
Weak Alternating Timed Automata

Pawel Parys1 and Igor Walukiewicz2

(1)Warsaw University, Poland
(2)CNRS and Bordeaux University, France

February 19, 2009

Abstract

Alternating timed automata on infinite words are considered. The
main result is the characterization of acceptance conditions for which the
emptiness problem for the automata is decidable. This result implies new
decidability results for fragments of timed temporal logics. It is also shown
that, unlike for MITL, the characterisation remains the same even if no
punctual constrains are allowed.

Timed automata [6] is a widely used model of real-time systems. It is ob-
tained from finite automata by adding clocks that can be reset and whose values
can be compared with constants. The crucial property of timed automata is that
their emptiness is decidable. Alternating timed automata have been introduced
in [17] following a sequence of results [1, 2, 22] indicating that a restriction to one
clock can make some problems decidable. The emptiness of one clock alternat-
ing automata is decidable over finite words, but not over infinite words [25, 18].
Undecidability proofs relay on the ability to express “infinitely often” proper-
ties. Our main result shows that once these kind of properties are forbidden the
emptiness problem is decidable.

To say formally what are “infinitely often” properties we look at the theory
of infinite sequences. We borrow from that theory the notion of an index of a
language. It is known that the index hierarchy is infinite with “infinitely often”
properties almost at its bottom. From this point of view, the undecidability re-
sult mentioned above left open the possibility that safety properties and “almost
always” properties can be decidable. This is indeed what we prove here.

Automata theoretic approach to temporal logics [27] is by now a standard
way of understanding these formalisms. For example, we know that the modal
µ-calculus corresponds to all automata, and LTL to very weak alternating au-
tomata, or to counter-free nondeterministic automata [30]. By translating a
logic to automata we can clearly see a combinatorial challenges posed by the
formalism. We can also abstract from irrelevant details, such as a choice of
operators for a logic. This approach was very beneficial for the development of
logical formalisms over sequences.

An automata approach has been missing in timed models for an obvious rea-
son: no standard model of timed automata is closed under boolean operations.

1

Event-clock automata [8] may be considered as an exception, but the price to
pay is a restriction on the use of clocks. Alternating timed automata seem to
be a good model, although the undecidability result over infinite words shows
that the situation is more difficult than for sequences. Nevertheless, Ouaknine
and Worrell [24] have shown decidability of the emptiness problem provided all
states are accepting, and some locality restriction on the transition function
holds. Using this, they have identified decidable fragment of MTL called Safety
MTL.

In this paper we show that our main result allows to get a decidable fragment
of TPTL [9] with one variable, that we call Constrained TPTL. This fragment
contains Safety MTL and allows all eventually formulas. Its syntax has also
some similarities with another recently introduced logic: FlatMTL [13, 14]. We
give some elements of comparison between the logics later in the paper. In
brief, the reason why Constrained TPTL is not strictly more expressive than
FlatMTL is that the later includes MITL [7]. This is a sub-logic of MTL where
punctual constraints are not allowed.

The case of MITL makes it natural to ask what happens to alternating timed
automata when we disallow punctual constraints. This is an interesting question
also because all known undecidability proofs have used punctual constraints in
an essential way. Our second main result (Theorem 32), says that the decidabil-
ity frontier does not change even if we only allow to test if the value of a clock is
bigger than 1. Put it differently, it is not only the lack of punctual constraints,
but also very weak syntax of the logic that makes MITL decidable.

Related work The idea of restricting to one clock automata dates back at
least to [16]. Alternating timed automata where studied in a number of pa-
pers [18, 25, 5, 4, 3]. The most relevant result here is the decidability of empti-
ness for the case when when all states are accepting and some locality condition
holds [24]. One of technical contributions of the present paper is to remove the
locality restriction, and to add a non-accepting layer of states on the top of the
accepting one.

For a long time MITL [7] was the most prominent example of a decidable
logic for real-time. In [25] Ouaknine and Worrell remark that MTL over finite
words can be translated to alternating timed automata, and hence it is decid-
able. They also show that over infinite words the logic is undecidable (which is a
stronger result than undecidability for the automata model in [18]). They have
proposed a fragment of MTL, called Safety MTL. Decidability of this fragment
was shown in [24] by reducing to the class of ATA mentioned in the previous
paragraph. A fragment of MTL called FlatMTL [13, 14] represents an interest-
ing but technically different direction of development. We will comment more
on this in Section 3.

We should also discuss the distinction between continues and pointwise se-
mantics. In the later the additional restriction is that formulas are evaluated
only in positions when an action happens. So the meaning of F(x=1)α in the
continues semantics is that in one time unit from now formula α holds, while

2

in the pointwise semantics we additionally require that there is an action one
time unit from now. Pointwise semantics is less natural if one thinks of en-
coding properties of monadic predicates over reals. Yet, it seems sufficient for
descriptions of behaviors of devices, like timed automata, over time [26]. Here
we consider the pointwise semantics simply because emptiness of alternating
timed automata in continues semantics is undecidable even over finite words.
At present it seems that an approach through compositional methods [15] is
more suitable to deal with continues semantics.

The depth of nesting of positive and negative conditions of type “infinitely
often” is reflected in the concept of the index of an automaton. Wagner [28], as
early as in 1977, established the strictness of the hierarchy of indices for deter-
ministic automata on infinite words. Weak conditions were first considered by
Staiger and Wagner [29]. There are several results testifying their relevance. For
example Mostowski [20] has shown a direct correspondence between the index
of weak conditions and the alternation depth of weak second-order quantifiers.
For recent results on weak conditions see [21] and references therein.

Organization of the paper After a section with basic definitions we show
our main decidability result (Theorem 2). Section 3 introduces Constrained
TPTL, gives a translation of the logic into a decidable class of alternating timed
automata, and discusses relations with FlatMTL. The last section presents the
accompanying undecidability result (Theorem 32).

1 Preliminaries

A timed word over a finite alphabet Σ is a sequence

w = (a1, t1)(a2, t2) . . .

of pairs form Σ × R+. We require that the sequence {ti}i=1,2,... is strictly
increasing and unbounded. If ti describes the time when event ai has occurred
then these restrictions say that there cannot be two actions at the same instance
and that there cannot be infinitely many actions in a finite time (non Zeno).

We will consider alternating timed automata (ATA) with one clock [18]. Let
x be this clock and let Φ denote the set of all comparisons of x with constants,
eg. (x < 1 ∧ x ≥ 0).

A one-clock ATA over an alphabet Σ is a tuple

A = 〈Q,Σ, qo, δ,Ω : Q→ N〉

where Q is a finite set of states and Ω determines the parity acceptance condi-
tion. The transition function of the automaton δ is a finite partial function

δ : Q× Σ× Φ ·→ B+(Q× {nop, reset}).

where B+(Q×{nop, reset}) is the set of positive boolean formulas over atomic
propositions of the form (q, f) with q ∈ Q and f ∈ {nop, reset}.

3

Intuitively, automaton being in a state q, reading a letter a and having
a clock valuation satisfying θ can proceed according to the positive boolean
formula δ(q, a, θ). It means that if a formula is a disjunction then it chooses one
of the disjuncts to follow, if it is a conjunction then it makes two copies of itself
each following one conjunct. If a formula is “atomic”, i.e., of the form (q, reset)
or (q, nop) then the automaton changes the state to q and either sets the value
of the clock to 0 or leaves it unchanged, respectively. To simplify the definition
of acceptance there is also one more restriction on the transition function:

(Partition) For every q ∈ Q, a ∈ Σ and v ∈ R+, there is at most one
θ s.t. δ(q, a, θ) is defined, and v satisfies θ.

The acceptance condition of the automaton determines which infinite se-
quences of states (runs of the automaton) are accepting. A sequence q1, q2, . . .
satisfies:

• weak parity condition if min{qi : i = 1, 2, . . . } is even,

• strong parity condition if lim infi=1,2,... Ω(qi) is even.

Observe that the difference between weak and strong condition is that in the
weak case we consider all occurrences of states and in the strong case only those
that occur infinitely often. In this paper we will mostly consider automata with
weak conditions. Whenever we will be considering strong conditions we will say
it explicitly.

For an alternating timed automatonA and a timed word w = (a1, t1)(a2, t2) . . .
we define the acceptance game GA,w between two players: Adam and Eve. In-
tuitively, the objective of Eve is to accept w, while the aim of Adam is the
opposite. A play starts at the initial configuration (q0, 0). It consists of in-
finitely many phases. The (k+1)-th phase starts in (qk, vk), ends in some con-
figuration (qk+1, vk+1) and proceeds as follows. Let v′ := v + tk+1 − tk. Let θ
be a unique (by the partition condition) constraint such that v′ satisfies θ and
b = δ(qk, ak+1, θ) is defined; if there is no such θ then Eve is blocked. Now the
outcome of the phase is determined by the formula b. There are three cases:

• b = b1∧b2: Adam chooses one of subformulas b1, b2 and the play continues
with b replaced by the chosen subformula;

• b = b1 ∨ b2: dually, Eve chooses one of subformulas;

• b = (q, f) ∈ Q×{nop, reset}: the phase ends with the result (qk+1, vk+1) :=
(q, f(v′)). A new phase is starting from this configuration.

The winner is Eve if she is not blocked and the sequence of states appearing in
the path satisfies the acceptance condition of the automaton.

Formally, a play is a finite sequence of consecutive game positions of the
form 〈k, q, v〉 or 〈k, q, b〉, where k is the phase number, b a boolean formula, q
a location and v a valuation. A strategy of Eve is a mapping which assigns to
each such sequence ending in Eve’s position a next move of Eve. A strategy is
winning if Eve wins whenever she applies this strategy.

4

Definition 1 (Acceptance) An automaton A accepts w iff Eve has a winning
strategy in the game GA,w. By L(A) we denote the language of all timed words
w accepted by A.

The Mostowski index of an automaton with the, strong or weak, acceptance
condition given by Ω is the pair consisting of the minimal and the maximal value
of Ω: (min(Ω(Q)),max(Ω(Q))). We may assume without a loss of generality that
min(Ω(Q)) ∈ {0, 1}. (Otherwise we can scale down the rank by Ω(q) := Ω(q) +
2.). Automata with strong conditions of index (0, 1) are traditionally called
Büchi automata and their acceptance condition is given by a set of accepting
states Q+ ⊆ Q; in our presentation theses are states with rank 0.

2 Decidability for one-clock timed automata

We are interested in the emptiness problem for one clock ATA. As it was men-
tioned in the introduction the problem is undecidable for automata with strong
Büchi conditions. Here we will show a decidability result for automata with
weak acceptance conditions of index (0, 1). A different presentation of these
automata is that they are strong Büchi automata where there are no transitions
from an accepting state to a non-accepting state. Indeed, once the automaton
sees a state of priority 0 then any infinite run is accepting (but there may be
runs that get blocked). In the following we will write Q+ for accepting states
and Q− for the other states. For automata presented in this way the (strong)
Büchi acceptance condition says simply: a word is accepted, if there is a strat-
egy for Eve to find an infinite path on which there are only finitely many states
from Q−.

Theorem 2 Let A be one-clock Büchi alternating timed automata with no tran-
sitions from states in Q+ to states in Q−. It is decidable whether the automaton
accepts a non Zeno timed word.

In the rest of the section we give the proof of this theorem. To fix the
notation we take a one clock ATA:

A = 〈Q,Σ, qo, δ, F ⊆ Q〉

We will assume that the transition function satisfies the partition condition.
For simplicity we also assume that every value of δ is a boolean formula in
a disjunctive normal form. Moreover, we will require that every disjunct of
every transition of A there is some pair with reset and some pair with nop. It
is easy to convert any automaton to an equivalent automaton satisfying these
conditions. This form of transitions is required for the structure lemmas of this
subsection.

Our first step will be to construct some infinite transition system H(A), so
that existence of an accepting run of A is equivalent to existence of some good
path in H(A). In the second step we will use some structural properties of this
transition system to show decidability of this problem.

5

2.1 An abstract transition system

The goal of this subsection is to define a transition system H(A) such that
existence of an accepting computation of A is reduced to existence of some
special infinite path inH(A) (Corollary 9). This system will be some abstraction
of the transition system of configurations of A. While H(A) will be infinite, it
will have some well-order structure and other additional properties that will
permit to analyze it.

First consider an auxiliary labeled transition system S(A) whose states are
finite sets of configurations, i.e., finite sets of pairs (q, v), where q ∈ Q and
v ∈ R+. The initial position in T is P0 = {(q0, 0)} and there are transitions

of two types P
t
↪→ P ′ and P

a
↪→ P ′. Transition P

t
↪→ P ′ is in T iff P ′ can

be obtained from P by changing every configuration (q, v) ∈ P to (q, v + t).
Transition P

a
↪→ P ′ is in T iff P ′ can be obtained from P by the following

nondeterministic process:

• First, for each (q, v) ∈ P , do the following:

– let b = δ(q, a, σ) for the uniquely determined σ satisfied in v′,

– choose one of disjuncts of b, say

(q1, r1) ∧ . . . ∧ (qk, rk) (k > 0),

– let Next(q,v) = {(qi, ri(v)) : i = 1 . . . k}.

• Then, let P ′ :=
⋃

(q,v)∈P Next(q,v).

Definition 3 We will call a sequence P0, P1, . . . of the states of S(A) accepting
if the states of Q− appear only in a finite number of Pi.

Lemma 4 A accepts an infinite timed word (a0, t0)(a1, t1) . . . iff there is an
accepting sequence in S(A):

P0
t0
↪→ P1

a0
↪→ P2

t1
↪→ P3

a1
↪→ P4 . . .

Proof
Recall that acceptance of a word by an automaton is defined as existence of a
winning strategy for Eve in the acceptance game. This is a game with Büchi
conditions, so if Eve has a winning strategy, then she has a memoryless strategy.
This strategy gives a run of the form required by the lemma. �

Our next goal is to remove time labels on transitions. Still we do not want
just to erase them, as then we will not to be able to say if a word is Zeno or
not. We start by introducing regions.

6

Let dmax denote the biggest constant appearing in δ, i.e., the transition
function of the automaton. Let set reg of regions be a partition of R+ into
2 · (dmax + 1) sets as follows:

reg := {{0}, (0, 1), {1}, (1, 2), . . . , (dmax − 1, dmax), {dmax}, (dmax,+∞)}

There are three kinds of regions: bounded intervals (denoted regI), one-point
regions (denoted regP), and one unbounded interval (dmax,+∞). We will use
the notation Ii for the region (i − 1, i). In a similar way, I∞ will stand for
(dmax,+∞). For v ∈ R+, let reg(v) denote its region; and let fract(v) denote
the fractional part of v

Recall that a state P is a finite set of pairs (q, v). If v ∈ I∞ then the
precise value of v does not matter from the point of view of the automaton.
For other values it is important to look at their fractional parts. Among all
v 6∈ I∞ appearing in P take the one with the biggest fractional part. Then, by
making the time pass we can get v to a new region without changing the regions
of valuations with smaller, but positive, fractional parts. Intuitively this is a
smallest delay what makes a visible change to P . As integer valuation would
force us to introduce a case distinction we will set things so that they can be
avoided.

In order not to have precise time information on transitions we introduce a
new alphabet

Σ = Σ ∪ {(delay, ε)} ∪ ({delay} × Σ),

and three new kinds of transitions.
Choose a valuation v among these with reg(v) 6= I∞ with a maximal

fract(v). A transition on a letter (delay, ε) will make the time pass so that the
valuation v goes to the next interval region and other valuations do not change
their regions:

P
(delay,ε)−→ P ′ if P

t1
↪→ P ′1

t2
↪→ P ′ for some P ′1 and t1, t2 > 0 such

that there is (q, v) ∈ P , with v + t1 being an integer and v + t1 + t2
in the following interval region. Moreover, for all (q′, v′) ∈ P if
fract(v) 6= fract(v′) then the value v′ + t1 + t2 is in the same
region as v′.

Transition on a will do the action and make some time pass without any
valuation changing the region.

P
a−→ P ′ if P

a
↪→ P1

t1
↪→ P ′ for some P1, and t1 > 0 such that for

every (q, v) ∈ P , the value v + t1 is in the same region as v.

Finally, we come to the most complex (delay, a) transition. For reasons
explained above, we did not allow transitions (delay, ε) to reach one-point re-
gions. Still it is important to be able to execute actions in those regions. A
transition on (delay, a) permits to reach a one-point region, execute the action,
and leave the region.

7

P
(delay,a)−→ P ′ if P

t1
↪→ P1

a
↪→ P2

t2
↪→ P ′ for some P1, P2 and t1, t2 > 0

such that there is (q, v) ∈ P , with v+t1 being an integer and v+t1+t2
in the following interval region. Moreover for all (q′, v′) ∈ P if
fract(v) 6= fract(v′) then the value v′ + t1 + t2 is in the same
region as v′.

The following lemma shows that with a new alphabet we can replace non
Zeno condition by a simple infinitary condition. To make the lemma true, we
need some additional assumption:

Lemma 5 There is a non Zeno accepting sequence in S(A):

P0
t0
↪→ P1

a0
↪→ P2

t1
↪→ P3

a1
↪→ P4 . . .

iff there is an accepting sequence

P0
σ0−→ P ′1

σ1−→ P ′2 . . .

where σ0, σ1, · · · ∈ Σ and (delay, ·) letters appear infinitely often in the sequence.

The next step in the construction is to abstract from valuations in the states
of the transition system. Below we work with finite words of the form Λ∗I · Λ∞
where ΛI = P(Q× regI) and Λ∞ = P(Q)× {∞}).

Definition 6 For a state P of T we define a word H(P) from Λ∗I · Λ∞ as the
one obtained by the following procedure:

• replace each (q, v) ∈ P by a triple 〈q, reg(v), fract(v)〉 if v ≤ dmax (this
yields a finite set of triples)

• sort all these triples w.r.t. fract(v) (this yields a finite sequence of triples)

• group together triples having the same value of fract(v) (this yields a
finite sequence of finite sets of triples)

• forget about fract(v), i.e., replace each triple 〈q, reg(v), fract(v)〉 by a
pair (q, reg(v)) (this yields a finite sequence of finite sets of pairs, a word
in Λ∗I).

• Add at the end the letter ({q : (q, v) ∈ P, v > dmax}, I∞) ∈ Λ∞.

Finally, we can define H(A). It has Λ∗I × Λ∞ as states, and for every letter
α ∈ Σ there is a transition c

σ−→ c′ if there are states P, P ′ of S(A) such that
P

a−→ P ′ and H(P) = c, H(P ′) = c′.

Lemma 7 If H(P1) = H(P2) and P1
σ−→ P ′1 then P2

σ−→ P ′2 with H(P ′1) =
H(P ′2).

8

Definition 8 We say that a path in H(A) is good, if it passes through infinitely
many transitions labeled by letters (delay, ·).

Corollary 9 A accepts an infinite non Zeno timed word iff there is a good
path in H(A) starting in the state ({(q0, I1)}, {∅, I∞}) with only finitely many
appearances of states from Q−.

Proof
A accepts a non Zeno word iff there is a path in S(A) satisfying the acceptance
condition. By Lemma 5 it is equivalent to having a good path in S(A) with
transitions from the alphabet Σ satisfying the acceptance conditions. Lemma 7
shows that this is equivalent to having a good path in H(P). �

In the rest of this section we give a more explicit characterization of transi-
tions in H(A).

Lemma 10 Consider a state (λ1 . . . λk, λ∞) of H(A). If k = 0 then there is
no (delay, ·) transition from this state. Otherwise let λ′k = {(q, Id+1) : d <
dmax, (q, Id) ∈ λk} and λ′∞ = λ∞ ∪ {(q, I∞) : (q, Idmax

) ∈ λk}. In H(A) there
is exactly one transition on (delay, ·):

(λ1 . . . λk, λ∞)
(delay,ε)−→ (λ′kλ1 . . . λk−1, λ

′
∞) if λ′k 6= ∅

(λ1 . . . λk, λ∞)
(delay,ε)−→ (λ1 . . . λk−1, λ

′
∞) otherwise

In order to define transitions of H(A) on an action a, we define an auxiliary
notion of a transition from λ ∈ ΛI ∪ Λ∞. By the partition condition, for every
(q, r) ∈ λ there is at most one constraint θ such that every valuation in r satisfies
this constraint and δ(q, a, θ) is defined. We choose a conjunct from δ(q, a, θ):

(q1, nop) ∧ · · · ∧ (ql, nop) ∧ (q′1, reset) ∧ · · · ∧ (q′m, reset)

this choice gives two sets: Next(q, r) = {(q1, r), . . . , (ql, r)} and Next0(q, r) =
{(q′1, I1), . . . , (q′m, I1)}. We put

λ
a−→A (λ′, δ′); where

λ′ =
⋃

(q,r)∈λ

Next(q, r) and δ′ =
⋃

(q,r)∈λ

Next0(q, r)

Lemma 11 In H(A) transitions on an action a have the form:

(λ1 . . . λk, λ∞) a−→ (δ′λ′1 . . . λ
′
k, λ
′
∞)

where λi
a−→A (λ′i, δ

′
i) and δ′ =

⋃
δ′i (for i = 1, . . . , k,∞).

9

Note that neither δ nor any of λ′i may be empty. Observe also that there are as
many transitions a−→ from λ as there are choices of different conjuncts for each
pair (q, r) in λ.

Finally, we have the most complicated case of (delay, a) action.

Lemma 12 In H(A) the transitions on an action (delay, a) have the form:

(λ1 . . . λk, λ∞)
(delay,a)−→ (δ′λ′1 . . . λ

′
k−1, λ

′′
∞)

where the elements on the right are obtained by preforming the following steps:

• First, we change regions in λk. Every pair (q, Id) ∈ λk becomes (q, {d}).
Let us denote the result by λ1

k.

• For i = 1, . . . , k,∞ we take λ′i, δ
′
i such that: λ1

k
a−→A (λ′k, δ

′
k) and λi

a−→A
(λ′i, δ

′
i) for i 6= k.

• We increase again regions in λ′k: from {d} they become Id+1, or I∞ if
d = dmax.

• We put δ′ =
⋃
δ′i ∪ {(q, Id) : (q, {d}) ∈ λ′k, d < dmax} and λ′′∞ = λ′∞ ∪

{(q, I∞) : (q, {dmax}) ∈ λ′k}.

We write c→ c′, c
(delay,·)−→ c′, c � c′, c

Σ∗

� c′ to denote that we may go from
a configuration c to c′ using one transition, one transition reading a letter of the
form (delay, ·), any number of transitions or any number of transitions reading
only letters from Σ, respectively.

2.2 Finding a good path in H(A).

By the Corollary 9, our problem reduces to deciding if there is a good path in
H(A). The decision procedure works in two steps. In the first step we com-
pute the set Ĝ of all configurations from which there exists a good computation.
Observe that if a configuration from Ĝ has only states from Q+ then this config-
uration is accepting. So, in the second step it remains to consider configurations
that have states from both Q− and Q+. This is relatively easy as an accepting
run from such a configuration consists of a finite prefix ending in a configuration
without states from Q− and a good run from that configuration. Hence, there
is a good accepting computation from a configuration iff it is possible to reach
from it a configuration from Ĝ that has only Q+ states. Once we know Ĝ, the
later problem can be solved using the standard reachability tree technique.

2.3 Computing accepting configurations

We start with the second step of our procedure as it is much easier than the first
one. We need to decide if from an initial state one can reach a configuration
from Ĝ having only Q+ states. We can assume that we are given Ĝ but we

10

need to discuss a little how it is represented. It turns out that there are useful
well-quasi-orders on configurations that allow to represent Ĝ in a finitary way.

A well-quasi-order is a relation with a property that for every infinite se-
quence c1, c2, . . . there exist indexes i < j such that the pair (ci, cj) is in the
relation.

The order we need is a relation � over configurations of H(A). We say
that (λ1 . . . λk, λ∞) � (λ′1 . . . λ

′
k′ , λ

′
∞) if λ∞ ⊆ λ′∞ and there exists a strictly

increasing function f : {1, . . . , k} → {1, . . . , k′} such that λi ⊆ λ′f(i) for each
i. Observe that here we use the fact that each λi is a set so we can compare
them by inclusion. This relation is somehow similar to the relation of being
a subsequence, but we do not require that the corresponding letters are equal,
only that the one from the smaller word is included in the one from the greater
word. The following lemma follows by a standard application of Highman’s
lemma.

Lemma 13 The relation � is a well-quasi-order.

The following shows an important interplay between � relation and transi-
tions of H(A).

Lemma 14 Let c1, c′1, c2 be configurations of H(A) such that c′1 � c1. When-
ever c1 � c2, then there exist c′2 � c2 such that c′1 � c′2 and the second com-
putation has the length not greater than the first one. Similarly, when from c1
there exists a good computation, then from c′1 such a computation exists.

Proof
For the first statement of the lemma we will simulate one transition from c1
by at most one transition from c′1. If c1

a−→ c2 then directly from Lemma 11

it follows that there is c′2 � c2 such that c2
a−→ c′2. When c1

(delay,ε)−→ c2 we
have two cases depending on the relation between one before last element of the
two configurations. To be more precise, suppose that c1 = (λ1 . . . λk, λ∞) and
c′1 = (λ′1 . . . λ

′
k′ , λ

′
∞). If λ′k′ ⊆ λk then we may do (delay, ε) from c′1 and we get

c′2 � c2. Otherwise already c′1 � c2, we do not do any action and take c′2 = c′1.
Similarly for (delay, a): either we match it with (delay, a) or just with a. An
obvious induction gives a proof of the first statement.

For the second statement we need to show that the computation from c′1
obtained by matching steps as described above is good (if the one from c1 has
been good). This is not immediate as we remove some (delay, ·) letters in the
matching computation.

Fix a good computation from c1. Let c2 be a configuration in a computation
starting from c1, and let c′2 be the corresponding configuration in the matching
computation from c′1. To arrive at a contradiction assume that there are no
delays after c′2. Let us denote c′2 = (λ′1 . . . λ

′
k′ , λ

′
∞) and c2 = (λ1 . . . λk, λ∞).

Because c′2 � c2, we know that λ′k′ is covered by some λi, i.e., λ′k′ ⊆ λi. Let us
take the biggest possible i. If some a-action is done from c2 then it is matched by
a-action from c′2, and for the resulting configurations the inclusion is preserved.

11

This can happen only finitely many times though, as there are infinitely many
(delay, ·) actions after c2. If (delay, ·) action is done from c2 and i = k then it
is matched by a (delay, ·) action from c′2, a contradiction with the choice of ci.
If i < k then the element λ′k′ is left on its position in c′2, while in c2 we remove
λk, hence λi covering λ′k′ gets closer to the end of the sequence. Repeating this
argument, we get that the covering λi finally becomes the last element and the
previous case applies. �

Corollary 15 The set Ĝ is downward closed, so it can be described by the finite
set of minimal elements that do not belong to it.

As we have mentioned before, there is a good accepting computation from a
configuration iff it is possible to reach from it a configuration from Ĝ that has
only Q+ states. The following lemma says that this property is decidable.

Lemma 16 Let X be a downward closed set in H(A). It is decidable if from
a given configuration one can reach a configuration in X that has only states
from Q+.

Proof
We will use a standard reachability tree argument. The reachability tree is a
tree in which the initial configuration is in the root, and every configuration has
as children all configurations, that may be reached by reading one letter. The
algorithm constructs a portion t of the tree according to the following rule: do
not add a node c′ to t in a situation when among its ancestors there is some
c � c′. Each path of t is finite because � is a well-quasi-order. Furthermore,
since degree of every node is finite, t is a finite tree. Then we check if in t there
is a configuration from X without states from Q−.

We only need to prove, that if in the whole reachability tree there is a
configuration as above (which means that H(A) may accept), it is also some in
t. Let c be such configuration reachable from initial configuration of H(A) by
a path π of the shortest length. Assume that c is not in t, i.e. there are two
nodes on π, say c1 and c2, such that c1 is an ancestor of c2 and c1 � c2 (i.e.
c2 was not added to t). Then from Lemma 14, there exists c′ � c that may be
reached from c1 and the path from c1 to c′ will be no longer than that from c2
to c. So the path leading to c′ from the initial configuration is strictly shorter
than π. Moreover, as c′ � c and X is downward closed, we immediately deduce
that c′ ∈ X, and c′ does not contain states from Q−. A contradiction. �

2.4 Computing Ĝ

In this subsection we deal with the main technical problem of the proof that
is computing the set Ĝ of all configurations from which there exist a good
computation. We will actually compute the complement of Ĝ. While we will
use well-orderings in the proof, standard termination arguments do not work in

12

this case. We need to use in an essential way a very special form of transitions
our systems have.

We write X↑ for an upward closure of set X:

X↑= {c : ∃c′∈Xc′ � c}

Observe that by Lemma 14 the complement of Ĝ is upward closed.
Let set pre∀delay (respectively pre∀Σ∗) contain all configurations, from which

after reading any letter (delay, ·) (any number of letters from Σ), we have to
reach a configuration from X:

pre∀delay(X) = {c : ∀c′(c
(delay,·)−→ c′ ⇒ c′ ∈ X)}

pre∀Σ∗(X) = {c : ∀c′(c
Σ∗

� c′ ⇒ c′ ∈ X)}

Now we can use these pre operations to compute a sequence of sets of configu-
rations.

Z−1 = ∅ Zi = pre∀Σ∗(pre
∀
delay(Zi−1↑))

It is important that we may effectively represent and compare all the sets
Zi↑. Because the relation � is a well-quasi-order, any upward closed set X↑
may be represented by finitely many elements c1, . . . , ck (called generators) such
that X↑= {c1, . . . , ck}↑. Moreover, an easy induction shows that Zi−1↑⊆ Zi↑ for
every i (because both pre∀ operations preserve inclusion). Once again, because
relation � is a well-quasi-order, there has to be i such that Zi−1↑= Zi↑. Let us
write Z∞ for this Zi.

First, we show that Z∞ is indeed the complement of Ĝ.

Lemma 17 There is a good computation from a configuration c iff c 6∈ Z∞↑.

Proof
(⇒) We show by induction that c 6∈ Zi for i = −1, 0, 1 For i = −1 it is
obvious. Assume by contrary, that there exists a good computation from c, but
c ∈ Zi↑. Then there exists c′ � c with c′ ∈ Zi. From Lemma 14 we know that a
good infinite computation exists also from c′. This computation may first read
some letters from Σ, but finally it has to read a letter (delay, ·), that results in
a configuration c2. Definition of Zi tells us that c2 ∈ Zi−1↑. But from c2 there
is also a good infinite computation, a contradiction.

(⇐) Assume, that every computation (finite or infinite) from c reads at most
k letters (delay, ·). Easy induction on k shows that c ∈ Zk. �

To compute Z∞ it is enough to show how to compute Zi↑ from Zi−1↑. This
is the most difficult part of the proof that will occupy the rest of the subsection.
Once this is done we will calculate all the sets Zi↑, starting with Z−1 = ∅ and
ending when Zi−1↑= Zi↑.

The main idea in calculating pre∀Σ∗(pre
∀
delay(X)) is that the length of its

generators may be bounded by some function in the length of generators of X.
This is expressed by the following lemma.

13

Lemma 18 Given an upward closed set X we can compute a constant D(X)
(which depends also on our fixed automaton A) such that the size of every min-
imal element of pre∀Σ∗(pre

∀
delay(X)) is bounded by D(X)

Once we know the bound on the size of generators, we can try all potential
candidates. The following lemma shows that it is possible.

Lemma 19 For every upper-closed set X, the membership in pre∀Σ∗(pre
∀
delay(X))

is decidable.

Together Lemmas 18 and 19 allow us to compute the sequence Z0, Z1, . . . , Z∞
and hence also Ĝ.

To finish the proof of the theorem, it remains to give proofs of the two
lemmas. However Lemma 18 is substantially more complicated while Lemma 19
we get as a side effect. We will calculate separately bounds for pre∀delay(X) and
for pre∀Σ∗(X). In the sequel we will need to use some special representation for
sets of configurations.

Definition 20 A compressed configuration has a form

ĉ = (λ1 . . . λl, f, λ∞)

where λi ∈ ΛI , λ∞ ∈ Λ∞ and f : ΛI → P(ΛI) (values of f are subsets of ΛI).

On compressed configurations we introduce an expansion operation parame-
trized by words from Λ∗I .

Definition 21 A compressed configuration ĉ = (λ1 . . . λl, f, λ∞) may be ex-
panded in a context of some word λ0

1 . . . λ
0
k ∈ Λ∗I , resulting in the set of con-

figurations (λ1 . . . λlλ
′
l+1 . . . λ

′
l+k, λ∞) such that λ′l+i ∈ f(λ0

i) for 1 ≤ i ≤ k.
We will use exp(ĉ, λ0

1 . . . λ
0
k) to denote the set of obtained configurations. Sim-

ilarly, if Ĉ is a set of compressed configurations we write Exp(Ĉ, λ0
1 . . . λ

0
k) for⋃

{exp(ĉ, λ0
1 . . . λ

0
k) : ĉ ∈ Ĉ}.

Observe that the value f(λ) for λ not appearing in λ0
1 . . . λ

0
k does not matter;

moreover if some f(λ0
i) = ∅ then the result of expanding is the empty set.

We use compressed configurations, because the set of successors of a config-
uration may be described by a bounded number of compressed configurations.
However, due to nondeterminism, there is unbounded number of successors. To
see this suppose that there is more than one choice of transition on action a
form a letter λ then every occurrence of λ in a configuration may make a choice
independently.

Let us see how to calculate pre∀delay(X). Some care is needed as this set is
not upward closed with respect to � relation. This is because (delay, ·) action
treats the one before last element of a configuration in a special way. So if
something is inserted after λk in (λ1 . . . λk, λ∞) then the delay operation uses
this inserted element instead of λk. As a side remark let us mention that using

14

the upward closure of pre∀delay(Zi−1↑) in the definition of Zi would be incorrect
(Lemma 17 would not be true).

To remedy this problem we use a refined relation �r. Given two configura-
tions c′ = (λ′1 . . . λ

′
k′ , λ

′
∞) and c = (λ1 . . . λk, λ∞) we set

c′ �r c iff k′ > 0, c′ � c and λ′k′ ⊆ λk

Note that the set pre∀delay(X) is upward closed with respect to relation �r,
when X is upward closed with respect to �. This is because if c′1 �r c1

and c1
(delay,·)−→ c2 then also c′1

(delay,·)−→ c′2 with some c′2 � c2. Hence, if c1 6∈
pre∀delay(X) then c′1 6∈ pre∀delay(X).

The following lemma tells us that successors of a configuration may be de-
scribed using compressed configurations and that there are not too many of
them:

Lemma 22 For every configuration c0 = (λ1 . . . λk, λ∞), k > 0 there exists a
finite set of compressed configurations Ĉ(λk, λ∞) (depending only on λk and
λ∞) such that:

• if c0
(delay,·)−→ c then c ∈ Exp(Ĉ(λk, λ∞), λ1 . . . λk−1);

• if c ∈ Exp(Ĉ(λk, λ∞), λ1 . . . λk−1) then c0
(delay,·)−→ c′ for some c′ � c.

Proof
The transition on (delay, ε) is deterministic. If c0

(delay,ε)−→ c′ then we either have
c′ = (λ′kλ1 . . . λk−1, λ

′
∞) or c′ = (λ1 . . . λk−1, λ

′
∞) depending on λk. In the first

case we add ĉ = (λ′k, sgl, λ′∞) into Ĉ(λk, λ∞), in the second case ĉ = (ε, sgl, λ′∞),
where sgl(λ) = {λ}. In both cases exp(ĉ, λ1 . . . λk−1) = {c′}.

Now consider transitions reading (delay, a). A result of this transition is
not unique and depends on the choice of a transition for each element of the
configuration. We fix a set T of transitions λ a−→A (λ′, δ′); intuitively these are
allowed transitions from λ1, . . . , λk−1. We also fix transitions λ1

k
a−→A (λ′k, δ

′
k)

and λ∞
a−→A (λ′∞, δ

′
∞) (where λ1

k is λk with increased regions as in Lemma 12).
This choice of transitions gives us a compressed configuration ĉ = (δ, f, λ′′∞)
where

δ = δ′k ∪ δ′∞ ∪ {(q, Id+1) : (q, {d}) ∈ λ′k}

∪
⋃
{δ′ : (λ a−→A (λ′, δ′)) ∈ T , λ ∈ ΛI}

f(λ) =
⋃
{λ′ : (λ a−→A (λ′, δ′)) ∈ T }

λ′′∞ =λ′∞ ∪ {(q, I∞) : (q, {dmax}) ∈ λ′k}

We add ĉ into Ĉ(λk, λ∞).
We now show that the constructed Ĉ(λk, λ∞) has the required properties.

Consider a successor c of c0 that is reached using the transitions we have fixed.

15

In particular, we require that each transition from T is used at least once. Take
ĉ as calculated above. Directly from the definition we get c ∈ exp(ĉ, λ1 . . . λk−1).
As the choice of transitions was arbitrary this gives the first statement of the
lemma.

Now consider c = (δλ′1 . . . λ
′
k−1, λ

′′
∞) ∈ exp(ĉ, λ1 . . . λk−1) where ĉ = (δ, f, λ′′∞)

is obtained by a choice of some T and some transitions from λ1
k and λ∞. For

every i let us choose some transition λi
a−→A (λ′i, δ

′
i) from T (there is at least

one such transition in T because λ′i ∈ f(λi)). Take c′ = (δ′λ′1 . . . λ
′
k−1, λ

′′
∞)

where
δ′ = δ′k ∪ δ′∞ ∪ {(q, Id+1) : (q, {d}) ∈ λ′k} ∪

⋃
1≤i≤k−1

δ′i

Then δ′ ⊆ δ so c′ � c. It is easy to check that there is a transition c0
(delay,a)−→ c′.

�

We need to find all minimal elements of pre∀delay(Zi−1 ↑). The following
lemma will allow us to get a bound on their size.

Lemma 23 For a given Ĉ and a set X upward closed with respect to relation
�r there exists a constant B(X, Ĉ) (and we may compute it) such that if for
some λ0

1 . . . λ
0
k:

Exp(Ĉ, λ0
1 . . . λ

0
k) ⊆ X

then there exist 1 ≤ i1 < · · · < im ≤ k, m < B(X, Ĉ) with

Exp(Ĉ, λ0
i1 . . . λ

0
im) ⊆ X

Proof
First suppose that Ĉ is a singleton {ĉ}; where ĉ = (λ1 . . . λl, f, λ∞). We describe
a construction of a finite automaton AXbc accepting the language

LXbc = {λ′1 . . . λ′k : exp(ĉ, λ′1 . . . λ
′
k) ⊆ X}

Recall that X is an upward closed set with respect to �r relation. This implies
that LXbc is upward closed with respect to the standard subsequence relation
v. It is easy to check that for every letter λ ∈ ΛI , if L ⊆ Λ∗I is v-upward
closed then the quotient L/λ is also v-upward closed. Moreover L ⊆ L/λ, as
if w ∈ L then aw ∈ L that implies w ∈ L/λ. Because v is a well-quasi-order,
this last property implies that the set of all possible quotients of LXbc , i.e. the
languages LXbc /w for w ∈ Λ∗I , is finite. These quotients are the states of AXbc we
were looking for. Indeed AXbc is the minimal deterministic automaton for LXbc .
Take B(X, {ĉ}) to be the size of the automaton. Form the pumping lemma it
follows that if the word λ0

1 . . . λ
0
k is accepted by AXbC then there is a subsequence

of length ≤ B(X, {ĉ}) accepted by AXbC .

Now consider a general situation. For every ĉ ∈ Ĉ from above we have some
subsequence λ0

i1
. . . λ0

im
of length m ≤ B(X, {ĉ}), such that exp(ĉ, λ0

i1
. . . λ0

im
) ⊆

16

X. We take all the elements from all these subsequences, getting a subsequence
of length ≤ B(X, Ĉ) :=

∑bc∈ bC B(X, {ĉ}) such that all the inclusions hold. �

The above two lemmas give us a bound on the size of minimal elements in
pre∀delay(Zi−1↑).

Lemma 24 There is an algorithm that given X↑ computes a constant Mdelay(X↑
) such that, the size of every minimal element of pre∀delay(X ↑) is bounded by
Mdelay(X↑).

Proof
There are only finitely many different Ĉ(λk, λ∞) as constructed in Lemma 22.
Let Mdelay be the maximal possible value of B(X↑, Ĉ(λk, λ∞)).

Suppose c0 = (λ0
1 . . . λ

0
k, λ

0
∞) is a minimal element of pre∀delay(X↑). Take the

set Ĉ(λ0
k, λ

0
∞) as given by Lemma 22. We have that Exp(Ĉ(λ0

k, λ
0
∞), λ0

1 . . . λ
0
k−1) ⊆

X↑ by the second statement of this lemma. From Lemma 23 we get a subse-
quence λ′1 . . . λ

′
l of λ0

1 . . . λ
0
k−1 whose length is bounded by B(X↑, Ĉ(λ0

k, λ
0
∞)) ≤

Mdelay and such that Exp(Ĉ(λ0
k, λ

0
∞), λ′1 . . . λ

′
l) ⊆ X↑. By the first statement of

Lemma 22 we get that (λ′1 . . . λ
′
lλ

0
k, λ

0
∞) ∈ pre∀delay(X↑). By the minimality of

c0, we have that c0 = (λ′1 . . . λ
′
lλ

0
k, λ

0
∞), so its length is bounded by Mdelay + 2.

�

Now we describe how to calculate pre∀Σ∗(Y)↑ for any set Y upward closed
with respect to �r relation. The first lemma says, that we may represent suc-
cessors using compressed configurations.

Lemma 25 For every compressed configuration ĉ0 there is a set of compressed
configurations Ĉ(ĉ0) (and we may compute it) such that for every λ0

1 . . . λ
0
k:

• if c0 ∈ exp(ĉ0, λ0
1 . . . λ

0
k) and c0

a−→ c for some letter a ∈ Σ then c ∈
Exp(Ĉ(ĉ0), λ0

1 . . . λ
0
k);

• if c ∈ Exp(Ĉ(ĉ0), λ0
1 . . . λ

0
k) then c0

a−→ c′ for some c′ �r c, a ∈ Σ and
c0 ∈ exp(ĉ0, λ0

1 . . . λ
0
k).

Proof
Let ĉ0 = (λ1 . . . λl, f, λ∞). Fix a letter a ∈ Σ. We fix a set T of transitions
λ

a−→A (λ′, δ′); intuitively these are allowed transitions from λ ∈ f(λ0
i). We

also fix transitions λi
a−→A (λ′i, δ

′
i) for i = 1, . . . , l,∞. This choice of transitions

gives us a compressed configuration ĉ = (δλ′1 . . . λ
′
l, f
′, λ′∞) where

δ =
⋃

i=1...,l,∞

δ′i ∪
⋃
{δ′ : (λ a−→A (λ′, δ′)) ∈ T , λ ∈ ΛI}

f ′(λ0) ={λ′ : (λ a−→A (λ′, δ′)) ∈ T , λ ∈ f(λ0)}

We add ĉ into Ĉ(ĉ0).

17

For the first statement of the lemma, take c0 ∈ exp(ĉ0, λ0
1 . . . λ

0
k) and consider

any successor c of c0 that is reached using the transitions we have fixed. In
particular we require that each transition from T is used at least once. Take ĉ as
calculated above. Then directly from the definition we get c ∈ exp(ĉ, λ0

1 . . . λ
0
k).

As the choice of transitions was arbitrary this gives the first statement of the
lemma.

Now consider some ĉ ∈ Ĉ(ĉ0). It is of the form (δλ′1 . . . λ
′
l, f
′, λ′∞). According

to the above, it was constructed from ĉ0 using some transitions λi
a−→A (λ′i, δ

′
i)

for i = 1, . . . , l,∞ and some set of transitions T . Take c ∈ exp(ĉ, λ0
1 . . . λ

0
k). We

have that c is of the form (δ′λ′1 . . . λ
′
l, λ
′
l+1 . . . λ

′
l+k, λ

′
∞) where λ′1, . . . λ

′
l are as in ĉ

and for i = 1, . . . , k we can choose from T transitions λl+i
a−→A (λ′l+i, δ

′
l+i) such

that λl+i ∈ f(λ0
i). Take c0 = (λ1 . . . λl, λl+1, . . . , λl+k, λ∞), i.e., a configuration

whose components are predecessors of transitions we have selected. We have
c0 ∈ exp(ĉ0, λ0

1 . . . λ
0
k) by the definition of expansion. Let c′ = (δ′λ′1 . . . λ

′
l+k, λ

′
∞)

with δ′ =
⋃
i=1,...,l+k,∞ δ′i. Observe that δ′ may be a proper subset of δ if not

all transitions from T has been used. Then c′ �r c and there is a transition
c0

a−→ c′.
�

The following lemma says that we may list a big enough portion of all con-
figurations reachable from some c0 (similarly like in step two of the decision
procedure) and moreover that size of this portion is bounded by a constant.

Lemma 26 For every λ∞ ∈ Λ∞ we can construct a set ĈΣ∗(λ∞) such that for
every λ1 . . . λk ∈ Λ∗I :

• If (λ1 . . . λk, λ∞)
Σ∗

� c for some c then there is c′ �r c such that c′ ∈
Exp(ĈΣ∗(λ∞), λ1 . . . λk).

• If c ∈ Exp(ĈΣ∗(λ∞), λ1 . . . λk) then there is c′ �r c with (λ1 . . . λk, λ∞)
Σ∗

�
c′.

Proof
Take the compressed configuration ĉ0 = (ε, sgl, λ∞). We define a set Ĉ of com-
pressed configurations as a closure of {ĉ0} on the operation defined in Lemma 25.
This set may be infinite but we do not worry about it for the moment. We show
first that it satisfies the requirements of the lemma.

Take some λ1 . . . λk ∈ Λ∗I and c such that (λ1 . . . λk, λ∞)
Σ∗

� c. We need
to show that we can find an extended configuration ĉ ∈ Ĉ such that c ∈
exp(ĉ, λ1 . . . λk). The proof is by easy induction on the number of transitions.
For the base step we have (λ1 . . . λk, λ∞) ∈ exp(ĉ0, λ1 . . . λk), and the induction
step is given by the first statement of Lemma 25.

Now, suppose that ĉ ∈ Ĉ and c ∈ exp(ĉ, λ1 . . . λk). An induction using
the second statement of Lemma 25 shows that there is c′ �r c such that

(λ1 . . . λk, λ∞)
Σ∗

� c′.

18

In order to reduce Ĉ to a finite set we once again use well-quasi-orders. We
define a relation v on compressed configurations:

(λ′1 . . . λ
′
l′ , f

′, λ′∞) v (λ1 . . . λl, f, λ∞) ⇐⇒
(λ′1 . . . λ

′
l′ , λ

′
∞) �r (λ1 . . . λl, λ∞) and f = f ′

This relation is a well-quasi-order. We take ĈΣ∗(λ∞) to be the set of mini-
mal elements in this quasi-order. It is clear that Exp(ĈΣ∗(λ∞), λ1 . . . λk) ⊆
Exp(Ĉ, λ1 . . . λk) for arbitrary λ1 . . . λk. So, by the above observations the sec-
ond property of the lemma holds. For the first property observe that whenever
ĉ′ v ĉ and c ∈ exp(ĉ, λ1 . . . λk) then there is c′ ∈ exp(ĉ′, λ1 . . . λk) with c′ �r c.
�

Lemma 27 There is an algorithm that given Y upper closed with respect to
�r relation computes a constant MΣ∗(Y) such that, the size of every minimal
element of pre∀Σ∗(Y) is bounded by MΣ∗(Y).

Proof
There are only finitely many different Ĉ(λ∞) constructed in the above lemma.
Let MΣ∗ be the maximal possible value of B(Y, Ĉ(λ∞)).

Suppose c0 = (λ0
1 . . . λ

0
k, λ

0
∞) is a minimal element of pre∀Σ∗(Y). Take the

set Ĉ(λ0
∞) as given by Lemma 26. We have that Exp(ĈΣ∗(λ0

∞), λ0
1 . . . λ

0
k) ⊆ Y

by the second statement of this lemma. From Lemma 23 we get a subsequence
λ′1 . . . λ

′
l of λ0

1 . . . λ
0
k whose length is bounded by B(X, Ĉ(λ0

∞)) ≤MΣ∗ and such
that Exp(ĈΣ∗(λ0

∞), λ′1 . . . λ
′
l) ⊆ Y . By the first statement of Lemma 26 we

get that (λ′1 . . . λ
′
l, λ

0
∞) ∈ pre∀Σ∗(Y). By the minimality of c0, we have that

c0 = (λ′1 . . . λ
′
l, λ

0
∞), so its length is bounded by MΣ∗ + 1. �

The last step before proving Lemmas 18 and 19 consists of two simple ob-
servations.

Lemma 28 For every set X upward closed with respect to � relation, the mem-
bership in Y = pre∀delay(X) is decidable. Moreover Y is a �r-upward closed set.

Proof
The first part of the lemma is obvious, it suffices to test all possible transitions
that are explicitly characterized in Lemmas 10 and 12. The second part follows
from the property that we have already noticed before (page 15): if c′1 �r c1
and c1

(delay,·)−→ c2 then also c′1
(delay,·)−→ c′2 with some c′2 � c2. �

Lemma 29 For every set Y upward closed with respect of �r relation, the
membership in pre∀Σ∗(Y) is decidable.

Proof
Given a configuration c we need to decide if c ∈ pre∀Σ∗(Y). We apply successively

19

a−→ transitions to c constructing a part of the reachability tree. We stop the
development in a node if it has an ancestor smaller with respect to �r-relation.
As �r is a well-quasi-order, and the branching at each node is finite, we get a
finite tree t.

It remains to argue that this construction is correct. If in the above process
we find a configuration that is not in Y then clearly c is not in pre∀Σ∗(Y). For

the other direction, assume conversely that there is c′ /∈ Y with c
Σ∗

� c′. Choose

c′ /∈ Y so that the length of a derivation c
Σ∗

� c′ is the smallest possible. We
show that c′ ∈ t. Recall that Lemma 11 characterizes transitions on letters.
Directly form this characterization we obtain that if c′1 �r c1 and c1

a−→ c2
then also c′1

a−→ c′2 with some c′2 �r c2. Using this fact, we get that if c′ is not

in t then there is d′ � c′ such that the derivation c
Σ∗

� d′ is shorter than c
Σ∗

� c′.
This is impossible by the choice of c′. �

Proof (of Lemma 18)
Take an upward closed set X. By Lemma 24 we can compute a constant Mdelay

that bounds the size of minimal elements in Y = pre∀delay(X). Using Lemma 28
we can find the minimal elements of Y by enumerating all configurations of size
bounded by Mdelay. Observe that Y is �r upward closed.

Once we have computed Y , Lemma 27 gives us a constant MΣ∗(Y) bounding
the size of minimal elements in pre∀Σ∗(Y) = pre∀Σ∗(pre

∀
delay(X)).

�

Proof (of Lemma 19)
We first compute the set Y = pre∀delay(X) as described above. We can then use
Lemma 29 to test for the membership in pre∀Σ∗(Y) = pre∀Σ∗(pre

∀
delay(X)).

�

3 Constrained TPTL

In this section we discuss a fragment of TPTL (timed propositional temporal
logic) that can be translated to automata from our decidable class. We compare
this fragment with other known logics for real time. We will be rather brief in
presentations of different formalisms, and refer the reader to recent surveys [11,
26].

TPTL[10] is a timed extension of linear time temporal logic that allows to
explicitly set and compare clock variables. We will consider the logic with only
one clock variable that we denote TPTL1. The syntax of the logic is:

p | α ∧ β | α ∨ β | αUβ | αŨ β | x ∼ c | x.α

where: p ranges over action letters, x is the unique clock variable, and x ∼ c is
a comparison of x with a constant. We do not have negation in the syntax, but
from the semantics it will be clear that the negation is definable.

20

The logic is evaluated over timed sequences w = (a1, t1)(a2, t2) . . . We de-
fine the satisfiability relation, w, i, v � α saying that a formula α is true at a
position i of a timed word w with a valuation v of the unique clock variable:
w, i, v � p if ai = p
w, i, v � x ∼ c if ti − v ∼ c
w, i, v � x.α if w, i, ti � α
w, i, v � αUβ if ∃j>i (w, j, v � α and ∀k∈(i,j) w, k, v � β)
w, i, v � αŨβ if ∀j>i (w, j, v � β or ∃k∈(i,j)w, k, v � α)

As usual, until operators permit us to introduce sometimes and always op-
erators:

Fα ≡ ttUα Aα ≡ ff Ũα

For the following it will be interesting to note that the two until operators are
inter-definable once we have always and sometimes operators:

αŨβ ≡ Aβ ∨ βUα αUβ ≡ Eβ ∧ βŨα

Observe that TPTL1 subsumes metric temporal logic (MTL). For example:
αU(i,j)β of MTL is equivalent to x.(αU((x > i) ∧ (x < j) ∧ β)). We will not
present MTL here, but rather refer the reader to [12] where it is also shown that
the following TPTL1 formula is not expressible in MTL:

x.(F (b ∧ F (c ∧ x ≤ 2))). (1)

The satisfiability problem over infinite timed sequences is undecidable for
MTL [23], hence also for TPTL1. Using our decidability result for alternating
timed automata, we can nevertheless find a decidable fragment, that we call
Constrained TPTL. The definition of this fragment will use an auxiliary notion
of positive TPTL1 formulas. These formulas can be translated into automata
where all states are accepting. The set of positive formulas is given by the
following grammar:

p | x.ϕ | x ∼ c | ϕ ∨ ψ | ϕ ∧ ψ | ϕŨψ | F ((x < c) ∧ ψ) | F ((x ≤ c) ∧ ψ)

The set of formulas of Constrained TPTL is:

p | x.ϕ | x ∼ c | α ∨ β | α ∧ β |αUβ | ϕ ϕ positive.

Observe that the formula (1) belongs to the positive fragment if we add redun-
dant (x ≤ 2) after b.

Theorem 30 It is decidable if there is a non Zeno timed word that is a model
of a given Constrained TPTL formula. The complexity of the problem cannot
be bounded by a primitive recursive function.

Proof
It is enough to give a translation from formulas to automata in the class from
Theorem 2. The translation is on the syntax of the formula.

21

We start for the automaton for the positive formulas. The states of an au-
tomaton for a formula will be all subformulas of the formula. A state associated
to a formula α will be denoted by [α]. The intended semantics is that a timed
word w is accepted from [α] iff w, 1, 0 � α.

The transition relation of the automaton is given in the following table.

[p]
p−→ > [x ∼ c] ∗−→

x∼c
>

[α ∨ β] ε−→ [α] ∨ [β] [α ∧ β] ε−→ [α] ∧ [β]

[x.α] ε−→
x:=0

[α]

[αŨβ] ∗−→ [α] ∨ ([β] ∧ [αŨβ])

[Fβ] ∗−→ [β] ∨ [Fβ]

The transitions follow directly the semantics of formulas; state > is a special
state from which every timed word is accepted. As our automaton is alternating,
on the right hand side of the transition we can write a boolean expression
on successor states. We should also explain labels ∗ and ε over transitions.
Transition ∗−→ is just a shortcut for transitions on all letters of the alphabet.
Transitions ε−→ and ε−→

x:=0
can be seen as eager ε-transitions of the automaton:

they are executed as soon as they are enabled. The other way is to consider them
as rewrite rules where the real transition of the automaton is obtained at the
end of the rewriting, i.e., reaching a transition on a letter. In this interpretation
we should not forget to accumulate resets. For example, the above rules give

[x.(αUβ)] ∗−→
x:=0

[α] ∨ ([β] ∧ [αUβ])

as a “real” transition of the automaton.
All the states are accepting. Notice that in the case of positive formulas we

will have a state [Fβ] only when β is of the form (x < c) ∧ β′, or possibly with
non strict inequality. As we consider only non Zeno words, this assures that the
language accepted from this state is correct even if the state is accepting. One
way to look at them is as eager

For other formulas of Constrained TPTL we first assume that for every posi-
tive formula we have already an automaton constructed by the above procedure.
We then use the clauses above and the clause for the U operator:

[αUβ] −→ [β] ∨ ([α] ∧ [αUβ])

to construct the part of the automaton corresponding the remaining formulas.
The accepting states are all those corresponding to positive formulas. All the
other states are rejecting.

For the complexity bound announced in the statement of the theorem, it is
enough to check that the proof of the same complexity bound for alternating
timed automata over finite words can be translated into Constrained TPTL. �

22

3.1 Relation with other logics

Safety MTL [24] can be seen as an MTL fragment of positive TPTL. Indeed,
both formalisms can be translated to automata with only accepting states,
but the automata obtained from MTL formulas have also the locality property
(cf. [24]). The satisfiability problem for both logics is non-elementary.

Using equivalences mentioned above FlatMTL[13] with pointwise non Zeno
semantics can be defined as a set of formulas of the grammar:

p | α ∨ β | α ∧ β | αUJβ | ϕUIβ| χ J bounded and χ ∈MITL.

The original definition admits more constructs, but they are redundant in the
semantics we consider.

Both FlatMTL and Constrained TPTL use two sets of formulas. The MTL
part of the later logic would look like

p | α ∨ β | α ∧ β | αUIβ | ϕ ϕ positive

From this presentation it can be seen that there are at least two important
differences: Constrained TPTL does not have restrictions on the left hand side
of until and it uses positive fragment instead of MITL. We comment on these
two aspects below.

Allowing unrestricted until makes the logic more expressive but also more
difficult algorithmically. For example, to get the non primitive recursive bound it
is enough to use the formulas generated by the later grammar without the clause
for positive formulas. This should be contrasted with Expspace-completeness
result for FlatMTL.

The use of positive fragment instead of MITL is also important. The two
formalisms have very different expressive powers. The crucial technical property
of MITL is that a formula of the form αUIβ can change its value at most three
times in every unit interval. This is used in the proof of decidability of FlatMTL,
as the MITL part can be described in a “finitary” way. The crucial property
of the positive fragment is that it can express only safety properties (and all
such properties). We can remark that by reusing the construction of [23] we get
undecidability of the positive fragment extended with a formula expressing that
some action appears infinitely often. Theorem 32 implies that this is true even
if we do not use punctual constraints in the positive fragment. In conclusion,
we cannot add MITL to the positive fragment without loosing decidability.

4 Undecidability without testing for equality

Ouaknine and Worell [23] have proved undecidability of MTL over infinite words
in the case of pointed semantics. Their construction immediately implies that
the decidability result from the last section is optimal if classes of accepting
conditions are concerned.

23

Theorem 31 (Ouaknine, Worell) It is undecidable whether a given one-clock
nondeterministic timed automaton A accepts every infinite word, even when
there are no transitions in A from states in Q− to states in Q+.

The construction in op. cit. relies on equality constraints. Indeed, if we do
not allow equality constraints in MTL then we get a fragment called MITL, and
the satisfiability problem for MITL over infinite words is decidable [7].

In this section we would like to show that a similar phenomenon is very
particular to MTL and does not occur in the context of automata. We show
that the undecidability result holds even when it is only allowed to test if the
clock is bigger than 1.

Theorem 32 It is undecidable whether a given one-clock alternating timed au-
tomata A accepts an infinite word, even when there are no transitions in A from
states in Q− to states in Q+ and when A does not test for equality.

To prove Theorem 32 we code a problem of deciding whether there is a
successful run of a counter machine with insertion errors:

Definition 33 A k-counter machine with insertion errors Mg has configura-
tions (q, c1, . . . , ck) consisting of a control state q ∈ Q and values of the coun-
ters ci ∈ N. There are three kinds of transitions: (q : ci := ci + 1; goto q′) or
(q : if ci = 0 then goto q′) or (q : if ci > 0 then ci := ci− 1; goto q′). The set
of transitions δ ofMg gives rise to a relation between configurations, describing
a single step ofMg. The machine has insertion errors, which means that before
and after every step it may increase any of its counters by any value. We will
denote this by (q, c1, . . . , ck) −→ (q′, c′1, . . . , c′k), to say that we may reach con-
figuration (q′, c′1, . . . , c′k) from (q, c1, . . . , ck) using some transition from δ and
possibly increasing some counters before and after the transition. The initial
configuration of the machine Mg is (q0, 0, . . . , 0). Together with the machine
there is given some subset of states Qacc ⊆ Q. We say, that a run ofMg satisfies
the Büchi condition, if in infinitely many its configurations there appears state
from Qacc.

Theorem 34 (Ouaknine, Worell [23]) It is undecidable whether a given 5-
counter machine with insertion errors Mg has a run satisfying the Büchi con-
dition.

For completeness, we give a short proof of Theorem 34 by reduction to
boundedness of a lossy 4-counter machine. The principle of lossy k-counter
machine is similar to that with insertion errors, but for the fact that before
or after every step it may decrease any of its counters by any value (instead
of increasing). We say that a run of such a machine is bounded, iff there is a
common bound for values of all counters in all configurations throughout the
run.

24

Theorem 35 (Mayr [19]) It is undecidable whether every run of a given lossy
4-counter machine Ml is bounded.

Proof
First note, that a counter machine with insertion errors is exactly the same as
lossy counter machine working backward. Let Ml be a given lossy 4-counter
machine. We construct a 5-counter machine Mg that can simulate in a back-
ward fashion a computation of Ml on the first four counters. This machine
will be able to go from a configuration (q, c1, c2, c3, c4, c5) to a configuration
(q0, 0, 0, 0, 0, c5) iff Ml can go form (q0, 0, 0, 0, 0), that is the initial configura-
tion, to (q, c1, c2, c3, c4). Additionally to the states of Ml, the machine would
have some auxiliary states, one of them would be an accepting state qacc. The
machine will start in the state qacc, and this state will be reachable only from
a configuration (q0, 0, 0, 0, 0, c5). In the state qacc, the machine would increase
c5 by 1 and then (in a nondeterministic way) increase counters c1, c2, c3, c4, so
that c1 + c2 + c3 + c4 ≥ c5. To do that it may the move value of c5 simulta-
neously into c1 and c2, then move value from c2 back to c5 and finally while
decreasing c1 increase c2, c3, c4. After that it chooses a state of Ml and starts
computing backward (using only the first four counters). When configuration
(q0, 0, 0, 0, 0, c5) is reached we make the machine to go to (qacc, 0, 0, 0, 0, c5).

Assume that Ml has an unbounded computation. We will show that Mg

has a run visiting qacc infinitely often. Suppose that some initial fragment of
this run is already constructed and we are in a configuration (qacc, 0, 0, 0, 0, c5)
for some value of c5. As Ml has an unbounded computation, it can reach a
configuration (q, c1, c2, c3, c4) with the sum of the counters bigger than c5+1. We
increase c5 by 1, distribute c5 into other counters to get the values c1, c2, c3, c4,
we choose the state q and then execute the computation of Ml backwards,
starting from (q, c1, c2, c3, c4). When reaching (q0, 0, 0, 0, 0, c5 + 1) we go to
(qacc, 0, 0, 0, 0, c5 + 1) and repeat this process. This gives the required infinite
computation.

For the opposite direction, assume that there is a successful computation
of Mg. Every appearance of qacc is followed by some initialization, and by a
backward computation of Ml, starting in a configuration of size bigger than
the value of c5 and ending in (q0, 0, 0, 0, 0). However, every time this happens
the value of c5 increases by at least one. So we get computations of Ml ending
in bigger and bigger configurations. By König’s lemma, there exists also an
unbounded computation of Ml. �

Now we return to the proof of Theorem 32. For given 5-counter machine with
insertion errorsMg we will construct an alternating one-clock timed automaton
A that accepts some infinite word iff Mg has a successful run. The input
alphabet of A will consist of the instructions of Mg and some auxiliary letters
whose use will be explained later:

Σ = δ ∪ {shc, sh$, new, init}.

25

As states of A we take:

Q+ = QM ∪ {1, 2, 3, 4, 5, $, q∞, qinit} and Q− = {q−}.

States QM ∪ {1, 2, 3, 4, 5} will be used to represent configurations of Mg: the
current state and the values of the five counters. States q∞ and q− will encode
the condition on successful runs. State $ is important for technical reasons.
State qinit is the initial state that will not be reachable from other states.

In our description below we will consider a characterisation of acceptance
given by Lemma 4. In this presentation a run of A is a sequence

P1
a1,t1
↪→ P2

a2,t2
↪→ P3 . . . ,

where each Pi ⊆ P(QA × R+) is a set of pairs (q, v) consisting of a state of A
and a valuation of the clock. Compared with Lemma 4 we have joined together

a transition letting the time pass with an action transition and write just
a,t
↪→

transitions. We will use only two regions: I1 = [0, 1] and I∞ = (1,∞).

Definition 36 A configuration θ of A is well-formed if:

• For every (q, v) ∈ θ: if q ∈ {1, . . . , 5, $} then v ∈ I1, and v ∈ I∞ otherwise.

• For every v ∈ I1 there is at most one σ ∈ Σ with (σ, v) ∈ θ.

• In θ there is exactly one pair with a state from QM, exactly one pair with
the state q∞, and no pairs with qinit;

• Suppose (q, v) is in θ where q ∈ {1, . . . , 5}. Then this pair is immediately
preceded by some ($, v′) (there is no pair (q′′, v′′) in θ with v′ < v′′ < v).

Intuitively, a well formed configuration is divided into two parts: the set of
pairs with the clock value in I1 and those in I∞. The first part can be seen
as representing a word over {1, . . . , 5, $} that is obtained by using the standard
order on clock values. From the conditions above it follows that this word is of
the form $+qi1$+qi2 . . . $

+qin$+; where qik ∈ {1, . . . , 5}. Such a word represents
values of the counters when the value of the counter ci is equal to the number
of i in the word. The clock values of pairs in I∞ will not matter, so this part
can be seen as a multiset of states. There will be always one state from QM
representing the state of the simulated machine. State q∞ plus some number of
states q− will be there to encode a condition on a successful run.

Automaton A will pass also through configurations that are not well-formed,
but in its accepting run it will have to repeatedly return to well-formed config-
urations.

Now we describe transitions of the automaton. In order to have an intuition
for reading the rules below it is important to observe that if the automaton reads
a letter σ then all states in its current configuration have to make a transition
according to some rule labeled σ. In consequence, if there is a state in the

26

configuration that does not have a rule for σ then the automaton cannot read
σ.

The automaton starts in the state qinit and waits at least one time unit to
start its two copies: one is a state q0 and another is q∞ (where q0 is the initial
state of Mg):

qinit, I∞
init−→ q0 ∧ q∞

This means that the configuration becomes {(q0, v), (q∞, v′)} with v, v′ ∈ I∞.
States $ for time ≤ 1 are preserved by any transition:

$, I1
σ−→ $ ∀σ ∈ Σ

Similarly states 1, . . . , 5, with the exception that a transition checking for zero
should not be possible if appropriate counter is non-zero:

i, I1
σ−→ i ∀i = 1, . . . , 5 ∀σ 6= (q : if ci = 0 then goto q′)

When the clock value for a pair with $ or i becomes greater than 1, it may be
reset:

$, I∞
sh$−→ ($, reset)

i, I∞
shc−→ $ ∧ (i, reset) ∀i = 1, . . . , 5

q, I∞
σ−→ q q ∈ QM ∪ {q∞, q−}, σ = sh$ or σ = shc

Note that the transition on $ reads a different letter than that on i. In con-
sequence, if in a configuration there are pairs with both $ and i having clock
values in I∞ then neither sh$ nor shc are possible. As we will have no more
transitions from ($, I∞) this means that the automaton will be blocked in such
a configuration.

Now we consider moves on transitions of the machine Mg. For σ = (q :
if ci = 0 then goto q′) we just do

q, I∞
σ−→ q′

Note that, thanks to earlier restriction, the transition is possible only when
there are no i states in the configuration. For σ = (q : if ci > 0 then ci :=
ci − 1; goto q′) we do:

q, I∞
σ−→q′

i, I∞
σ−→>

For σ = (q : ci := ci + 1; goto q′) we do:

q, I∞
σ−→ q′ ∧ $ ∧ (i, reset)

As the machine should allow insertion errors, we add a transition:

q, I∞
new−→ q ∧ $ ∧ (i, reset)

27

Finally, we have special states q∞ and q−, that are used to ensure that states
from Qacc appear infinitely often. The state q∞ produces repeatedly new q−
states:

q∞, I∞
σ−→ q∞ ∧ q− ∀σ ∈ Σ

The state q− is the only one, which is in Q−, so in the accepting run every q−
state has to disappear after some time. The states q− disappear, when there
there is a transition ending in state from Qacc:

q−, I∞
σ−→ > ∀σ = (. . . goto q′), q′ ∈ Qacc

q−, I∞
σ−→ q− for all other σ

Lemma 37 There exists a run of Mg satisfying the Büchi condition iff A ac-
cepts some infinite word.

Proof
Assume that Mg has a run satisfying the Büchi condition. From the initial
state, A may go to a well-formed configuration corresponding to the initial
configuration ofMg. Then every step ofMg may be simulated by A: WhenMg

increases some of its counters, we may do the same using transitions on letters
new and then sh$. WhenMg does a transition σ = (q : if ci = 0 then goto q′)
we may do the same in A reading letter σ. When Mg does σ = (q : ci :=
ci + 1; goto q′), we do the same reading letter σ and then sh$. It is easy to
check, that after each step the resulting configuration remains well formed.

The most difficult transition is σ = (q : if ci > 0 then ci := ci− 1; goto q′).
Suppose that the automaton is in a well-formed configuration θ. Let us look at
the biggest valuation v ≤ 1 appearing in θ. By the conditions of well-formedness
there is exactly one state q ∈ Q+ such that (q, v) ∈ θ. This state can be one of
1, . . . , 5, $. The automaton lets the time pass so that v becomes greater than 1,
but all other valuations from I1 stay in I1. If q = i then the automaton does σ.
Otherwise, it does sh$ or shc followed by sh$ that has an effect of putting $ or
$ followed by q at the beginning of the configuration. After this we obtain a well
formed configuration where the one but the maximal valuation before became
the maximal one. These operations are repeated until q = i. We are sure that
this process ends, as there is a state i in θ.

To ensure that the obtained word is nonZeno, we have to wait some time
after every transition ofMg, doing shc and sh$ if necessary. Observe that every
state q− would disappear when in the computation of Mg there is a transition
ending in a state from Qacc. As this computation satisfies the Büchi condition,,
this will happen infinitely often.

For the other direction consider some accepting run of A on some word. In
the first step, A has to reach a well-formed configuration corresponding to the
initial configuration ofMg. Let us see what may happen from any well-formed
configuration. Suppose that time passes and timer for some states 1, . . . , 5, $
becomes greater than 1. If it happens simultaneously for state $ and some state
i, then from the obtained configuration there will be no more transitions. If it

28

happens only for state $, then the only possible transition is the one reading
sh$ after which we go back to a well-formed configuration corresponding to
the same configuration of Mg. If it happens just for some state i, then the
automaton can read either shc or some (q : if ci > 0 then ci := ci−1; goto q′).
If it reads shc, then after that it has to read sh$, and we also are back in a
well-formed configuration corresponding to the same configuration of Mg. If it
reads σ = (q : if ci > 0 then ci := ci − 1; goto q′), then we immediately get a
well-formed configuration.

Transition reading shc or sh$ when no state of 1, . . . , 5, $ has timer above 1
do not change the configuration. Transition reading new, has to be followed by
transition sh$ and we get a well-formed configuration with one of the counters
increased. Transition reading σ = (q : if ci = 0 then goto q′) is possible
only when counter ci is zero. After transition reading σ = (q : ci := ci +
1; goto q′) there has to be a transition reading sh$ and we get a well-formed
configuration that corresponds to a correct configuration of Mg. Transition
reading σ = (q : if ci > 0 then ci := ci − 1; goto q′) gives us always a well-
formed configuration. The obtained configuration correctly represents the result
but for the fact that the counter i may not be decremented. This is not a
problem as we are simulating a machine with insertion errors, so we can suppose
that the incrementation error has occurred immediately after execution of this
instruction.

The above argumentation gives some (finite or infinite) computation ofMg.
As A accepts, every q− disappears after some time. This is only possible when
reading a letter of the form (. . . goto q′) with q′ an accepting state of Mg. As
q− needs to disappear infinitely often, we have an infinite computation of Mg

satisfying the Büchi condition. �

References

[1] P. Abdulla and B. Jonsson. Veryfying networks of timed processes. In Proc.
TACAS’98, pages 298–312, 1998.

[2] P. Abdulla and B. Jonsson. Timed petri nets and BQOs. In Proc.
ICATPN’01, pages 53–70, 2001.

[3] P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas, and J. Worrell. Univer-
sality analysis for one-clock timed automata. Fundam. Inform., 89(4):419–
450, 2008.

[4] P. A. Abdulla, J. Ouaknine, K. Quaas, and J. Worrell. Zone-based univer-
sality analysis for single-clock timed automata. In FSEN, number 4767 in
LNCS, pages 98–112, 2007.

[5] S. Adams, J. Ouaknine, and J. Worrell. Undecidability of universality for
timed automata with minimal resources. In FORMATS, volume 4763 of
LNCS, pages 25–37, 2007.

29

[6] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[7] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctu-
ality. J. ACM, 43(1):116–146, 1996.

[8] R. Alur, L. Fix, and T. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theoretical Computer Science, 204, 1997.

[9] R. Alur and T. A. Henzinger. A really temporal logic. In FOCS, pages
164–169, 1989.

[10] R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):181–
204, 1994.

[11] P. Bouyer. Model-checking timed temporal logics. In Workshop on Methods
for Modalities (M4M-5), Electronic Notes in Theoretical Computer Science,
Cachan, France, 2009. Elsevier Science Publishers. To appear.

[12] P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of tptl and
mtl. In FSTTCS, volume 3821 of LNCS, pages 432–443, 2005.

[13] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The cost of punctuality.
In LICS, pages 109–120, 2007.

[14] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. On expressiveness and
complexity in real-time model checking. In ICALP, volume 5126 of LNCS,
pages 124–135, 2008.

[15] Y. Hirshfeld and A. M. Rabinovich. Logics for real time: Decidability and
complexity. Fundam. Inform., 62(1):1–28, 2004.

[16] D. V. Hung and W. Ji. On the design of hybrid control systems using
automata models. In FSTTCS, number 1180 in LNCS, pages 156–167,
1996.

[17] S. Lasota and I. Walukiewicz. Alternating timed automata. In FOS-
SACS’05, number 3441 in Lecture Notes in Computer Science, pages 250–
265, 2005. Journal version available from WWW.

[18] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans.
Comput. Log., 9(2), 2008.

[19] R. Mayr. Undecidable problems in unreliable computations. TCS, 1-
3(297):337–354, 2003.

[20] A. W. Mostowski. Hierarchies of weak automata and week monadic formu-
las. Theoretical Computer Science, 83:323–335, 1991.

[21] F. Murlak. Weak index versus borel rank. In STACS, Dagstuhl Seminar
Proceedings, pages 573–584. Dagsr, 2008.

30

[22] J. Ouaknine and J. Worrell. On the language inclusion problem for timed
automata: Closing a decidability gap. In Proc. LICS’04, pages 54–63, 2004.

[23] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic.
In LICS, pages 188–197, 2005.

[24] J. Ouaknine and J. Worrell. Safety metric temporal logic is fully decidable.
In TACAS, number 3920 in LNCS, pages 411–425, 2006.

[25] J. Ouaknine and J. Worrell. On the decidability and complexity of metric
temporal logic over finite words. Logical Methods in Computer Science,
3(1), 2007.

[26] J. Ouaknine and J. Worrell. Some recent results in metric temporal logic.
In FORMATS, number 5215 in LNCS, pages 1–13, 2008.

[27] M. Y. Vardi and P.Wolper. Automata theoretic techniques for modal logics
of programs. In Sixteenth ACM Symposium on the Theoretical Computer
Science, 1984.

[28] K. Wagner. Eine topologische Charakterisierung einiger Klassen regulärer
Folgenmengen. J. Inf. Process. Cybern. EIK, 13:473–487, 1977.

[29] K. Wagner and L. Staiger. Automatentheoretische und automatenfreie
charakterisierungen topologischer klassen regularer folgenmengen. EIK,
10:379–392, 1974.

[30] T. Wilke. Classifying discrete temporal properties. Habilitation thesis,
Kiel, Germany, 1998.

31

