinsically different:
ADSL traffic is mainly composed of peer to peer traffic (with a huge number of
small flows and a few file transfers of limited size because of the segmentation of
large files into chunks), while Abilene traffic comprises large file transfers issued
from campus networks. In order to maximize the range for the Pareto description,
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FIGURE 4. Statistics of the flow size (number of packets) in a time
interval of length A for the Abilene traces.

the variable B,,;, is defined as the smallest value for which the linear representation
(in the log scale) holds.

Parameter A. The value of A is not so much sensitive. On the one hand, A has to
be chosen sufficiently large so that sufficiently many packets arrive in time intervals
of duration A to derive robust estimations. An experiment with ADSL A trace
with A = 1s gives only 63 flows of size more than 20 which is hardly enough to get
consistent statistics. A “correct” value in this case is 5s. Experiments show that
higher values (like 10s) do not change significantly the Pareto property observed in
this case.

On the other hand, A should not be too large so that the statistical properties
(a Pareto distribution in our case) can be identified, i.e., so that the statistics are
unimodal. See Figures [I| and Ewhich illustrate situations where statistics are done
on the complete trace, i.e. when A is taken equal to the total duration of trace. In
these examples, the piecewise linear aspect of the curves suggests, for both cases,
a bi-modal Pareto behavior should hold.

It should be noted that the parameters computed in a time window of length A
do not give a complete description of the distribution of the total number of packets
in a flow, since statistics are done over a limited horizon. To obtain information on
the total number of packets, it is necessary to “glue” the statistics from successive
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time windows of length A. This turns out to be a very difficult if not an impossible
task. In some sense, this is the price to pay to have a robust estimation of the
statistics of flows. Nevertheless, as it will be seen in the following, in the case
of sampled traffic, these parameters cleverly used give a good estimation on the
number of active long flows at a given time.

3. SAMPLED TRAFFIC: ASSUMPTIONS AND DEFINITION OF OBSERVABLES

In the previous section, we have designed an algorithm in order to describe
voluminous flows by means of a unimodal distribution. Now, we show how to exploit
this algorithm in the context of packet sampling in the Internet. Packet sampling
is a crucial issue in order to be able to perform traffic measurements in high speed
backbone networks. As a matter of fact, a fundamental problem related to the
computation of flow statistics from traffic crossing very high speed transmission
links is that, due to the enormous number of packets handled by routers, only a
reduced amount of information can be available to the network operator. Packet
sampling is in this context an efficient method of reducing the volume of data
to analyze when performing measurements in the Internet. One popular technique
consists of picking up one packet every other x, packets with x4 = 100, 500, 1000 in
practice. (This sampling scheme is referred to as 1-out-of-x, packet sampling in the
technical literature.) This method is implemented for instance in CISCO routers,
namely NetFlow facility [EI] widely deployed in operational networks today. It
suffers from different shortcomings well identified in the technical literature, see for
instance Estan et al. [[Lq].

We describe in this section the different assumptions made on traffic in order to
develop an analytical evaluation of our method of inferring flow statistics. Through-
out this paper, high speed transmission links (at least 1 Gbit/s) will be considered.

3.1. Mixing condition. When observing traffic, packets are assumed to be suffi-
ciently interleaved so that those packets of a same flow are not back-to-back but
mixed with packets of other flows. This introduces some randomness in the selec-
tion of packets when performing sampling. In particular, when K flows are active
in a given time window and if the ¢th flow is composed of v; packets during that
period, then the probability of selecting a packet of the ith flow is assumed to be
equal v;/(v1 +v2 + - - -+ vk ). This property will be referred to as mizing condition
in the following and is formally defined as follows. A variant of this property is,
implicitly at least, assumed in the existing literature* (see, e.g. Duffield et al. [L7]).
See also Chabchoub et al. [Lg].

Definition 1 (Mixing Condition). If K TCP flows are active during a time in-
terval of duration A, traffic is said to be mizing if for all i, 1 < i < K, the total
number 0; of packets sampled from the ith flow during that time interval has the
same distribution as the analog variable in the following scenario: at each sam-
pling instant a packet of the ith flow is chosen with probability v;/V where v; is the
number of packets of the ith flow and V =v; + -+ +vg.

This amounts to claim that with regard to sampling, the probability of selecting
a packet of a given flow is proportional to the total number of packets of this flow.
One alternative would consist of assuming that the probability of selecting a
packet of the ith flow is 1/K, the inverse of the total number of flows. This
assumption, however, does not take into account the respective contributions of



10 CHABCHOUB, FRICKER, GUILLEMIN, AND ROBERT

the different flows to the total volume and thus may be inaccurate. If all K flows
had the same distribution with a small variance, then this assumption would not
differ from the mixing condition. Note however that Pareto distributions may have
a quite large variance. Hence, this leads us to suppose that the mixing condition
holds and that the probability of selecting a packet from flow ¢ is indeed v;/V.

3.2. Negligibility assumption. We consider traffic on very high speed links and
it then seems reasonable to assume that no flows contribute a significant proportion
of global traffic. In other words, we suppose that the contribution of a given flow
to global traffic is negligible. In the following, we go one step further by assuming
that in any time window, the number of packets of a given flow is negligible when
compared to the total number of packets in the observation window. By using
the notation of the previous section, this amounts to assume that for any flow 4,
the number of packet v; is much less than V. Furthermore, we even impose that
the squared value of v; is much less than V. We specifically formulate the above
assumptions as follows.

Definition 2 (Negligibility condition). In any window of length A, the square of
the number of packets of every flow is negligible when compared to the total number
of packets V in the observation window. There specifically exists some 0 < ¢ < 1
such that for alli=1,...,K, v}/V <e.

The above assumption implies that no flows are dominating when observing traf-
fic on a high speed transmission link. There is thus no bias in the sampling process,
which may be caused by the fact that some flows are oversampled because they
contribute a significant part of traffic. This assumption is reasonable for commer-
cial ADSL traffic because access links are often the bottlenecks in the network.
For instance, ADSL users may have access rates of a few Mbit/s, which are neg-
ligible when compared with backbone links of 1 to 10 Gbit/s. Moreover, the bit
rate achievable by an individual flow rarely exceeds a few hundreds of Kbit/s. In
the case of transit networks carrying campus traffic, the above assumption may be
more questionable since bulk data transfers may take place in Ethernet local area
networks and individual flows may achieve bit rates of several Mbit/s.

3.3. The Observables. We now introduce the different variables used to infer
flow characteristics. These variables are based only upon sampled data; they can
be evaluated when analyzing NetFlow records sent by routers of an IP network.
For this reason, these variables are referred to as observables. Because of packet
sampling, recall that the original characteristics of flows (for instance their duration
or their original number of packets) cannot be directly observed.

The observables considered in this paper to infer flow characteristics are the
random variables W;, 7 > 1, where W} is the number of flows sampled j times
during a time interval of duration A. The averages of the random variables W; are
in fact the key quantities used to infer the characteristics of flows from sampled
data.

The random variables Wj, j > 1 are formally defined as follows: Consider a time
interval of length A and let K be the total number of long flows present in this time
interval. Each flow i € {1,..., K} is composed of v; packets in this time interval.
Let denote by 0; the number of times that flow ¢ is sampled. The random variable
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W; is simply defined by
(2) Wi = Lioi=jp + Loa=g) + + Lore=j}-

In practice, if A is not too large, the data structures used to compute the vari-
ables W; are reasonably simple. Moreover, as it will be seen in the following,
provided that A is appropriately chosen, the statistics of the number of pack-
ets transmitted by elephants during successive time windows with duration A are
quite robust. Consequently, the variables W} inherit also this property. When the
number of long flows is large, the estimation of the asymptotics of their averages
from the sampled traffic is easy in practice. Theoretical results on these variables
are derived in the next section.

4. MATHEMATICAL PROPERTIES OF THE OBSERVABLES

4.1. Definitions and Le Cam’s inequality. For j > 0, the variable W; defined
by Equation (ﬂ) is a sum of Bernoulli random variables, namely

Wi = Lio=i3 + Liop=jy + -+ + Liog=)

where 0; is the number of times that the ith flow has been sampled. If these
indicator functions were independent, by assuming that K is large, one could use
to estimate the distribution of W; either via a Poisson approximation (in a rare
event setting) or via a central limit theorem (in a law of large numbers context).
Since the total number of samples is known, the sum of the random variables ©;
for i = 1,..., K is known and then, the Bernoulli variables defining W; are not
independent.

To overcome this problem, we make use of general results on the sum of Bernoulli
random variables. Let us consider a sequence (I;) of Bernoulli random variables,
ie. I; € {0,1}. The distance in total variation between the distribution of X =
I +---4I; + --- and a Poisson distribution with parameter § > 0 is defined by

IP(X € ) = P(Qs € )lew = sup [P(X € A) —P(Q5 € A)|
ACN

:%Z

n>0

P(X =n)— —e

The Poisson distribution Q5 with mean ¢ is such that
677,

P(Qs = 1) = - exp(~0).

Note that the total variation distance is a strong distance since it is uniform with
respect to all events, i.e., for all subset s A of N,

IP(X € A) —P(Qs € A)| < ||P(X € -) —=P(Qs5 € *)|tv-

The following result (see Barbour et al. ) gives a tight bound on the total
variation distance between the distribution of X and the Poisson distribution with
the same expected value when the Bernoulli variables are independent. In spite of
the fact that this result is not directly applicable in our case, we shall show in the
following how to use it to obtain information on the distributions of the observables
Wj.
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Theorem 1 (Le Cam’s Inequality). If the random variables (I;) are independent
and if X =%, I;, then

B) IP(X € ) = P(Qex) € e < ZP(L- =1)? < E(X)* = E(X) — Var(X)

If X is a Poisson distribution then Var(X) = E(X), the above relation shows
that to prove the convergence to a Poisson distribution one has only to prove that
the expectation of the random variable is arbitrarily close to its variance.

4.2. Estimation of the mean value of the observables. We consider the 1-
out-of-k, deterministic sampling technique, where one packet is selected every other
ks packets. In addition, we suppose that traffic on the link observed is sufficiently
mixed so that the mixing condition given by Definition m holds and that there are
no dominating flows in traffic so that the negligibility condition (Definition [) also
pertains.

It is assumed that during a time interval of length A, there are K flows composed
of at least By, packets, where B, is defined in Section E It has been seen
that the number of packets in these flows follows a Pareto distribution defined by
Relation (EI) for some exponent a and parameters By, and B,q... Let S be a
random variable with this distribution. In addition, let V' be the total number
of packets in the observation window. Note that V is the sum of the number of

packets in elephants and mice. If v; is the number of packet in the ith elephant,
S

then v; has the same Pareto distribution as S (i.e., v; aist- S) and V > Zfil V5.
The difference V — Zfil v; is the number of packets of mice.

Proposition 1 (Mean Value of the Observables). If K elephants are active in a
time window of length A, the mean number E(W;) of flows sampled j times, j > 1,

satisfies the relation
52
< S]E EvaN E
ona(?)
where Q is the probability distribution defined by
.\ de SS J _
PQ=j) % Q,=E <—(pj,) e pss) :

and ps = 1/ks is the sampling rate.

0 -0

Proof. The number of times 9; that the ith flow is sampled in the time interval is
given by

b; =B} + By +---+ B} y,
where, due to the mixing condition, B} is equal to one if the fth sampled packet is
from the ith flow, which event occurs with probability v;/V. Note that the total
number of sampled packets is ps V.

Conditionally on the values of the set 7 = {v1, ..., vk}, the variables (B, £ > 1)
are independent Bernoulli variables. For 1 < i < K, Le Cam’s Inequality (E) gives
therefore the relation
v

P(v; € - - vs .
IPGi: € - | F) = @ -

tv Sps
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By integrating with respect to the variables vy, ..., vk, this gives the relation
A v}
PG <)~ < 9 (35 ).
In particular, for j € N, |P(d; = j) — Q;| < psE (S?/V). Since
K

E(W;) = > _P(0: = j),

by summing on ¢ = 1,..., K, one gets

2
B(W) - KOyl < p.KE (5

and the result follows. O

If the number of packets of flows were constant, then Q would be a Poisson
distribution with parameter ps.S, the variable S being in this case a constant. The
above inequality shows that at the first order the expected value of W; is psE(S).
The expression of @, however, indicates that higher order moments of S play a
significant role. For example, if the variable S has a significant variance, then the
classical rough reduction, which consists of assuming that the size of a sampled
elephant is p,.S, is no longer valid for estimating the original size of the elephant.

Under the negligibility condition, we deduce that
EW) o

K J
where € appears in Definition E and is assumed to much less than 1. This implies
that Inequality ([) is tight and the quantity E(W;)/K can accurately be approxi-
mated by the quantity Q;, when no flows are dominating in traffic.

It is worth noting from Equation (E) that the presence of mice accelerates the
convergence of E(W;)/K to Q;. Indeed, for a fixed total number of packets, the
more numerous are the mice (i.e., the greater is V'), the smaller is the quantity
E(5%/V) and the closer to Q; is the ratio E(W;)/K. In fact, the presence of
mice reduces the probability of sampling an elephant and the number of elephants
sampled j times decreases, leading to the setting of the law of small numbers.

We are now ready to state the main result needed for estimating the number K
of elephants from sampled data.

< psé,

Proposition 2 (Asymptotic Mean Values). Under the same assumptions as those
of Proposition E,

E(W;41) 1 a+1

5 lim —Yit+t) o _*T2
5) Kteo E(W)) Jt+1
and

. E(W)) L —a)
(6) Kl_lgloo 7 a(psBmin) T

if Bmaz >> 1 and psBpin << 1, where T is the classical Gamma function defined
by

—+oo
[(z) = / u"te U du, x> 0.
0
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Proof. For j > 1,

S J a+1l p+oo )
Q; = <(p;|) 6p55> ~ aBgnmp} / (psu)ﬁaileipsu du

Bmin

a +o0 .
. (i —
Qj ~aBy,; Ps / w T e du ~ a(psBmm)ai(j S a)7
sBmin J:
since psBmin ~ 0. Therefore, by using the relation I'(x + 1) = «I'(x) we obtain the
equivalence
Qi1 j—a

Q; j+1
The proposition follows by using the fact that the upper bound of Equation (E) of
Proposition goes to 0 by the law of large numbers. ([

As it will be seen later in the next section, Relation (E) is used to estimate
the exponent a of the Pareto distribution of the number of packets of elephants,
the quantities E(W;) and E(W;41) being easily derived from sampled traffic. The
quantity K will be estimated from Relation ([f). The estimation of the parameter
Biin from sampled traffic as well as the correct choice of the integer j will be
discussed in the next section.

5. APPLICATIONS

5.1. Traffic parameter inference algorithm. In this section, it is assumed that
only sampled traffic is available. The methods described in Section E to infer the
statistical properties of the flows cannot be applied. Another algorithm has to be
defined in this setting. For the experiments carried out in the present section, the
sampling factor ps = 1/ks has been taken equal to 1/100. To infer flow character-
istics, we have to give the proper definition of the mouse and elephant dichotomy
(the parameter B,,;,) and to estimate the coefficient of the corresponding Pareto
distribution (the parameter a in Equation ([l)).

Relation (E) gives the following equivalence, for j > 1 sufficiently large so that
the impact of mice on E(WW}) is negligible,

.\ def. /. E(Wj+1)
™ o~ati) Gy (1- S -0
E(W;)
and Relation () yields an estimate of the number of elephants, i.e. the number of
flows with a number of packets greater than or equal to Bjy,.,; we specifically have

.\ def. JEW;
(8) K~ K — L) T
a(5)(Ps Bmin)*DT(j — a(j))
These estimations greatly depend on some of the key parameters used to obtain a
convenient and robust Pareto representation of the size of the flows, in particular

the size of the time window A and the lower bound B,,;, for the elephants. The
variable A is chosen so that

(1) the number of flows sampled twice is sufficiently large in order to obtain a
significant number of samples so that the estimation of the mean values of
the random variables W; for j > 2 is accurate; this requires that A should
not be too small,
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2) A is not too large in order to preserve the unimodal Pareto representation
g
(see Section [ for a discussion).

To count the average number of flows sampled j times, the parameter j should be
chosen as large as possible in order to neglect the impact of mice (for which the
Pareto representation does not hold) but not too large so that the statistics are
robust to compute the mean value E(W;).

In the experimental work reported below, special attention has been paid to
the choice of the universal constants, i.e., those constants used in the analysis of
sampled data, that do not depend on the traffic trace considered. In our opinion,
this is a crucial in an accurate inference of traffic parameters from sampled data.
These constants are defined in the algorithm given in Table E

TABLE 4. Algorithm used to identify A and the Pareto parameter
from sampled traffic.

— Choose A so that 80 < E[W3] < 100;

— Choose j so that |a(j) — a(j+1)| computed with Equation () is minimized
with for all j such that E[W;] > 5.

— Bjnin is the smallest integer so that the probability that a flow of size greater
than B, is sampled more than j times is greater than p/10;

5.2. Experimental results. Concerning the estimation of the constants By, the
numerical results obtained by using the algorithm given in Table {f are presented
in Table E, where the values of the different B,,;, estimated by the algorithm
are compared against the values given in Section Pl As it can be observed, the

proposed algorithm yields a rather conservative definition of elephants (i.e., flows
of size greater than or equal to Bi,ip).

TABLE 5. Elephants for the France Telecom ADSL and the Abilene
traffic traces.

ADSL A | ADSL B Up | ADSL B Down | Abilene A | Abilene B
Bonin 20 29 39 89 79
estimated B, | 21 45 45 it it

The main results are gathered in Table ﬂ giving the quantities K and a estimated
by using Equations (ﬂ) and (E) for different values of the parameters j. These
values are compared against the experimental values Gezp and Kegp, referred to as
the “real” a and K obtained from the complete traffic traces in Section E The
accuracy of the estimation of K is generally quite good except for the Abilene
A trace where the error is significant although not out of bound. A look at the
corresponding figure in Section E gives a plausible explanation for this discrepancy:
For this trace, the Pareto representation is not very precise.

Finally, it is worth noting from Table E that the estimation of the important
parameter a describing the statistics of flows is also quite accurate.
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TABLE 6. Estimations of the Number of Elephants from Sampled traffic

Trace A
ADSL A 5s
ADSL B Do | 15s
ADSL B Up | 15s
ABILENE A | 1s
ABILENE B | 1s

EW;) | EWit1) | Geap | @(§) | Kewp | K(5) Error
12.89 | 3.33 1.85 | 1.95 | 943.71 | 1031.04 | 9.25%
9.7 4.75 1.49 | 1.55 | 414.90 | 404.13 | 2.59%
7.46 | 297 1.97 | 2.00 | 453.01 | 462.68 | 2.13%
6.04 | 3.21 1.38 | 1.81 | 217.44 | 270.79 | 24.53%
6.1 3.7 1.36 | 1.51 | 209.12 | 197.12 | 5.74%

O O x| ] Qofs.

6. CONCLUSION

We have developed in this paper one method of characterizing flows in IP traffic
by a few parameters and another one of inferring these parameters from sampled
data obtained via deterministic 1-out-of-k sampling. For this purpose, we have
made some restrictive assumptions, which are in our opinion essential in order
to establish an accurate characterization of flows. The basic principle we have
adopted consists of describing flows in successive observation windows of limited
length, which has to satisfy two contradicting requirements. On the one hand,
observation windows shall not to be too large in order to preserve a description of
flow statistics as simple as possible, for instance their size by means of a simple
Pareto distribution.

On the other hand, a sufficiently large number of packets has to be present in
each observation window in order to be able of computing flow characteristics with
sufficient accuracy, in particular the tail of the distribution of the flow size. By
assuming that large flows (elephants) have a size which is Pareto distributed, we
have developed an algorithm to determine the optimal observation window length
together with the parameters of the Pareto distribution. The location parameter
Bin (see Equation (m)) leads to a natural division of the total flow population
into two sets: those flows with at least B,,;, packets, referred to as elephants, and
those flows with less than B,,;, packets called mice. This method of characterizing
flows has been tested against traffic traces from the France Telecom and Abilene
networks carrying completely different types of traffic.

For interpreting sampled data, we have made assumptions on the sampling pro-
cess. We have specifically supposed that flows are sufficiently interleaved in order
to introduce some randomness in the packet selection process (mixing condition)
and that there are no dominating flows so that there is no bias with regard to the
probability of sampling a flow (negligibility condition). These two assumptions al-
lows us to establish rigorous results for the number of times an elephant is sampled,
in particular for the mean values of the random variables Wj, j > 1.

Of course, when analyzing sampled data, the original flow statistics are not
known. In particular, the length of the observation window necessary to character-
ize the flow size by means of a unique Pareto distribution is unknown. To overcome
this problem, we have proposed an algorithm to fix the observation window length
and the minimal length of elephants. Then, by choosing the index j sufficiently large
so as to neglect the impact of mice, the theoretical results are used to complete the
flow parameter inference. This method has been tested against the Abilene and the
France Telecom traffic traces and yields satisfactory results.
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Once voluminous flows are characterized in time windows of limited length, the
next step is to “glue” this information in successive time windows in order to
establish a complete characterization of elephants, which can span over several
time windows. This point will be addressed in further studies.
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