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Abstract

A variational approach to derive a piecewise constant conservative approximation of
anisotropic diffusion equations is presented. A priori error estimates are derived as-
suming usual mesh regularity constraints and a posteriori error indicator is proposed
and analyzed for the model problem.
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1 Introduction

Various phenomena in scientific fields such as geoscience, oil reservoir simulation, hydro-
geology, biology . . . , are generally modeled by anisotropic diffusion equations. The usual
discretization schemes of this equations are finite difference, finite element or finite volume
methods. The last are piecewise constant conservative approximation and are actually very
popular in oil engineering, the reason probably being that complex coupled physical phe-
nomena may be discretized on the same grids (see for instance [9] and references therein).
But the well known five point on rectangles and four point schemes on triangles are not easily
adapted to heterogeneous anisotropic diffusion operators, and so an enlarged stencil scheme
which handles anisotropy on meshes satisfying an orthogonality property was proposed and
analyzed in [2,6,7]. Let us recall that a huge literature exists in engineering study setting.
However, even though these schemes perform well in the number of cases, their convergence
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analysis often seems out of reach, unless some additional geometrical conditions are imposed.
Moreover, actually in several applications the discretization meshes are imposed by engineer-
ing and computing considerations, therefore we have to deal with unstructured meshes.
A motivation for this work was to construct such a piecewise constant approximation for
anisotropic diffusion problems which could satisfy the two assumptions : First, the resulting
formulation is well-defined on general unstructured meshes, assuming usual finite element
mesh regularity constraints. Secondly, the given scheme leads to standard algebraic system,
for which we can use the existing efficient numerical solvers. This last point is of major
importance in the coupling of physical models, from the implementation point of view and
good adaptivity properties.

An outline of the paper is as follows. Among all the developments we briefly introduce
the functional framework and some usual notations. In second section, we introduce the
numerical scheme for the anisotropic diffusion problem and main approximation analysis
results are given. A focus is made on the treatment of an additional reaction term. Finally,
in section three we propose and analyze an a posteriori error indicator for the diffusion model
problem.

Functional Framework and some notations

Let ω be a bounded polygonal domain of IR2. We denote by Hs(ω) the usual Sobolev space
W s,2(ω) (see e.g [1]), endowed with the norm ||.||s,ωand Hs

0(ω) is the closure ofD(ω) in Hs(ω).
For the semi-norm, we use the notation |.|s,ω. We introduce the set H(div, ω) of vector fields
p ∈ (L2(ω))d and div p ∈ L2(ω). Equipped with the norm ‖.‖2

H(div,ω) = ‖.‖2
0,ω + ‖ div .‖2

0,ω,
H(div, ω) is a Hilbert space. For any integer k, Pk(ω) is the set of polynomials of degree less
than or equal to k.

2 Construction and analysis of the numerical scheme

Let Ω denote a bounded polygonal domain of IR2. We consider the anisotropic diffusion
problem : − div(K∇u) = f over Ω,

u = 0 on Γ,
(2.1)

with symmetric definite positive tensor K, assumed piecewise constant for simplicity, and
f ∈ L2(Ω). Let (Th) be a family of triangulations of Ω, by triangles, regular in the usual
finite element sense [5]. For all T in Th, there exist reals dT,e such that the bilinear form
aT : (H1(T ))2 −→ IR defined by

∀p, q ∈
(
H1(T )

)2
, aT (p, q) =

∑
e∈∂T

dT,e

(∫
e
p.nTdγ

)(∫
e
q.nTdγ

)
.
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verifies
∀p, q ∈ (P0(T ))2 , aT (p, q) =

∫
T
K−1p.q dx,

where nT is the unit normal outward to T .

Remark 2.1. We could give explicit expressions of the parameters dT,e. Let T be a triangle
with vertices a, b, c. The edge ab is denoted e and θe the opposite angle to e then,

dT,e =

√
det(K) < K−1−→ac,

−→
bc >

4meas(T )

Clearly if K = αId then dT,e =
α

2
cotan(θe).

In the sequel, we denote by RTx the unique element of (P0(T ))2 checking

aT (RTx− x, q) = 0, ∀q ∈ (P0(T ))2 .

Let Vh be the nonconforming finite element space defined by

Vh = {λh ∈ L2(Ω);λh|T ∈ P1(T ),

∀T ∈ Th; ∀e interior edge,
∫
e
[λh]e dγ = 0 and ∀e ⊂ ∂Ω,

∫
e
λhdγ = 0}

where [λh]e denotes the jump of the function λh across the edge e.

The non-standard finite element approximation we propose for the model problem is the
following :

Find λh ∈ Vh such that

∀µh ∈ Vh,
∑
T∈Th

∫
T
K∇λh.∇µh =

∑
T∈Th

∫
T
fT

(
µh +

1

2
(xG −RTx).∇µh

)
dx,

(2.2)

where ∀T ∈ Th, fT =
1

meas(T )

∫
T
fdx and xG is the barycenter of T .

First of all, by adapting standard arguments used in the analysis of nonconforming finite
element approximation of elliptic problems [5], we can easily prove that the discrete problem
has a unique solution; moreover, if the weak solution u of the model problem belongs to the
Sobolev space H1+s(Ω) with 0 < s ≤ 1, then:

∑
T∈Th

|u− λh|21,T

 1
2

≤ C

hs|u|1+s,Ω +

(∑
T

h2
T ‖f‖2

0,T + h2
T dist

2 (xG, RTx)

) 1
2

 , (2.3)

where hT is the diameter of the triangle T .
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Let us set

∀T ∈ Th, ph = K.∇λh − fT
(x−RTx)

2
on T.

The key point of the construction of the scheme is that ph is an admissible field in the
following sense :

Lemma 2.1 The vector field ph satisfies :

ph ∈ H(div,Ω) and ∀T ∈ Th − div ph = fT on T.

Proof. It is obvious that − div ph = fT , ∀T ∈ Th. Moreover if e is an interior edge of Th,
e = ∂T1 ∩ ∂T2, with T1, T2 ∈ Th and veh ∈ Vh the associated basis function, i.e.,

for any edge σ of Th,
∫
σ
vehdγ = δeσ, the Kronecker delta.

Let us denote by [ph.n]e the jump of the flux across the edge e. We have thus

[ph.n]e =
∫
e
[ph.n]ev

e
hdσ =

2∑
i=1

∫
Ti

(ph.∇veh + veh div ph) dx

=
2∑
i=1

∫
Ti

((K.∇λh − fT
(xG −RTx)

2
).∇veh − fTveh)dx = 0,

which yields ph ∈ H(div,Ω).

In order to define the numerical scheme, we need to introduce some notations. Let λh be the
solution of the discrete problem (2.2); For any T ∈ Th and σ edge of T , we set:

Fσ,T =
∫
σ
ph.nT dγ; uσ,T =

1

meas(σ)

∫
σ
λhdγ

and

uT =
1

meas(T )

∫
T

(
λh +

1

2
∇λh.(xG −RTx)

)
dx +

ρ2
T,h

4
fT ,

where

ρ2
T,h =

1

meas(T )
aT (x−RTx, x−RTx).

Lemma 2.2 With the notations given above, one has the following scheme ∀T, T1, T2 ∈ Th,

−
∑
σ∈∂T

Fσ,T = meas(T ) fT

Fσ,T1 + Fσ,T2 = 0, ∀σ ∈ ∂T1 ∩ ∂T2,

dT,σFσ,T + uT = uσ,T , ∀σ ∈ ∂T,

uσ,T = 0, ifσ ∈ ∂T ∩ ∂Ω.

(2.4)
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Proof . First, we have

−
∑
σ∈∂T

Fσ,T = meas(T ) fT =
∫
T
fdx, ∀T ∈ Th.

Indeed, we have :

−
∫
T

div phdx = −
∑
e∈∂T

∫
σ
ph.nTdx =

∫
T
fTdx = meas(T ) fT .

And for any interior edge σ ∈ ∂T1∩∂T2, Fσ,T1 +Fσ,T2 = 0 is obvious since ph ∈ H(div,Ω)).

Let qh ∈ RT0(T ) = (P0(T ))2+xP0(T ) such that qh.nT |σ = 1 and qh.nT |e = 0,∀edge e 6= σ.

By one hand, we have,

B := aT (ph, qh)−
∫
∂T
λhqh.nT = dT,σmeas(σ)Fσ,T − uσ,T .meas(σ)

and on the other hand, if we set

A = aT (
div ph

2
(x−RTx), qh),

and

λh =
1

meas(T )

∫
T
λhdx,

we get

aT (ph, qh)−
∫
∂T
λhqh.nT = aT (ph, qh)−

∫
T
∇λh.qh −

∫
T
λh div qhdx

= aT (ph −
div ph

2
(x−RTx), qh)−

∫
T
∇λh.qh + A−

∫
T
λh div qhdx

= aT (∇λh, qh)−
∫
T
∇λh.qh + A−

∫
T
λh div qhdx

= aT (∇λh, qh −
div qh

2
(x−RTx))−

∫
T
∇λh.qh + A−

∫
T
λh div qhdx

=
∫
T

(
qh −

div qh
2

x−RTx)

)
.∇λh −

∫
T
∇λh.qh + A−

∫
T
λh div qhdx

= −
∫
T

(
λh +

1

2
∇λh(xG −RTx)

)
div qh + A.

However, since
∫
T

div qh =
∫
∂T
qh.nTdγ = meas(σ), we obtain

B = −meas(σ)
(
λh +

1

2
∇λh(xG −RTx)

)
+ A

But we have also,
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A = aT (
div ph

2
(x−RTx), qh)

= aT (
div ph

2
(x−RTx), qh −

div qh
2

(x−RTx))

−div qh
4

aT (x−RTx, x−RTx).fT

= −
(∫

T
div qhdx

)
.
ρT,h

4
.fT = −meas(σ)

ρT,h
4
.fT .

where

ρT,h =
1

meas(T )
aT (x−RTx, x−RTx)

which implies

B =
(
λh +

1

2
∇λh(xG −RTx) +

ρT,h
4
.fT

)
and thus scheme (2.4).

Using once more Lemma 2.1, we can derive the following a priori error estimate,

Lemma 2.3 If the weak solution u of model problem (2.1) belongs to H1+s(Ω), 0 < s ≤ 1,
one has:∑

T∈Th

‖u− uT‖2
0,T

 1
2

≤ C

hs|u|1+s,Ω +

(∑
T

h2
T‖f‖2

0,T + h2
T dist

2(xG, RTx)

) 1
2

 . (2.5)

2.1 A focus on the treatment of an additional reaction term

Let us consider the problem of diffusion-reaction equations:− div(∇u) + cu = f over Ω,

u = 0 on Γ.
(2.6)

where f ∈ L2(Ω), c ∈ L∞(Ω) with c ≥ 0, and the following associated discrete problem :



Find λh ∈ Vh such that

∀µh ∈ Vh,
∑
T∈Th

∫
T
∇λh.∇µhdx

+
∑
T∈Th

αT cT

∫
T

(
λh +

1

2
(xG −RTx).∇λh

)(
µh +

1

2
(xG −RTx).∇µh

)
dx

=
∑
T∈Th

αT

∫
T
fT

(
µh +

1

2
(xG −RTx).∇µh

)
dx

(2.7)
where for all T ∈ Th,
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cT =
1

meas(T )

∫
T
cdx , fT =

1

meas(T )

∫
T
fdx , αT =

4

4 + cTρ2
T

,

λh = 1
meas(T )

∫
T λhdx (and analogously for µh ), and xG is the barycenter of T .

Using the same arguments as before, we have in this case :

Lemma 2.4 Let λh be the solution of the discrete problem. We introduce

ph = ∇λh −
2

4 + cTρ2
T

(fT + cT (λh +∇λh(xG −RTx)))(x−RTx).

Fσ,T =
∫
σ
ph.nTdγ, uσ =

1

meas(σ)

∫
σ
λhdγ

and

uT =
4

4 + cTρ2
T

(
1

meas(T )

∫
T

(
λh +

1

2
∇λh.(xG −RTx)

)
+
ρ2
T,h

4
fT

)
,

where

ρ2
T,h =

1

meas(T )
aT (x−RTx, x−RTx).

Then we have

−
∑
σ∈∂T

Fσ,T + cTuT = meas(T )fT

Fσ,T1 + Fσ,T2 = 0, ∀σ ∈ ∂T1 ∩ ∂T2,

dT,σFσ,T + uT = uσ,T , ∀σ ∈ ∂T,

uσ,T = 0, ifσ ∈ ∂T ∩ ∂Ω.

3 A posteriori error estimator for the diffusion model problem

Usually, error estimators for adaptive refinement require exact discrete solutions (see [10] and
references therein), but in practical cases the exact solution is not available and so we are in
the presence of solvers error. In this subsection, we introduce a posteriori error estimator for
solutions obtained by black-box solver, in this case we are in the presence of many source of
errors : approximation, error solvers, post processing error ...etc. We indicate the a posteriori
error estimator for the diffusion model equation:−∆u = f over Ω,

u = 0 on Γ.
(3.1)

The solution is assumed to be obtained by any existing solver. The given estimator is valid
also for equilibrium and mixed finite element approximations with or without numerical
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integration.
Let Th be a regular triangulation of Ω by triangles, E is the set of all edges and EI the set
of all interior edges. Given T ∈ Th, ∆(T ) is the union of all elements of Th sharing a vertex
with T , ωT is the union of all elements of Th sharing an edge with T and ET the set of all
edges of T . We consider the finite dimensional space

Vh = {vh ∈ H1(Ω), ∀T ∈ Th vh|T ∈ P1(T )} (3.2)

Eh = {ph ∈ (L2(Ω))2,∀T ∈ Th ph|T ∈ RT0(T ) = (P0(T ))2 + xP0(T )} (3.3)

and

Mh = {vh ∈ L2(Ω), ∀T ∈ Th vh|T ∈ P0(T )} (3.4)

Let ph ∈ Eh and uh ∈Mh, for all T ∈ Th we set

ε1,T (ph) = sup
vh∈Vh(T )

∫
∆(T )

ph∇vhdx−
∫

∆(T )
vhfdx

|vh|1,∆(T )

, (3.5a)

ε2,T (ph) = sup
φh∈Vh(T )

∫
∆(T )

ph curlφhdx

|φh|1,∆(T )

, (3.5b)

ε3,T (ph, uh) = sup
qh∈Eh(T )

∫
ωT

(phqh + uh div qh)dx

‖qh‖H(div,ωT )

, (3.5c)

η2
1,T (ph) = h2

T‖f − fT‖2
0,T +

∑
l∈ET

(hl‖[ph.tl]l‖2
0,l), (3.5d)

and

η2,T (ph) = hT‖ph‖0,T , (3.5e)

where

Vh(T ) = {vh ∈ H1
0 (∆(T )), ∀T ∈ ∆(T ) vh|T ∈ P1(T )}, (3.6)

and

Eh(T ) = {qh ∈ Eh ∩H(div,Ω), ∀T 6∈ ωT qh|T = 0}. (3.7)

hT and hl are the diameters of T and l respectively. The outward normal to an edge l of some
T ∈ Th is written as nl = (n1,l, n2,l) and we set tl = (n2,l,−n1,l) for associated tangential
direction. we denote by [ph.tl]l the jump of ph.tl across the edge l.
In the sequel, C,C1, C2 are positive generic constants independent of h (which may change
from one line to other).

Remark 3.1. Let us notice that

(1) Since

− div ph =
1

meas(T )

∫
T
fdx = fT on T,
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we have

ε2
1,T (ph) ≤ C

∑
T∈∆(T )

h2
T‖f − fT‖2

0,T ,

which is higher order perturbation of the error.
(2) Let uTh , ψTh ∈ Vh(T ) and qTh ∈ Eh(T ) be the unique solutions of the following respective

problems

(P1)


Find uTh ∈ Vh(T ) such that

∀vh ∈ Vh(T ),
∫

∆(T )
∇uTh∇vhdx =

∫
∆(T )

ph∇vhdx−
∫

∆(T )
fvhdx,

(P2)


Find ψTh ∈ Vh(T ) such that

∀φh ∈ Vh(T ),
∫

∆(T )
curlψTh curlφhdx =

∫
∆(T )

ph curlφhdx

(P3)


Find qTh ∈ Eh(T ) such that

∀sh ∈ Eh(T ),
∫
ωT

(qTh sh + div qTh div sh)dx =
∫
ωT

(phsh + uh div sh)dx.

It is easy to see that

|uTh |1,T = ε1,T (ph) |ψTh |1,T = ε2,T (ph) and ‖qTh ‖H(div,ωT ) = ε3,T (ph, uh).

We have the following error estimates,

Theorem 3.1 Let u ∈ H1
0 (Ω) be the weak solution of the model problem (3.1), p = ∇u,

ph ∈ Eh and uh ∈ Mh the solution of the given numerical scheme. Then there exists a
positive constant C only depending on the minimum angle of Th such that

‖u− uh‖0,Ω + ‖p− ph‖0,Ω ≤ C
{( ∑

T∈Th

(η2
1,T (ph) + ε2

1,T (ph) + ε2
2,T (ph))

) 1
2

+
( ∑
T∈Th

(η2
2,T (ph) + ε2

3,T (ph, uh))
) 1

2
}
.

Moreover, we have

2∑
i=1

ηi,T (ph) +
2∑
i=1

εi,T (ph) + ε3,T (ph, uh) ≤ C1(‖p− ph‖0,∆(T ) + ‖u− uh‖0,∆(T ))

+C2

( ∑
T ′∈ωT

h2
T ′‖f − fT ′‖2

0,T ′

) 1
2
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Proof : First, Using Helmholtz-decomposition, we have eh = p − ph = ∇w + curl ζ, with

w ∈ H1
0 (Ω), ζ ∈ H1(Ω) and

∫
Ω
∇w curl ζdx = 0.

Let us remark that the orthogonality implies the following error decomposition :

‖eh‖2
0,Ω = |w|21,Ω + ‖ curl ζ‖2

0,Ω, (3.8)

|w|21,Ω =
∫

Ω
eh∇wdx and ‖ curl ζ‖2

0,Ω =
∫

Ω
eh curl ζdx. (3.9)

Now, let wI ∈ Vh and ζI ∈ Vh be continuous approximations of w and ζ respectively such
that :

∀T ∈ Th, ‖w − wI‖0,T ≤ Cmeas(T )
1
2 |w|1,∆(T ), (3.10a)

|wI |1,Ω ≤ C|w|1,Ω, (3.10b)

and
∀l ∈ ET , ‖w − wI‖0,l ≤ Cmeas(l)

1
2 |w|1,∆(l), (3.10c)

( and analogously for ζ ) where ∆(l) is the union of the elements T sharing l. Moreover we
assume that the interpolation preserves boundary conditions, that is, wI ∈ Vh ∩H1

0 (Ω). It is
well known that such approximations exist (see [5], [8]).
First, according to (3.9) we have by element-wise integration by parts, noting that
w − wI ∈ H1

0 (Ω),

‖∇w‖2
0,Ω =

∫
Ω
eh∇(w − wI)dx+

∫
Ω
fwIdx−

∫
Ω
ph∇wIdx

=
∑
T∈T

∫
T

(f + div ph)(w
I − w)dx+

∫
Ω
fwIdx−

∫
Ω
ph∇wIdx.

From Cauchy’s inequality and from (3.10a) and (3.10c),

∑
T∈Th

∫
T

(f + div ph)(w
I − w)dx ≤

( ∑
T∈Th

h2
T‖f + div ph‖2

0,T

) 1
2

|w|1,Ω.

Using (3.10b), we obtain

∫
Ω
fwIdx−

∫
Ω
ph∇wIdx ≤ C

( ∑
T∈Th

ε2
1,T (ph)

) 1
2

|wI |1,Ω ≤ C
( ∑
T∈Th

ε2
1,T (ph)

) 1
2

|w|1,Ω.

Then we have

‖∇w‖0,Ω ≤ C
( ∑
T∈Th

h2
T‖f + div ph‖2

0,T +
∑
T∈Th

ε2
1,T (ph)

) 1
2

. (3.11)

Arguing as above, since p = ∇u and ph ∈ Eh, by element-wise integration by parts we have∫
Ω
eh curl(ζ − ζI)dx =

∑
l∈E

∫
l
(ζ − ζI)[ph.tl]ldσ.
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By Cauchy’s inequality (3.10c) we obtain

∫
Ω
eh curl(ζ − ζI)dx ≤ C

(∑
l∈E

hl‖[ph.tl]l‖2
0,l

) 1
2

‖∇ζ‖0,Ω. (3.12)

Finally, since ‖ curl ζ‖0,Ω = ‖∇ζ‖0,Ω,

∫
Ω
eh curl ζIdx = −

∫
Ω
ph curl ζIdx (3.13)

and

‖ curl ζ‖2
0,Ω =

∫
Ω
eh curl ζdx =

∫
Ω
eh curl(ζ − ζI)dx+

∫
Ω
eh curl ζIdx,

and using (3.12) and (3.10b), we obtain

‖ curl ζ‖0,Ω ≤ C
(∑
l∈E

hl‖[ph.tl]l‖2
0,l +

∑
T∈Th

ε2
2,T (ph)

) 1
2

. (3.14)

Using the Helmholtz decomposition (3.8) together with the estimates (3.11) and (3.14), we
get

‖p− ph‖2
0,Ω ≤ C

∑
T∈Th

(η2
1,T (ph) + ε2

1,T (ph) + ε2
2,T (ph)) (3.15).

Now, let Phu ∈Mh defined by

∀T ∈ Th, Phu =
1

meas(T )

∫
T
udx on T.

We have

‖u− Phu‖0,T ≤ ChT‖p‖0,T ≤ C(hT‖p− ph‖0,T + hT‖ph‖0,T ). (3.16)

On the other hand, using the inf-sup condition we have

‖uh − Phu‖0,Ω ≤ C sup
qh∈Eh

∫
Ω

(uh − Phu) div qhdx

‖qh‖H(div,Ω)

,

and since ∫
Ω

(uh − Phu) div qhdx =
∫

Ω
(uh div qhdx+ phqh)dx+

∫
Ω

(p− ph)qhdx

we obtain easily that

‖uh − Phu‖0,Ω ≤ C
( ∑
T∈Th

ε2
3,T (ph, uh)

) 1
2

+ ‖p− ph‖0,Ω. (3.17).
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By triangular inequality, and using (3.15) and (3.17), we have :

‖u− uh‖0,Ω + ‖p− ph‖0,Ω ≤ C
{( ∑

T∈Th

(η2
1,T (ph) + ε2

1,T (ph) + ε2
2,T (ph))

) 1
2

+
( ∑
T∈Th

(η2
2,T (ph) + ε2

3,T (ph, uh))
) 1

2
}
.

To indicate the efficiency of the a posteriori error estimator we follow Verfürth [10] and show
a local reverse up to higher order perturbations.
For each T ∈ Th, we reset :

ωT = {T ′ ∈ Th such that T and T ′ have a common edge},

∀T ∈ Th, fT =
1

meas(T )

∫
T
fdx,

and for all l ∈ EI , we denote by T+ and T− the two elements of Th sharing this edge. Let
bT be the standard bubble function on T with maxT bT = 1, as defined in [10]. Then norms
‖.‖0,T and ‖bT .‖0,T are equivalent on P0(T ), and

‖rT‖2
0,T ≤ C

∫
T
bT rT (fT−f+div(ph−p))dx ≤ C

∫
T
∇(bT rT ).(ph−p)dx+C‖rT‖0,T‖f−fT‖0,T

where rT := fT + div ph on T . Then we have

‖rT‖2
0,T ≤ C|bT rT |1,T‖p− ph‖0,T + C‖rT‖0,T‖f − fT‖0,T ,

Using the inverse estimate |rT bT |1,T ≤ Ch−1
T ‖rT‖0,T , we obtain

hT‖fT + div ph‖0,T ≤ C1‖p− ph‖0,T + C2hT‖f − fT‖0,T . (3.18)

Concerning the jump terms for l ∈ ET ∩ EI , let bl be the standard bubble function on
T vanishing on ∂T\l such that maxT bl = 1 (see [10]). Then again the norms ‖.‖0,l and
‖bl.‖0,l are equivalent on P1(l). Let l ∈ EI , then using the extension operator P : C0(l) −→
C0(T+ ∪ T−) of [10], it follows that

‖[ph.tl]l‖2
0,l ≤ C

∫
l
blP ([ph.tl]l)[ph.tl]ldσ = C

∫
T+∪T−

ph curl(blP ([ph.tl]l))dx.

Because of the inverse inequality

‖blP ([ph.tl]l)‖1,T+∪T− ≤ Ch−1
l ‖blP ([ph.tl]l)‖0,T+∪T− ,

the equality ∫
T+∪T−

p curl(blP ([ph.tl]l))dx = 0,

using Cauchy’s inequality and ‖blP ([ph.tl]l)‖0,T+∪T− ≤ Ch
1
2
l ‖[ph.tl]l‖0,l, we obtain

h
1
2
l ‖[ph.tl]l‖0,l ≤ C‖p− ph‖0,T+∪T− . (3.19)
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Finally, it is easy to see that

∀i = 1, 2 εi,T (ph) ≤ ‖p− ph‖0,∆(T ). (3.20)

Combining (3.18)-(3.20) we obtain

η2
1,T (ph) + ε2

1,T (ph) + ε2
2,T (ph) ≤ C1

∑
T ′∈∆(T )

‖p− ph‖2
0,T ′ + C2

∑
T ′∈ωT

h2
T ′‖f − fT ′‖2

0,T ′ . (3.21)

Introducing as above the bubble function bT , we get

‖ph‖2
0,T ≤ C

∫
phbTphdx = C

∫
T
bTph(ph − p)dx+ C

∫
T
∇u.(bTph). (3.22)

Since
∫
T

div(bTph)dx = 0 and uh ∈Mh, by element-wise integration by parts we have

∫
T
∇u.(bTph)dx =

∫
T

(uh − u) div(bTph)dx. (3.23)

Using the inverse inequality ‖ div(bTph)‖0,T ≤ ChT‖ph‖0,T , and (3.22)-(3.23), we obtain

η2,T (ph) ≤ C(‖p− ph‖0,T + ‖u− uh‖0,T ). (3.24)

Finally, it is easy to check that

ε3,T (ph, uh) ≤ C(‖p− ph‖0,∆(T ) + ‖u− uh‖0,∆(T )). (3.25)

Using the estimates (3.24)-(3.25), we get

∀T ∈ Th, η2,T (ph) + ε3,T (ph, uh) ≤ C(‖p− ph‖0,∆(T ) + ‖u− uh‖0,∆(T )). (3.26)

Finally, using (3.21) and (3.26) concludes the proof.
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