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An efficient algorithm to account for nonparabolicity in carrier-carrier scattering in an ensemble
Monte Carlo simulator is proposed. The major difficulty of modeling intercarrier scattering in
semiconductors with nonparabolic bands arises from the two particle momentum and energy
conservation laws that have to be simultaneously satisfied. A numerically efficient method is thus
proposed to compute the final states accounting for a nonparabolic density of states and included in
an ensemble Monte Carlo simulator. The developed algorithm makes use of rejection procedures in
order to determine the correct number of scattering events as well as the distribution of the final
states. This algorithm is then applied to compute constant-energy contours in various
semiconductors, including narrow gap, highly nonparabolic materials, such as InAs. The model is
also used to investigate the electron dynamics in an InAs quantum well heterostructure. Our results
show that nonparabolicity significantly alters the transient regime since it increases the number of
carrier-carrier scattering events. Finally, we investigate the validity of the parabolic approximation
in the modeling of a typical GaAs resonant phonon terahertz quantum cascade laser. It is shown that,
although electron-electron scattering plays a crucial role in setting the device performance of the
laser, the effect of nonparabolicity in this interaction alters only slightly the population inversion
while the subband temperatures are increased. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2976170�

I. INTRODUCTION

Carrier-carrier scattering �CCS� has been an important
topic in semiconductor physics for decades. In a number of
experiments aiming to study excited carrier relaxation,1–5 it
has been shown that mutual Coulomb interaction may be
dominant in carrier thermalization, in particular in hetero-
structures with subband spacings less than the polar optic
phonon energy.5 In a vast array of modern optoelectronic
devices, CCS plays a prominent role in the carrier transport.
Indeed, electron-electron scattering �EES� has been tremen-
dously investigated in the quantum cascade laser �QCL�,6–11

because this scattering mechanism is essential in setting the
performance of QCLs operating in the far-infrared region of
the electromagnetic spectrum �1–10 THz�. These devices
have generated a great deal of interest owing to various pos-
sible applications of the terahertz sources, e.g., in chemical
sensing, spectroscopy or biomedical imaging. Thus, the un-
derstanding of the underlying physical background of CCS is
crucial in order to further improve the output characteristics
of QCLs, especially in the terahertz range.

Since the early work of Pines and Bohm,12 the CCS
mechanism has been widely investigated in the
literature.13–17 The modeling of this scattering mechanism
tackles many issues of both theoretical and numerical na-
tures, particularly in the context of a two-dimensional carrier
gas �2DCG�. Thus, in order to keep the computational cost

reasonable, CCS in many-subband systems such as QCLs is
usually modeled in a simplified manner. One of the most
frequent hypothesis concerns the band structure. For simplic-
ity it is generally assumed a parabolic dispersion relation.
However, the impact of this assumption has not been evalu-
ated. In particular, the influence of nonparabolicity �NP� on
the QCL performance has not been studied. In this article, we
demonstrate a Monte Carlo simulator, including the CCS
mechanism, that is suitable for the study of the transport in
semiconductors with nonparabolic bands. Hence, in our
model NP is taken into account in the Schrödinger–Poisson
solver through the BenDaniel–Duke Hamiltonian18 as well as
in all scattering mechanisms.

The main advantage of assuming parabolic bands when
modeling CCS is that energy and momentum conservation
equations can be solved analytically,13 in order to determine
the possible final states. On the contrary, in nonparabolic
bands this calculation generally requires some kind of brute
force method, which dramatically increases the computa-
tional cost. In this work, we thus propose an efficient method
in order to compute the final states when NP is taken into
account, avoiding systematic resolution of the energy and
momentum conservation equations in the K space. To denote
the final states in the K space, they will be referred to as
“constant-energy contour” or equivalently “equienergy lines”
hereafter.

In carrier transport studies, the question of computing
the constant-energy contour in nonparabolic bands has only
been treated by a few authors,19–22 and is generally disre-
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garded as far as weakly nonparabolic semiconductors such as
gallium arsenide or silicon are investigated.7–9,11,13–15,23 This
topic has also been tackled by Kane24 and later by Harrison
et al.,25 who calculated impact ionization rates for realistic
band structure via Monte Carlo sampling of the multidimen-
sional integral appearing in the expression of the CCS prob-
ability. However, the proposed algorithms are either depen-
dent on the screening model20 or on the dispersion relation,22

while others require unaffordable computational resources
such as Monte Carlo sampling or the Gilat–Raubenheimer
method.26 Moreover, it has been shown in a previous study,11

that it is necessary to frequently reevaluate the CCS rates
during the simulation since the system evolves in nonequi-
librium transport conditions. For the study of QCL, a
straightforward brute force approach is thus out of the ques-
tion. Therefore, there is a need for a simplified method that
could be used in a Monte Carlo simulator.

To this aim, in this article we describe a Monte Carlo
simulator that accounts for NP in the CCS interaction. We
propose an efficient numerical method in order to solve the
energy and momentum conservation equations entering the
CCS rates. The proposed algorithm, which makes no as-
sumption neither on the screening model nor on the nonpa-
rabolic dispersion relation, is quite general and may be ap-
plied to study carrier-carrier interactions in any quantum
wells structure. With this simulator, we study the relaxation
of excited carriers in an InAs quantum well heterostructure,
i.e., a highly nonparabolic material. Finally, we focus on a
state-of-the-art terahertz QCL initially proposed by Williams
et al.27 By means of Monte Carlo simulation, we discuss the
assumption of parabolic bands in the modeling of this QCL
and address the influence of NP on the population inversion
as well as internal quantities, such as subband temperatures.

The remainder of this article is organized as follows: In
Sec. II, the Monte Carlo algorithm we developed to account
for NP in the CCS interaction is described. The main steps of
the derivation of the CCS probability are outlined emphasiz-
ing the differences between the parabolic and the nonpara-
bolic case. Then, some illustrative examples of the constant-
energy contour computation for GaAs, InAs, and Si are
presented and discussed. The main results are presented in
Sec. III. First, the model is applied to study the relaxation of
excited electrons in an InAs heterostructure. Then, the study
of a GaAs resonant phonon QCL operating at 3.4 THz is
considered. Finally, the main conclusions are summarized in
Sec. IV

II. THE MODEL

In Sec. II, we describe the algorithm used to account for
NP in the CCS interaction. It is worth mentioning that NP
also enters the expression of the EES rates through the po-
larizability tensor and screening, as it has been shown by
Osman and Ferry.28 In this work, such effects have been
disregarded for simplicity.

A. General formulation of the CCS probability in the
case of nonparabolic semiconductor bands

The modeling of CCS in the parabolic bands approxima-
tion within the framework of a 2DCG has been extensively
described in a number of papers.11,13,15,19,29 Let us recall the
basis of the derivation of the scattering probability in order
to understand where the assumption of parabolic bands en-
ters the calculation and how it considerably simplifies the
scattering rate expression. Hence, the method to handle non-
parabolic bands would be easier to understand. We consider
a principal carrier in state ��K� that scatters with a partner
carrier in subband � with wave vector P. The final states are
denoted ���K�� and ���P��, respectively. Using the Fermi
golden rule, the probability s����K� for a transition from
��K� to ���K��, via a Coulomb interaction, is15

s����K� =
2�

�

1

A2 �
���PP�

f��P��M�������Q��2��E���K��

+ E���P�� − E��K� − E��P�� , �1�

where A is the normalization area, f��P� is the distribution
function for a state ��P�, and E��P� is the total energy of that
state, Q=K−K� is the exchanged wave vector and
M�������Q� is the matrix element of the transition. To obtain
this equation, one has used the conservation of the parallel
momentum to simplify the summation over K�.30 This writes

T � K + P = K� + P�. �2�

Thus, as it can be seen from the argument of the �-function
in Eq. �1�, one of the main difficulties of handling NP arises
from the fact that, owing to momentum conservation, P� not
only enters the expression of E���P�� but also that of
E���K��=E���T−P��.

We rewrite Eq. �1� in the following form:

s����K� =
1

2��A �
���P

f��P�E�������K,P� , �3�

with

E�������K,P� =	 	 
M�������W −
G

2
�
2

���E����
fin �W,T� − E��

ini �K,P��d2W , �4�

where G�P−K. To obtain Eq. �4�, one makes use of the
substitution W=P�−T /2. The terms E��

ini and E����
fin in the

energy-conserving �-function have the following expres-
sions:

E��
ini �K,P� = ���K� + ���P� + e� + e�,

E����
fin �W,T� = ����T

2
− W� + ����T

2
+ W� + e�� + e��, �5�

where e� is the eigenenergy associated with the �th state and
���K� is the kinetic part of the total energy E��K�.
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1. Parabolic bands

At this step of the calculation, we now assume a simple
parabolic dispersion relation of the form

���K� =
�2K2

2m�
, �6�

where m� is the carrier effective mass. In this case, the
energy-conserving �-function writes

��E����
fin �W,T� − E��

ini �K,P�� =
m�

�2 �
�P� −
T

2
�2

− R������
2 �

=
m�

�2 ��W2 − R������
2 � , �7�

R������ having the following expression:

R������ =
1

2

4m�

�2 �e� + e� − e�� − e��� + G2�1/2

,

=
1

2
��e������ + G2�1/2. �8�

Using the energy-conserving �-function �Eq. �7��, the sum-
mation over W can be simplified to obtain the CCS probabil-
ity in the parabolic approximation used in our previous
works,11,29,31

s���
parab�K� =

m�

4��3A �
���P

f��P�	
0

2�

�M�������Q��2d	 , �9�

where 	 is the angle between W and G and the superscript
“parab” stands for parabolic bands. The magnitude of the
wave vector W is given by Eq. �7�, i.e., W=R������. Hence,
as Q=W−G /2, the usual conservation law used by many
authors in their Monte Carlo simulators is easily recovered,
namely,

Q =
1

2
�2G2 + �e������ − 2G��e������ + G2�1/2 cos 	�1/2.

2. Nonparabolic bands

Henceforth, we consider the general case of nonpara-
bolic bands that we should mark through the superscript “np”
thereafter. In that case, E������

np �K ,P� cannot be simplified as
for parabolic bands. In particular, it is no longer possible to
factorize the energy-conserving �-function as in Eq. �7�.
Thus, the calculation of the final energies that satisfy the
energy conservation law has to be performed numerically.
Indeed, one has to evaluate the following sum over polar
angle:

E������
np �K,P� = 	

0

2�

W0
M�������W0 −
G

2
�
2


�W0�d	 ,

�10�

where


�W0� = 
 dE����
fin �W,T,	�

dW



W=W0

−1

. �11�

The notation W0�	� stands for the solution for a given value
of the polar angle 	 of E����

fin �W�	� ,T�−E��
ini �K ,P�=0, an

equation that we write �E	�W�=0 hereafter for brevity. In
Eq. �10�, the term 
�W0� can be interpreted in terms of
density of states. As it can be noticed, the critical point is the
determination of W0�	�, which is performed during the
Monte Carlo simulation. Before going even further, let us
now describe in details this algorithm.

B. The Monte Carlo algorithm

In Monte Carlo simulation, CCS is generally treated via
a rejection technique in order to account for the really ob-
served partner distribution function f��P�.11,13 This approach
requires an upper bound of s����K� and therefore one needs
to maximize E�������K ,P� irrespective of the unknown part-
ner state ��P�. However, as no obvious upper bound of Eq.
�10� can be found, we propose to take a multiple of the upper
bound used in the parabolic approximation,19 so we suppose
that

E������
np

� � � E������
parab ,

�
�m��

�2 M������
2 , �12�

where � is an adequate multiple and M������
2 is the maxi-

mum value of the transition matrix element accounting for
exchange scattering, i.e.,

�M�������Q��2 =
1

2
��V�������Q��2 + �V�������Q���2

− V�������Q�V�������Q��� , �13�

where Q�=K−P� and V�������Q� is the screened Coulomb
potential matrix element. Hence, the following upper bound
of s���

np �K� is used during the simulation,

S���
np =

�m�

2�3 �
���

n�M������
2 , �14�

where n� is the charge density of subband �. As in our
previous work,11 only one-half on this quantity is employed
in order to avoid double counting of the probability.15,32

During the simulation, once a CCS event has been cho-
sen according to the upper bound S���

np , the algorithm pro-
ceeds in the following manner. First, the partner electron
��P� is randomly selected from the ensemble. Then, for each
subband ��, the quantity E������

np �K ,P� is numerically evalu-
ated over a mesh of polar angle 	. The detailed method to
compute W0�	� is explained hereafter in Sec. II C. Note that
this step of the calculation is very time consuming because
all subbands �� are explored. Then, a rejection technique is
employed in order to take the distribution function really
encountered during the simulation into account. This is the
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counterpart of the maximization performed in Eq. �12�.
Therefore, selecting a random number r uniformly between 0
and 1, the following inequality is tested:

r �
�m��

�2 �
��

M������
2

� �
��

E������
np �K,P� . �15�

If Eq. �15� is fulfilled, the number r is also used to determine
the final subband �� of the partner electron as well as the
wave vector W0 according to the integrand of Eq. �10�.
Thanks to W0 and T, the final wave vectors K�, P� are also
computed. Then the Pauli principle is accounted for to com-
plete the treatment of the CCS event. Note that if Eq. �15� is
not satisfied, the collision is rejected and the so-called “self-
scattering event” occurs.13

C. Determination of the constant-energy contour:
Resolution of �E�„W…=0

In Sec. II C, we describe the numerical method used to
compute the wave vector W0 satisfying �E	�W�=0. Fis-
chetti and Laux19,22 have performed such a calculation. For
example, Fischetti and Laux22 have solved �E	�W�=0 using
standard methods for quartic algebraic equation within the
Kane approximation, i.e., using �2K2 /2m�=��1+
��, where

 is the NP coefficient. However, this method depends on the
dispersion relation and cannot be used in the case of warped
bands or numerically computed bands, e.g., those obtained
by the k ·p method. A systematic exploration of the K space
can also be adopted. However, such a method that has to be
performed for each values of 	 and �� is prohibitive, espe-
cially in many-subband systems such as QCLs.

We are thus seeking a method that has the following
features: �i� it could be applied to any kind of nonparabolic
dispersion relation, thus to electrons as well as to holes; �ii�
the computational cost has to be reasonable. Therefore, an
iterative algorithm has been developed using the fact that the
value of W0 in the nonparabolic case is a correction of the
parabolic one. However, in this case, it is readily noticed in
Eq. �7� that the constant-energy contour is a circle of radius
R������ centered at T /2. This contour would be referred to
as the “parabolic circle” in the following discussion: To ob-
tain the contour corrected by NP, a bisection method is used
to compute, for each fixed value of the angle 	, the magni-
tude of the wave vector W0�	� that satisfies the energy-
conserving �-function. In practice, the bounds of the starting
research interval are chosen as multiples of R������, e.g.,
2��R������. Note that, when it is already clear that energy
conservation would be impossible, intermediate tests greatly
speed up the calculation by bypassing later computations.

Before presenting the calculation of equienergy lines in
various materials, we would like to make some technical
remarks. Equation �E	�W�=0 is solved exactly for the
whole range �0,2�� of the polar angle 	, although this task
can be much reduced using symmetry. In practice, good
tradeoffs between computational speed and accuracy are ob-
tained using �=2. For the value of �, we distinguish InAs
and GaAs: � has been taken to 10 and 4, respectively. More-
over, if the parameter � used to compute the scattering rate

upper bound becomes too small during the simulation, a new
one is used �in practice �→2p�� in order to self-consistently
account for the redistribution of the carriers.

D. Equienergy lines in InAs, GaAs, and Si

It is useful to illustrate in some detail the equienergy
lines in a few cases of interest. As a first example, we con-
sider an infinite InAs square-quantum well of width L
=100 Å. InAs is a narrow gap material; thus its NP coeffi-
cient is large: using the well known k ·p formula,33 one has

��1−m� /m0�2 /Eg, where m0 is the free electron mass and
Eg the gap energy. With m�=0.023m0 and Eg=0.354 eV,34


InAs is taken as 2.7 eV−1. In this example, as well as in the
remainder of this paper when electrons are studied, we used
the nonparabolic dispersion relation presented by Thobel et
al.18

Figure 1 shows the constant-energy contours, i.e., the
ensemble of wave vectors P� satisfying �E	�P�−T /2�=0
for the transition M2211 with �solid line� and without �dashed
line� accounting for NP in the dispersion relation. As illus-
trative examples, we have chosen two different values of the
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FIG. 1. Equienergy lines, i.e., the calculated wave vectors P� solutions of
�E	�P�−T /2�=0, with �solid line� and without �dashed line� accounting for
the NP in the dispersion relation. The transition considered is M2211. The
structure consists in an InAs infinite square-quantum well of width 100 Å.
The following two cases were considered: �a� K=−P; �b� K ·P=0. For both
examples, we have taken Kx=109 m−1 and Ky =0. For clarity, the vectors K
and P are sketched on the figure. In the top panel, we also draw the circles
used as the initial guess interval for the computation, i.e., 2��R2211 with �
=2.
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initial wave vectors K and P, thus giving two values for T
and G, the two parameters describing the parabolic circle.
First, the case K=−P has been considered �Fig. 1�a�� and
then the example K ·P=0 has been examined �Fig. 1�b��. We
note �Kx ,Ky� and �K cos � ,K sin �� the Cartesian and polar
coordinates of the wave vector K, respectively. For both
cases, K has only a x-axis component, set to 109 m−1. In Fig.
1�a�, we have also plotted the two circles �2��R2211,�=2�
used to start the bisection computation. One can see in Figs.
1�a� and 1�b� that when NP is taken into account, higher
values of P� are obtained, of the order of 40% greater than
those calculated in the case of parabolic bands.

When NP is negligible, i.e., when 
 is small or almost
null, one should recover the equienergy line of the parabolic
band case, i.e., as we have previously shown, the parabolic
circle. To check the behavior of our method, we have artifi-
cially modified the NP coefficient 
 starting from 2.7 down
to 0 eV−1 by a step of 0.9 eV−1. In Fig. 2, the resulting
computed equienergy lines with a varying 
 for the structure
of Fig. 1 are plotted. One can notice that, as expected, the
parabolic circle �dashed line in Fig. 1�a� or curve with filled
circles in Fig. 2� is recovered when 
→0, i.e., as the limit-
ing case of a null NP coefficient. This supports the correct-
ness of our method.

Even though in this article we have applied the Monte
Carlo only to electrons in the conduction band of III-V semi-
conductors, we stress that it could be used in more general
circumstances. Therefore, as another test bed, we have ap-
plied our method to compute equienergy lines of holes in Si.
In such a material, the light �LH� and heavy �HH� holes
dispersion relations are warped. In a first approximation, the
energy equation can be expressed as33,35

�LH/HH�K� =
�2K2

2m0
��1 � G�K�� , �16a�

with

G�K� = 
4�2
2 +

12��3
2 − �2

2�
K4 Kx

2Ky
2�1/2

,

= �4�2
2 + 12��3

2 − �2
2�cos2 � sin2 ��1/2, �16b�

where �1, �2, and �3 are the Luttinger parameters and the +
and − signs refer to LH and HH bands, respectively. To ac-
count for the NP in the valence bands, we have used Kane’s
model.36 Therefore, the nonspherical, nonparabolic valence
band dispersion relations have the form �2K2 / �2m0�
=� j�� ,��, where the functions � j�� ,�� are the roots of a cu-
bic equation H3�� ,���3+H2�� ,���2+H1����+H0���=0. The
index j runs over the three holes bands, i.e., j=HH,LH or
split off �see Refs. 36 and 37 for further details�.

In Fig. 3, we have plotted the equienergy lines of a M1111

transition for the case of HH. The structure consists in an
infinite Si0.75Ge0.25 square-quantum well with L=100 Å.
The same conditions as in Fig. 1 were used, i.e., only a Kx

component for K and the following two cases: �i� K−P=0
�solid line� and �ii� K ·P=0 �dashed line�. For this example,
Kx was set to 108 m−1. In these cases, little influence of the
NP is found and Eqs. �16a� and �16b� can be used instead of
the full computation of Kane’s cubic equation roots. To com-
pute the equienergy lines we have linearly interpolated the
Luttinger � coefficients between those of Si and Ge. For the
purpose of illustration, we have also superimposed the
equienergy lines obtained using a systematic exploration of
the K space �closed symbols on Fig. 3�, i.e., searching for
doublets �Px� , Py�� that satisfy �E1�K�+E1�P�−E1�Px� , Py��
−E1�Tx− Px� ,Ty − Py���=0 with a given accuracy. We thus
verify on Fig. 3 that for both cases �i� and �ii� the results
obtained with our method are in good agreement with those
of the K space exploration. This confirms that our method
can also be applied to study valence bands with a reduced
computational cost.
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E. Density of states

We now discuss the influence of the nonparabolic den-
sity of states 
�W�. To this aim, we have plotted in Fig. 4
the ratio w������=E������

parab /E������
np as a function of the ki-

netic energy ���K� for the following two materials: GaAs
and InAs, i.e., a low �
GaAs=0.6 eV−1� and high �
InAs

=2.7 eV−1� nonparabolic one. Moreover, the following two
kinds of transitions are considered: a so-called “pure intra-
subband” transition, M1111, and the transition M2211. As in
previous examples, a 100 Å infinite square well has been
considered. For this study, the initial energies ���K� and
���P� are taken as equal. Other calculation parameters are as
follows: screening by only the ground subband, with a po-
larizability factor �11 of 108 m−1, no exchange scattering
and electron form factors set to unity for simplicity �they are
needed to compute M������, see, e.g., Eq. �6� of Ref. 11�.
More details about the expression of 
�W0� entering in Eq.
�10� are given in the Appendix. One can observe that, for
GaAs, w1111 as well as w2211 are slightly lower than unity,
confirming little influence of NP. For InAs, the influence of
NP is, as expected, higher: w1111 reaches 60% for about �
=0.2 eV for example. The higher E������

np , the higher the
EES probabilities in the Monte Carlo simulator. Moreover,
for both materials w2211 is almost constant, reaching a
smaller value in InAs due to a higher NP coefficient. Note
that, thanks to these results, one can have a more precise idea
of the value of � that should be used in the Monte Carlo
simulator �see values given at the end of Sec. II C�.

In this section, we have presented an algorithm that ac-
counts for NP in the CCS interaction. This numerical method
was used to set up a Monte Carlo simulator.

III. MONTE CARLO RESULTS

We now present the results of our Monte Carlo simula-
tion. Other features of the model are standard and have been
extensively described in previous papers.11,18,38 Let us recall
them briefly here: �i� The electron states are calculated
within the framework of envelope function theory account-
ing for a nonparabolic BenDaniel–Duke Hamiltonian.18 �ii�

The main scattering mechanisms are included in the simula-
tion, namely, phonon �both polar optic and acoustic�, ionized
impurity, and alloy scattering. �iii� The model accounts for
the Bloch overlap factor for all scattering mechanisms by
means of a rejection technique described by Thobel et al.18

�iv� Finally, the Pauli principle is accounted for using the
approach developed by Borowik and Thobel et al.39

A. Relaxation of excited carriers in an InAs quantum
well

To study the influence of NP on the electron dynamics,
we have applied our model to an InAs quantum well. Al-
though such a heterostructure has not been previously exam-
ined before—neither theoretically nor experimentally—we
think that it can be interesting to compare the results ob-
tained with and without NP in the CCS interaction in the case
of a highly nonparabolic material such as InAs. Thus, as a
typical example, we have studied the relaxation of excited
electrons in the heterostructure sketched in Fig. 5. The struc-
ture consists in an InAs quantum well with width of 6 nm
sandwiched between an upper Al0.48In0.52As barrier of thick-
ness 20 nm and a Ga0.47In0.53As layer that is 10 nm thick.
The substrate consists in an Al0.48In0.52As thick buffer. Al-
though the misfit between the lattice constant of InAs and
Ga0.47In0.53As is pronounced ��3%�, we assume no stress in
the InAs layer as its thickness is 6 nm, thus below the critical
thickness. All layers are unintentionally doped, with a den-
sity of residual impurities of 1021 m−3 except the upper
Al0.48In0.52As barrier whose doping level is ND=1023 m−3.

As initial conditions, all carriers are placed in the third
subband according to a “heated” Gaussian energy distribu-
tion function of mean �3=0.5 eV and standard deviation
�3=50 meV in order to model the shape of the energy dis-
tribution obtained after a laser pulse.14,40,41 The band profile
as well as the first five subbands of the structure of Fig. 5 are
shown in Fig. 6 at a lattice temperature of 200 K and an
electron density Ns of 2�1016 m−2. We monitor 104 par-
ticles during 30 ps using a constant time step of 0.5 fs. Every
10 time steps the electron-electron upper bounds are reevalu-
ated. To compute the constant-energy contour, the range of
the polar angle 	 is divided into 50 intervals of equal width.

We now present the results of the Monte Carlo simula-
tion of the structure of Fig. 6. First, in order to discuss the
influence of NP, Fig. 7 represents the time evolution of the
fractional subband densities with and without taking into ac-
count NP in the EES modeling. One notices a significant
influence on the transient regime. In particular, the popula-
tion of subband 3 decays more rapidly when NP is taken into
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account. This a direct consequence of the increased number
of Coulomb scattering events. The average scattering times
�ij, calculated by counting the transitions between subbands i
and j, are reported in Table I. We notice that electron-
electron is the dominant scattering mechanism, especially for
intersubband transitions. Its probability is increased, by typi-
cally a factor of 2 when NP is accounted for and as a result
the system relaxes faster. For example the population of sub-
band 3 decays more rapidly whereas that of subband 1 grows
up faster. The effect on the population of subband 2 seems
less pronounced because the numbers of 3→2 and 2→1
processes are increased by a similar amount.

B. GaAs/AlxGa1−xAs resonant phonon QCL

A lot of previous theoretical studies of QCLs have in-
cluded the effect of CCS.7–11,23,42–46 However, to our knowl-
edge, none of them has accounted for NP everywhere in the
simulation �i.e., both in the Schrödinger–Poisson solver and
in the scattering model�. In Sec. III B, we present some re-
sults of Monte Carlo simulation of a terahertz QCL, paying
special attention to the investigation of the validity of the
parabolic approximation. The considered structure is the
well-known resonant phonon QCL designed by Williams et
al.27 operating at 3.4 THz. The conduction-band profile and

wave functions of this QCL for an applied field of 12.2
kV/cm and at 44 K are shown on the inset of Fig. 8. As in
other studies, including ours,10,11 it was supposed that the
QCL is ideally periodic, i.e., consists in an infinite repetition
of identical stages. This feature is taken into account in the
determination of the energy levels and the corresponding
wave functions. At first, the Schrödinger and Poisson equa-
tions are solved over the three stages. Then, by means of a
proper shift in space and energy of the levels belonging to
the central stage, we account for the periodicity of the QCL.
Moreover, we assume periodic boundary conditions during
the Monte Carlo, reinjecting in the central stage electrons
that undergo interstage transitions.

The principle of operation of this QCL can be suitably
described considering only five subbands, whose eigenener-
gies are labeled by e� in the following �see Fig. 8�: Lasing
occurs between levels 5 and 4, for a photon energy of �e54

=e5−e4=15 meV. Levels 3 and 4 are resonantly coupled

TABLE I. Scattering times, in picoseconds, for the main scattering pro-
cesses from subband i to subband j. First column: polar optic scattering.
Second column: EES when NP is accounted for �our model�. Third column:
EES when NP is neglected.

i→ j �ph �ee
NP �ee

Parab

1→1 0.3 0.085 0.19
1→2 7 0.75 1.34
1→3 14 1.45 2.6
2→1 1.9 0.44 1.09
2→2 0.33 0.92 0.2
2→3 4 0.9 1.45
3→1 1.8 0.49 1.2
3→2 1.1 0.49 0.78
3→3 0.43 0.1 0.24
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and the energy separation �e32�37 meV almost matches
the polar optic phonon energy �POP� of GaAs ��35 meV�.
Thus, the lower laser state, i.e., �=4, is efficiently and selec-
tively depopulated thanks to POP-emission scattering.

We now present the results of the Monte Carlo simula-
tion of the structure of Ref. 27. We monitor 4000 electrons
during 200 ps using a constant time step �t=2 fs. The
constant-energy contours were computed using an angle step
of �	=2� /40. With these parameters, when NP is ac-
counted for in the simulation, the computational time is dra-
matically increased by a factor of about 10. The distributions
of electron density among the different subbands with �solid
line� and without �dashed line� accounting for the NP in the
EES interaction are shown in Fig. 8. We have also plotted the
electron population among the subbands without including
the EES in the simulation �dotted line�. One can observe that
NP slightly alters the subband occupancy yielding a popula-
tion inversion that is almost the same for the two EES mod-
els: whether NP is accounted for or not, the population in-
version is 3�1013 m−2.

This was expected from results of Fig. 4 since the NP
coefficient of GaAs is low, and the energies encountered in
QCL small. Thus, the high computational resources needed
to account for NP in EES can be safely spared if “macro-
scopic quantities,” such as population inversion, are exam-
ined. However, “microscopic quantities” may be altered by
the EES model. To discuss this point and, more precisely, to
better understand the influence of NP, the distribution func-
tion as a function of energy is represented in Fig. 9 with
�solid line� and without �dashed line� accounting for the NP
in the EES interaction. One can notice that accounting for
NP in EES modifies the distribution function by warming the
electrons: indeed, NP tends to set up Maxwellian distribu-
tions with higher electron temperatures. Table II summarizes
the calculated subband temperatures obtained at the end of
the simulation by the method described in Ref. 11. For al-
most all subbands, higher temperatures are obtained being
the consequence of an increased number of EES events.
Therefore, NP could strongly influence the electron dynam-
ics and play a significant role if the frequency is reduced
down to 1 THz.

IV. CONCLUSION

We have proposed a method for modeling CCS in semi-
conductors with nonparabolic bands by means of Monte
Carlo simulation. The crucial point is the determination of
the final states without the use of a systematic exploration of
the K space. This is achieved in our algorithm by a formu-
lation of the energy-conserving �-function allowing the com-
putation of the constant-energy contour in a numerically ef-
ficient way. This method is shown to correctly model
equienergy lines in most usual cases, including highly non-
parabolic conduction bands, e.g., in InAs, and warped va-
lence bands in SiGe.

We have applied this Monte Carlo simulator to study the
electron dynamics in an InAs heterostructure. To this aim, we
investigated the relaxation of heated electrons initially lo-
cated in an excited subband. It is shown that NP increases the
carrier-carrier interaction, thus altering the transient regime.
When a nonparabolic density of states is accounted for in the
modeling of the carrier-carrier interaction, the electron relax-
ation is shown to be faster.

Then, the model has been used to address the validity of
the parabolic approximation in a multisubbands QCL operat-
ing in the terahertz range. The influence of NP on population
inversion is found to be small. Thus, for optimization pur-
pose, the high CPU time required by a complete model of
NP can be safely avoided. However, when internal quantities
are investigated, such as subband temperatures, it is highly
recommended to take the NP into account.
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APPENDIX: CALCULATION OF Ω„W…

In the following, we give the expression of the final
density of states in the case of a Kane model for the electron
effective mass.18 Within this assumption, the dispersion rela-
tion is approximated by a second degree polynomial

�2K2

2m�
� = ��1 + 
��� , �A1�

where m�
� is the effective mass of subband � and 
� is the NP

coefficient, both being averaged over the device length
weighted by ����z��2, the squared modulus of the wave func-
tion. In this case, 
np�W� has the following expression:
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TABLE II. Calculated subband temperatures T� �expressed in Kelvin� with
and without including the NP in the EES.

Without NP With NP

T1 127 157
T2 125 146
T3 93 113
T4 60 45
T5 94 121
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np�W� =
2W

�2 
 2W2 + W · T

m��
� �1 + 2
������W + T/2��

+
2W2 − W · T

m��
� �1 + 2
������W − T/2��
−1

. �A2�

Note that with 
→0 and m��
� =m��

� �m�, one recovers the
limiting case of parabolic bands.


np�W� → 
parab�W� =
m�

2�2W
. �A3�

Reinjecting this result into Eq. �10�, with the help of Eq. �3�,
one finds as expected the scattering rates expression in the
case of parabolic bands �i.e., Eq. �9�� without using the fac-
torization of the energy-conserving �-function given by Eq.
�7�.
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