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Abstract : This paper deals with homogenization of second order dérarg form

parabolic operators with locally stationary coefficierf@ughly speaking, locally
stationary coefficients have two evolution scales: bothlarost constant micro-
scopic one and a smoothly varying macroscopic one. The hemzafion proce-
dure aims to give a macroscopic approximation that takesantount the micro-
scopic heterogeneities. This paper folloys] [13] and impsothis latter work by
considering possibly degenerate diffusion matrices.

Résune : Nous étudions ’homogénéisation d'opérateurs pdiabes du second
ordre sous forme divergence a coefficients localemenibetaires. Ces coeffi-
cients présentent deux échelles d’évolution: uneuiani microscopique presque
constante et une évolution macroscopique régulieréhéarie de ’'homogénéisation
consiste a donner une approximation macroscopique derbogur initial qui tient
compte des hétérogénéités microscopiques. Celeafiit suite a [1] et généralise
ce dernier en considérant des matrices de diffusion paw&genérer.

AMS classification: 60F17; (35B27; 35K65; 28D05).

1 Introduction

This paper follows([[113] and deals with homogenization ofosetorder PDEs with locally sta-
tionary coefficients by means of probabilistic tools. Moreqgisely, we aim at describing the



asymptotic behavior, asgoes ta0, of the following Stochastic Differential Equation (SDE)

t € t 5 t £
@ Xf::n—l—l/ b(w,&,Xf) dr+/ c(w,&,Xﬁ) dr+/ a(w,&,Xf) dB,.,
€ Jo g 0 g 0 g

whereB is a standard d-dimensional Brownian motion and the pametvolves in a random
medium¢?, that is a probability space with suitable stationarity anglodicity properties. For
each fixed value of the parametge R?, the coefficientd(w, -, y), c(w, -, y) ando(w, -, y) are
stationary random fields (the parametestands for this randomness). That is why they are said
to be locally stationary. The generatff of the process{¢ can be written in divergence form
as

1 d x 0
2 2V —ZV(:B H el
2) Z [a+ “”H)ax])

for an antisymmetric matri¥/, a real-valued functio® anda = oo*.

Let us first briefly outline the chronological approach obtliisue. The convergence of the
previous SDE (or the connected PDE) has been first estatblistiee locally periodic case, that
is when the coefficients are deterministic and periodic wétspect to the variable/« [fl], B].
Due to the lack of compactness of a random medium, the randgmraises more difficulties.
As far as we know, the first work in this context is due to Olla &iri in [[L]. The authors
considered a nearest neighbors random walk.@volving in a locally stationary environment.
They established an invariance principle for this proces$eu diffusive scaling of space and
time. The main tool of the proof is the explicit formula of tberrectors, which only holds in
dimension one under a strong diffusivity condition.

In [L3], an alternative approach is suggested, which is estricted to the dimension one.
As in the locally periodic setting, the method is based oncall@nalysis of the microscopic
behavior (corresponding to the variahig¢s) of the processX < to construct the so-called cor-
rectors and to identify the limiting process. However, kmlthe locally periodic case, these
correctors turn out to have bad asymptotic properties at@aoseopic scale, in the sense that
the classical ergodic theory cannot describe their asyiisgiehavior. Overcoming this issue is
the main contribution of[[13]. The main assumption is thefami ellipticity of the matrixa,
namely that there exits a constavt > 0 such that for alk:, y, X € R?,

1
M|X|2 < (a(w,x,y)X,X) < M|X|2

This condition is very convenient for two reasons. From thieainical angle, it ensures the
local ergodicity of the procesX®. From the technical angle, it provides strong estimates of
the transition densities of the proceks as well as regularity properties of its generator. The
control of the procesX ¢, in particular its invariant measure and its tightnessaslg derived
from this assumption.



In this present paper, we intend to improve this latter warkdmoving the uniform ellip-
ticity assumption. It is replaced by microscopic ergogicionditions (Assumptiop 2.5), which
seem not too far from being minimal to apply classical ergadeory and then pass to the limit
in {@). The class of considered coefficients then includessipty degenerate matrices In
other words, we can treat diffusion coefficientshat may reduce t6 along some directions.
Under suitable assumptions, we will prove that the proééssonverges to the solutiol of a
SDE with deterministic coefficients, whose generator carebitten in divergence form as

d

(3) L=(1/2)e?V® "

i,j=1

9 @i g2
r (e [A—I—H](:U)amj ),

where the so-called homogenized coefficiedtsaind H are respectively symmetric positive
and antisymmetric. It is worth emphasizing thétmay degenerate, even under strong non-
degeneracy assumptions of the initial diffusion coeffitien We will prove that the limiting
diffusion is trapped in a fixed subspaceRsf and possesses strong diffusivity properties along
this subspace.

We should finally point out that there are only a few paperdinigavith possibly degenerate
diffusion coefficients in the whole literature about proitiatic homogenization of SDEs. In the
periodic setting, recent advances have been made by HadléPardoux in[[5]. Their approach
deeply differs from ours. They allow the diffusion to be sigty degenerate in some area of the
torus, and even to reduce @a@ver an open domain, provided that the diffusion quicklyches
a strongly regularizing area (typically, it satisfies a strdHormander type condition). Our
approach does not allow locally such strong degeneracteddas not require any regularizing
area. As a consequence, we can construct examples thakeaya/bere degenerate. Moreover,
the technics used ifi][5] rely on the compactness of the tardsannot be adapted to the random
setting.

The structure of the paper is the following. In section 2, mteoduce all the notations and
assumptions. Our results are stated in Section 4 and an éxasngiven in Section 5. The
construction of the corrector is carried out in Section 6cti®a 7 deals with the regularity
properties of the proces¥¢ such as its invariant measure and the Itd formula. Sectia 8
devoted to establishing the asymptotic properties of tliegssXc. Section 9 explains the
proofs of the homogenization procedure. The tightnesseptbcessX® is treated separately
in Section 10.

2 Setup and Assumptions

Random medium.From now on,d > 1 is a fixed integer. Following[[7], we introduce the
following



Definition 2.1. Let (Q2,G, 1) be a probability space am{m;x € Rd} a group of measure
preserving transformations acting ergodically ©n

1) VA € G,Vx € RY, ju(1,A) = p(A),

2) If for anyz € R 7,A = A, thenpu(A) =0or 1,

3) For any measurable functiapon (€2, G, 1), the functionz, w) — g(7,w) is measurable
on(R% x Q, B(RY) @ G).

The expectation with respect to the random medium is derimtéd. Denote byL?(2) the
space of square integrable functions,|lhythe corresponding norm and by .)- the associated
inner product. The operators defined bAQ2) by T, f(w) = f(r.w) form a strongly contin-
uous group of unitary maps ih?(2). For every functionf € L?(Q), let f(w,z) = f(r.w).
Each functionf in L?(Q) defines in this way a stationary ergodic random fieldRsh In
what follows we will use the bold type to denote an elemgnt L2(Q2) and the normal type
f(w,z) (or evenf(x)) to distinguish from the associated stationary field. Treigrpossesses
d generators (throughout this paperstands for the i-th vector of the canonical basi®R6j
Theig —9

h

(4) D;g = }llin% if exists,

which are closed and densely defined. Setting

(5) C = Span {g* p;g € L7(Q),¢ € C?(Rd)} , with g x p(w) = / 9(maw)p(z) dz,

R4
the spaceC is dense inL?(Q2) andC C Dom(D;) for all 1 < i < d, with D;(g x ¢) =
—gx0¢/0x;. If g € Dom(D;), we also haveD;(gxp) = D;gxp. For f € ﬂle Dom(D;), we
define the divergence operaiiv by Div f = Z?Zl D; f. We distinguish this latter operator
from the usual divergence operator Bfi denoted by the small type div.

Locally stationary random fieldsFollowing the notations introduced just above, for a mea-
surable functionf : Q x R4 — R”, (n > 1), we can consider the associated locally stationary
random field(z,y) — f(r,w,y) = f(w,z,y) (or evenf(z,y)).

Structure of the coefficientsThe coefficientsr : Q x R — R4 H : Q x R? — R¥x4,
6 :Q — R™ andV : RY — R denote measurable functions with respect to the underlying
producto-fields. As explained above; and H define locally stationary random fields aad
a stationary random fieldH is antisymmetric. We define two new matrix-valued functibgs
a = oo™ anda = aa*. Furthermore, for some positive constantthe coefficientsr, H, &
andV satisfy

Assumption 2.2. (Regularity). For each fixedw € Q, the coefficients (w, .,.), H(w,.,.)
anda(w,.) are two times continuously differentiable with respectaotevariable and are, as
well as their derivatives up to order twa,-Lipschitzian and bounded hy. V is three times



continuously differentiable and is, as well as its derivasi up to order three, bounded hyand
A-Lipschitzian.

Let us now describe the degeneracies of the matriRoughly speaking, the degeneracies
of a are assumed to be controlled by the reference matriXo be more explicit, let us first
introduce the

Definition 2.3. Given ad x d matrix-valued functiory : R¢ — R%*? ad x d symmetric matrix
AandarealC > 0, g is said to be(C, A)-controlled ifvy,y’ € R?

lg(y)] < CA, andl|g(y) —g(y)| < CAly — /|,

where|M| = (MM*)'/? stands for the absolute value of the matfik (given 2 symmetric
matricesA, B, the relationA < B means that the matri® — A is symmetric positive).

We now precise the control @f by a:
Assumption 2.4. (Control). We assume that
M_la(w) <a(w,y) < Ma(w)
for some strictly positive constant’ and for every(w, y) € Q x R%. Moreover, for anyi, j €

{1,...,d} and(w,y) € Q x R?, the matrices)y, a(w,y), 8§iyja(w, y), H(w,y), 0y, H(w,y),

2 ~
ayly H (w,y) are (M, a(w))-controlled. We further assume that

o (w,y +h) — o(w,y) < Ma(w)|h|?
for anyy, h € R? and that [p, e =2V ¥ dy = 1.
To ensure the local ergodicity of the process, we make the following assumption:

Assumption 2.5(Ergodicity). Let us consider the Friedrich extension (sge [4, p. 53] ottiBac
5) of the symmetric operatd$ defined orC  L?(Q) by S = (1/2) Z” 1, Di(a; jDj). This
extension, still denote@, is self-adjoint. We then assume that the semi-group gésizay S
is ergodic, that is its invariant functions agealmost surely constant (see e.g. Rhodek [12]).

Remark. Assumption@.z may appear restrictive and can surely laxeel (see|]]3] for results in this
direction in the context of quasilinear PDES). In partictltde statement of the homogenization property
only involves the derivatives of order one with respeaj to R? (see Theorerﬁ.l). However, it avoids
dealing with heavy regularizing procedures that are notphiepose of this work.

Diffusion in a locally ergodic environmentForj = 1, ..., d, we define the coefficients
(6)
1 d 2v(y d
bj(w,y) =5 Y _Dila+ H)ij(w,y), ¢j(w, Z Vla+ Hlj)(w,y).

i=1



From Assumptiorp 2|2, the functions(w, ., .) andc;(w, ., .) are Lipschitzian so that, for a start-
ing pointz € R? ande > 0, we can consider the strong solutiaif of the following Stochastic
Differential Equation (SDE) with locally stationary coefénts:

t t t
(7 X7 ::L'—i—é/ b(Yi,Xf) dr—l—/ C(Yi,Xf) dr—l—/ U(Yi,Xf) dB,,
0 0 0

where we have sef; = X7/ andB is a standard d-dimensional Brownian motion (the random
medium and the Brownian motion are independent). We poihtiwat the generator of this
diffusion could be formally written in divergence form as

d

c_Love) v 9 (v 9
(8) L =3¢ Z &Ei(e [a+H](w,w/E,x)axj).

i,7=1

Notations. For the sake of simplicity, we indicate the starting paindf X by writing, when neces-
sary, [P (andES for the corresponding expectation), this avoids heavy taita asX*. We can then
consider the probability measulé = M [, P<[.Je=2V(®) dz and its expectatiofi.

3 Main Results

Let us now state the main result of this paper. Under the posvassumptions, we can prove

Theorem 3.1. HomogenizationThe lawP® of the process(* weakly converges ie¥ ([0, T]; RY)
towards the law of the process that solves the following SDE with deterministic coeffitsen
(they do not depend on the medi@h

t_

9) Xt:x+/0t§(Xr)dr+/() A%(X,)dB,.

The coefficientst and B are of classC? and are defined, foy € R?, by

(10a) Aly) = lim M7+ Dus)*a(l + Dur)(,y)],

(10b) Hi(y) = lim M[(I + Dus)*H(I + Duy)(..y)],

(10c) Bly) = (1/2)e*V Wa, (7" [A+ H])(y)-

Formally speaking, for each € R? and A > 0, the entries(u}(.,y)), .., of the function

uy(.,y) : Q@ — R? solve the following so-called auxiliary problems, whicte atated on the
random medium

A (- y) — % > Dil(ajr+ Hjp)Drul (- y)] = bil.,y).
7.k



Remark A rigorous description ol (., y) is given in Sectior[|6. In particular, in this degenerate
framework, the "gradients”"Dw) do not exist but along the directiof, that is the only expression
" Du, can be given a rigorous sense. Because of the contmleofd H by a (Assumpti04), it then
makes sense to consider formu(fi@4)and (LOB) (see Sectiofl 6 for further details).

Since the diffusion coefficient is allowed to degenerate, the reader may wonder whether
the homogenized diffusion coefficient may also degenergke: following proposition details
the structure of the limiting diffusion coefficient:

Proposition 3.2. Geometry of the homogenized coefficientThe kernelKk = Ker(A(y)) of
A(y) does not depend on the pointc R? where it is computed. For eaghc R, B(y) € K+
(K is the orthogonal complement £6) and there exists a constan@ > 0, such that

Yy e R, Vo e K+, a@\x! z, Aly)z) < a@]w\z

In other words, for each starting point € R¢, the limiting processY (see(@)) can be seen as
the solution of a SDE defined ant+ K1 with a uniformly elliptic diffusion matrixd.

4 Example

Let us consider a simple example in the two dimensi@maperiodic case. The 2-dimensional
torus T? is seen as the random medium equipped with the induced Lebasgasure, still

denoted by to stick with the notations of the paper . We aim at constngca degenerate
homogenized coefficient. For this purpose, let us first define

Vo € R?, &(m):<i 1{‘3),

wherec ¢ ) is a constant, and = & *. Choose now any smooth functid@ : R? x R? —
R2*2 with bounded derivatives up to ord@y 2r-periodic with respect to its first argument
x € R? and satisfying

V(z,y) e R* xR*, M7 'Id <UU*(z,y) < M1d.

DefineV(z,y) € R2 x R2, V(y) = ¢ ¥’ /7, o(z,y) = U (x,y) andH = 0. Let us check
that these coefficients satisfy all our assumptions. Frarsthoothness of the coefficients, it is
plain to see that Assumptiofis]2.4 gnd 2.2 are fulfilled. Agstion [2.5 results from the Weyl
equipartition theoreme(¢ Q). Theoren{3]1 thus holds.

Let us now prove thatl is degenerate and does not trivially reducé.tbet us denote byl
the homogenized coefficient associatedtd-rom the proof of Propositign 3.2, for agyc R?
andX € R?, we have

CHX,AX) < (X, A(y)X) < C{X,AX) = 0.



So we just have to comput&. Sinces is constant, it is straightforward to check th?ﬁactually
matchessa* with the help of [4p). Indeed, for a given smooth functigrdefined onT? and
r € R?, the right-hand side of (#5) expands as

M[|a (D + z)|*] =M[|g* Dp|?] + 2 (¢*z,6*M[D]) + (6*z, ")
=M([|6*Dep|?] + (6" z, 6" x) .

The infimum is then clearly reached fgr= 0.

Finally, we let the reader check that = 56" does not reduce t6 and that the vector
Xg =[1 —]*satisfiesd Xy = 0.

In a general way, because of the various geometries of ramdedig, it is not clear whether
A is degenerate or not. The reader may find Jn [3] examples (iiglatly different framework)
where the diffusion matrix reduces @icthough the diffusion coefficiernd is elliptic over a set
of full Lebesgue measure, and conversely, an example wheegenerates and is uniformly
elliptic. O

5 Construction of unbounded operators

Throughout this paper, we will need to construct suitablemsions of unbounded operators
defined on a dense subspace of a gi¥@mspace. This construction is always the same and
follows [@, Ch. 3, Sect 3.] of]9, Ch. 1, Sect 2.], to which tkeader is referred for further details
than those given below. That is the reason why we explainatgeneric way. We also point out
that the Friedrich extension & (see Assumptiop 3.5) corresponds to this construction.
Consider a probability spade equipped with a probability measulfe a dense subspace
D of L%(Q;P), a positive symmetric bilinear formy, -) defined onD x D (|| - || denotes the
corresponding semi-norm) and a bilinear foron D x D that satisfies for any, ) € D

(11) aHel* < Bl p), Ble,v) < alellllv]

for some positive constant > 0. Let us denoté-, -), the canonical inner product a? (2; P).
From now on, we will say that the unbounded operdtan L?(2; P) is constructed from

(Q,P,(-,-), B)ifitis constructed as follows. We consider the inner pradion D x D defined

by

and the closurél of D with respect to the corresponding norm. For each 0, the bilinear

form B, is defined oriD x D by

Bx(p, %) = M, )2 + B(p, ).

From (I1),B) obviously extends tél x H (this extension is still denoted by, ). Furthermore,
itis continuous and coercive dfix H. Thus it defines a resolvent operatey : L?(Q,P) — H,



which is one-to-one. We can then defib@s) — G, ! with domainDom (L) = G (L*(Q,P)).
This definition does not depend on> 0. It is readily seen that a functiop € H belongs to
Dom(L) if and only if the mapy € H +— By (¢, 1) is L?(Q,P) continuous. In this case, we
can findf € L?(2,P) such thatB, (g, ) = (f,-)2. ThenLy exactly matcheg — \¢. Note
that B(p, 1) = —(Ly, ), for anyp € Dom(L) andty € H. We point out that the unbounded
operatorL is closed and densely defined. Moreover, its adjoint opetatdn L?(2;P) coin-
cides with the operator constructed fr@f, P, (-, -) , B), where the bilinear forn is defined
onD x D by B(p, ) = B(v, ). As a consequencd.”)* = L.

Notations. In what follows, the notatioiH, L, Dom (L), (Gx)x>0) = Z((%,P, (-,-), B))
means thatl, L, Dom(L), (Gx)a>o are constructed froni2, P, (-, -) , B) as explained above.

6 Auxiliary Problems

Setup and notations. Let us now focus on the different operators induced on thelaan
medium by the matricesa(-,y) and H(-,y), for eachy € R¢. We aim at extending the
following operators defined ofi by

d
(12) Sy = — Z Dz (aij(-,y)Dj ), Ly = % Z DZ((CL + H)w(,y)Dj ),

1,7=1 i,j=1

according to the method detailed in Sectjpn 5.
The positive symmetric bilinear forrfy, -); is defined orC x C by

(13) (@, ¥)1 = —(p,Sv)2 = (1/2)(aDep, DY),

and the associated seminofim||; by [|¢||? = (¢, ¥)1-
For anyp, 1 € C, we define the bilinear formg (s fixed)

BS(¢>¢) = —(Sy%'ﬁbh = (1/2)(&(,y)DQ0,D’l’D)2’
BL(¢>¢) = —(Ly%"#)z = (1/2)((0’ + H)(>y)D‘P7D¢)2

From Assumptiofi 24 and the antisymmetryFdf it is readily seen thatZ ~!{|p||? < B(¢, ¢)

(resp.M |} < B (g, »))andB(p, ) < M|p|1]l¢ ] (resp.B(p, 1) < 2M||e1]|%]1).
We can then define

(H17 Sy7 Dom(Sy)7 (Giy))\>0) :E(Q7 H, (’7 ')17 Bs)a
(Hla Lya DOHl(Ly), (Ggy)k>0) :‘E(Q7 M, (’a ')17 BL)

Let us additionally denote byL?)* the adjoint operator oL in L%($2). Note thatS¥ is self-
adjoint.



We define the spac® as the closure ifL?(02))? of the set{*Dep;p € C}. We point
out that, whenevegp, 1 belong toC, 2(y,1)1 = (6*Dey,a* D)), So that the application
0 :C — D, ¢ — "Dy can be extended to the whole spdte For each functiory € Hjy,
we will note V7 f for ©(f) and this represents in a way the gradient of the funcficalong
the directions. Similarly, for each fixed, € R?, we define for anyy € H; the gradient along
the directiono (-, 7). It will be denoted byv?(-¥)y and is equal tar (-, y)* D¢ for any ¢ € C.
From Assumptiofi 2}4, for each € H,, the mapping € R¢ — V(%) ¢ D is continuous:

(14) V(y, h) € (RY)?,  |V70vthe — volveld < MIbP el

Fory € R? ande, 1 € C, we derive from Assumptiop 2.4

1 - -
(15) (Ly‘Pv ¢)2 = _5 (D(P, (CL + H)(v y)D,lzb)g < C|v0¢|2|v0¢|27
so that we can define a bilinear forfiY on the whole spac® x D such thatvp, ) € C
(16) — (LY, )2 = TY(V7p, V7).

Thanks to Assumptiop 3.2, we can consider the differedti& of T defined, forp, ) € C,
by 0T (p, %) = 9,(T(¢,1)). From Assumptiorh 2}4 and similarly tb {15)7¥ extends to
D x D. From Assumptiofi 2}4, it is then plain to see that the retefig(TV (¢,¢)) = 0TY(€,¢)
still holds forg, ¢ € D.

Whenever a functioi satisfies the property:

(17) C > 0,V € C, (b7 (10)2 < C”(PHl,

we will say thatb € H_; and we will define||b||_; as the smallest consta6t satisfying this
property.

Solvability and regularity of the resolvent equatiorFor h € L?(Q), uy(.,y) = GY'h
belongs taH; N Dom(LY) and satisfies\u, (-, y) — LYuy(-,y) = h. Suppose that the right-
hand sideh = h(-,7) depends on the parameige R¢. We now investigate thg-regularity of
u?(-,y) from the regularity ofy — h(-,y) with respect to the norms |, and|| - || _;. We claim

Proposition 6.1. Let us consideh : y € R? — h(.,y) € L*(Q)andf : y ¢ R — f(.,y) €
L?(2) NH_;. Suppose that there exiSh, C_; such that:

1) the applicationy — h(.,y) € L?(2) is two times continuously differentiable Ir?((2).
The derivatives up to order 2 are bounded@yin L?(Q2) and areCy-Lipschitz inL?(€2).

2) the applicationy — f(.,y) € L?(Q) NH_; is two times continuously differentiable in
H_. The derivatives up to order 2 are boundeddy, in H_; and areC_;-Lipschitz inH_;.

Then, for any\ > 0, the solutionu,(.,y) € H; N Dom(LY) of the equation

(18) Au}\(wy) - Ly,“')\('vy) = h(vy) + f(»y)

10



is two times continuously differentiable Iy with respect to the parameter ¢ R?. Further-
more there exists a constabif;] > 0, which only depends oh/, C_;, such that the functions

g)\('v y) = ,u')\('? y)1 83/“’)\('7 y)’ 853/“’)\('7 y) SatiSfy the propertyV(y, h) € R27

(19a) Ngr(- )13+ lgr(G )T < DR+ C3/N),

Proof: The proof is readily adapted fror |13, Prop. 4.1]. The mettmkists in differentiating
the resolvent equatiof {18) with respect to the parameteR?. In the uniformly elliptic setup
[L3, Prop. 4.1], this can be carried out thanks to the diffgéability and the boundedness of
a, H and their derivatives up to order 2. In the degenerate setepeed to control the matrices
a and H, as well as their derivatives up to ordewith respect to the parametgre R, by the
matrix a (see Assumptiop 2.4) in order to differentiate the functjors w, (-, y) in Hj. O

Auxiliary problems: construction of the correctorsThe end of this section is now devoted
to the study of the solutions of the so-called auxiliary peofts, that means the solution(., y)
(¢ =1,...,d) of the resolvent equations

whereb;(.,y) = (1/2) Z;l:l Dj[(a + H)ji(.,y)]. The weak form of the resolvent equation
then reads fop € C

(21) A(ul)\(> y)a 90)2 + Ty(vgug('v y)> Vggo) = _(1/2) ((a + H)(> y)eia D‘P)2
Having in mind to apply Propositiop 6.1, we first prove

Lemma 6.2. The mapping — b;(.,y) € L*(Q)NH_; is two times continuously differentiable
in H_4, and the derivatives are bounded and Lipschitziafilin

Proof: First note that for eacly € C,
(bi('7y)7 ‘10)2 - _(1/2)((0’ + H)(-ay)euDQD)z-

From Assumptio 2]4, we easily deduce that,y) € H_; and that the mapping € R? —
bi(.,y) € H_; is bounded and Lipschitzian.

From Assumptior] 2]4 again, it is readily seen thatlthe, derivatives ofb; coincide, for
1 < k < d, with the classical derivatives,, b; and

(aykbi('ay)790)2 = _(1/2)((8yka’ + aka)(-7y)eiaD‘P)2 S C”‘PHl

Sinced,, a(w) andd,, H(w) are (M, a(w))-controlled, the derivatives are bounded and Lips-
chitzian inH;. The same job can be carried out for the second order dewgatDetails are left
to the reader. O
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From Propositiof] 6]1 (witth = 0 and f = b;), the mappingy — u’(.,y) is two times
continuously differentiable ifil;. We now investigate the asymptotic behaviouf{fas well as
its derivatives, as goes to zero.

Proposition 6.3. For each fixed; € R% and1 < i < d, the family(Vgug(., y))x converges to a

limit Ei(., y) € L?(Q)? as )\ goes ta). The same property holds for the derivatives, ‘namely that

the families(V?9,,u})x, (V70, , wi)x (1 <'i,j,k < d) respectively converge @,,€,(.,y),

a;jyjkgi(., y) in L2(Q)4. Furthermore, we have
Awd (5 )13 + Ady; wd (5 )3 + A0, us (- y)[3 — 0,  asAtends to,
and, each functiog, (., y) = ui (., y), 9y, u4 (-, v), 9y, ul (., y) satisfies the property:

(22) NarG o)+ lgn( vl < G5
(23) /\|g)\('7y + h) - gA(»Q)% + Hg)\('>y + h) - g)\(vy)H% < CE|h|2

for everyy, h € R?, whereCf ] is a positive constant independentiof- 0 andy € R“.

Proof: The proof does not deeply differ from Proposition 4.3 [in| [1BUt we nevertheless
set it out because of its importance. Frdm [19a) (note ¢hat= 0), we getA|ui(.,y)|3 +

IV7ui (., y)|3 < C. Denote byg,(.,y) € L2(Q)? a weak limit of the family(V7ui (., ), as

A goes to). Passing to the limit i (31), it is plain to see thap c C

(24) Ty(gz(7 y)7 VE(’O) = _(1/2)((0’ + H)(, y)ei7 DLP)Q

SinceT" is coercive oriD x D, this proves the uniqueness of the weak limiflin Gathering

(1) and [28), we get
(25) Mus (4 9)s )2 + TU(V7UA (- 9), V) = TY(&i( 1), V).
Choosingu) (., y) = ¢ vields:
Mus ()3 + T (V7ul (4 9), VUl (1) < T(&i(H ), &l y) + (),
and thus converges

where the functior(\) exactly matched™ (€;(., ), V7l (., y) — & (., y))
to 0 as A goes to0. Hencelimsup,_,, 1Y (Vaug\(.,y), Vaug\(.,y)) < TY(&(,y), &L y)).
Denote byI'® the symmetric part of"?

T (. %) = (1/2)[TV(p, %) + T (3, 9)]. .9 €D.
From Assumptiofh 2]4 and the antisymmetryft we have

M= D, 6" D)2 < T (V7 p, Vo) < M(6"Dp, 5" Dep)a, ¢ €C.
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By density arguments, the quadratic form associatéd*tdefines a norm ob equivalent to the
canonical inner product. Moreover, we have just provedttimtamily(vgug(., y))x is weakly
convergent i to &, (., y) andlim supy_o T (V7 ui (., y), VOui (., y)) < T (&;(.,y), &:(-v))-
Thus the convergence is strong with respect to the norr @ssociated t@™, and conse-
quently (V7w (., y)), strongly converges inL?(£2))? to £,(.,y). From this together wit{ (25),
we get o N

Nud (595 + [VIul (y) = &(y)l3 — 0ash — 0.

This proves the first part of the statement for the funcﬁétﬁ., y). The second part results from
Proposition[6]1, statemen{s (].9a) ahd [19b) (With= 0). The same job can be carried out for
the successive derivatives of, (., y) up to order2. O

7 Dynamics of the processX®. Preliminary results

Notations. All the results of this section are valid for any value of tla@gmeters. However, to
simplify the notations, we choose= 1 and thus remove the parametefrom the notations. So
the processY stands for the procesk* defined by(ff). Finally we denote b, the probability
measuree—2Y W) dy ® du on Q) x R% and byM the coresponding expectation.

This section is devoted to the study of thex R?-valued proces$ryxw, X), such as its
invariant distribution and the I1td formula. Since theseparties are more easily established
when the procesX possesses regularizing properties, namely that the iffusoefficienta
is uniformly elliptic, most of the following proofs are c&d out through vanishing viscosity
methods, that is, in considering a family of non-degenedé#fasion processes that converges
to X.

Invariant distribution. Let us introduce a standard d-dimensional Brownian moisoim-
dependent oB3. For each fixedw,n) € Q x IN* and for anyz € R?, we define the 1td process
X™ as the solution of the SDE (with the convention' = 0 if n = c0)

t t
o :“/ (b+ e —n~'0,V)(w, X7\, X7) dr + / o(w, X, X7) dB, + (n/2)""/2B,.
0 0

Note that, forn = oo, X*° coincides with the proces¥. Forn € IN*, the processX”
defines a continuous semigrody on C,(R?) (continuous bounded functions). Its generator
L" coincides orC?(R?) with

_!

(26) L=

2V (@) Z O, (e_zv(x) (a+ H+n"'1d);;(w, 2, )0y, - ).

1,J

Forn € IN*, it is well-known that the distribution oK' (¢ > 0) admits a density"(w, ¢, z, )
with respect to the Lebesgue measure (df.] [14, Sect. IMfjich is bounded from above
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by a constant”' that only depends o, n,t. Thus the semigroup associated X& (n €
IN*) continuously extends td?(R%, ¢~2V(*) dz). Let us denote by£")* the adjoint of£™ in
L%(RY, e=2V(®) dz), which coincides or©? (R?) with

(27) (ﬁn)* - %e2V(:B) Z 8Z,L (6—2V(JE) (a — H + n_IId)ij (w, x, w)(‘)xj . )
.3

Now, for ¢ € C(R?), let us computefp, L Po(x)y(z)e 2@ dz. From (3],
Pro € C?*(R?) so thatL"Pl*y can be computed with the help ¢f|26). By integrating by
parts, we obtain

(28) / L Pl o) (w)e " ") dx = / Plro(a) (L) p(x)e 2V ") da.

R4 Rd
Moreover, we havel” Pl'o = P'L™p € Cyp(R?). Choose now a functiop € C°(R?) that
matchesl over the ballB(0; 1). Definewy,,(z) = o(x/m). Itis readily seen that the sequence
(L)1) m is bounded inL>°(R?) and uniformly converges t0 on the compact subsets &f.
Thus, choosing) = v, in (B8), and passing to the limit as goes toco, we get

(29) Vo € C(RY), LrPro(x)e?V @) de = 0.
]Rd

In particular, for anyp € C2(RY), [o. Pro(z)e 2V @ dz =[5, p(x)e 2V @) dz, in such a
way that, by density arguments, the probability measuré () dz is invariant for the process
X"™ (n > 1). Then classical arguments of SDE theory ensure that theeseg of processes
(X™),, converges in law irC([0, 7];R9) to the processX asn goes toco. We deduce that
Joa Pro(x)e™2V @ da = [, o(2)e=2V(®) dz holds forg € C,(R?). The semigroup associated
to X thus extends td?(R?; e=2V(®) dz) for p > 1 and the probability measuee 2V (*) dz is
also invariant for this semigroup.

Finally, for eachy € C,(Q x R?) (i.e. for each fixedv € €, the functionz — (7w, x)
is continuous and bounded by a constant independea) ehdn > 0, we deduce from the
previous remarks and the invariance of the meaguwreder space translations that

(30) Elp(rxnw, X{')] = My [p(raw, )] = My [p(w, z)],

so that the mapping € Cy(Q x R?) — P () = E.[¢(Txrw, X{')] continuously extends to
LP(Q x R% Py for anyp > 1 and (3D) holds forp € LP(2 x RY; Py).

Itd’s formula. We now aim at establishing the Itd formula to the processw, X ) and
to the function(z, y) — uy(w,z,y), whereu, is the solution of the resolvent equatidn](18),
with functionsh(.,y) and f(.,y) satisfying the assumptions of Propositipn] 6.1. This latter
proposition describes the regularity @f with respect to the variablg. Due to the possible
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degeneracies of, the difficulty actually lies in the regularity with respeict the parameter
x € R%. To apply the 1td formula and get round technical difficesti we use viscosity methods
again, namely that we look at the operator LY — n~' A for n € IN*. Obviously, there is no
difficulty in solving the corresponding resolvent equatwith the techniques used in Sectidn 6
(it suffices to replace by a + n~'1d and to choosé = Id)

(31) Ml () — (LY + 0t A)ulY () = k(o y) + £ ).

The strategy then consists in applying the 1td formula i lon-zero viscosity setting and
then in lettingn tend toco. Thanks to the regularizing parametee IN* , the 1td formula holds
in the non-zero viscosity setting (¢f]13, Sect. 5]). Thedwing formula thus holds

du{" (X7, X7 =l — h— £)(XP, XP) dt + [ —n~ 19,V - Dul™ (X7, X7 di
(32) + (VDU (X, X7 dBy + A (Du() (XL XT) dB,
+ b0,u\Y (X, XY dt + [c — n~'0,V] - 9,ul™ (X7, X7) dt
+ @yl o (X7, X1 dBy + n~ 2 (0,ul™) (X7, X71) dB,
+ (1/2)trace([a + n~ ' Td)02,u{™) (X, X[") dt
+ trace([a + n~ ' 1d] Do, u{) (X}, X7") dt.

Having in mind to letr tend toco in (B3), let us now describe the behavior«f asn tends to
oo. We first claim:

Proposition 7.1.
33 li (n) o (n) o -1 D (n) 2 -0
(33)  lim uy (o y) —ua(y)le + [luy”(y) —wals )l + 07 [Duy ()l | =0,
and that there exists a constabf] (independent of, andy € R%) such that
34 (n) (. B — w2 (n) (. R — wy(. 2
( ) |u)\ (7y+ ) u)\ (7y)|2+”u}\ (>y+ ) u)\ (7y)Hl

+ 07! Dul” (- y + h) = Dul” ()3 < DRIRP.

Moreover, the same properties hold for the sequemﬁg,gtgn))n, (agkylu@)n and their cor-
responding limitgd,, w)n, (97, ,,ux)n, for 1 < k, 1 < d.
Proof. Since the proofs of (33) anfl {34) can be adapted from the mfo@fopositior| 6]3, we
just set out the guiding line of (B3).

To clarify the notations, we forget for a while the dependena the parametey. First

multiply (B1) byu&") and integrate with respect to the measuigo as to obtain the estimate:

Aul 3+ \VPul" 3+ 0 DulV < ©
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for some constan€’ only depending onh|3/) and || f||2,. From this estimate, we deduce
that the family(n—lDu&"))n strongly converges t6 in (L?(22))¢ asn — oo and that, up to

extracting a subsequence, the famj'nlg&"))n weakly converges ifil; asn — oo. Multiply once
again [3]L) by a test functiop € C, integrate with respect to the measyrand then pass to the
limit asn — oo to identity the weak limit inH; as being necessarily equaldg. So the whole

family (u&"))n is weakly convergent ifil; (not up to a subsequence). It just remains to prove
that the convergence actually holds in the strong sense awetegrate[(31) andl (18) against a
test functiony € C. Since the right-hand sides ¢f]31) afd](18) coincide, takig:

Ml @)2 + TV(V7ulY, Vo) + 071 (Dul”, Do)y = A(ux, @)z + T¥(Vouy, V7).
Choosep = u&") and pass to the limit as — oo and get
Tim. <A|u§"’|§ + 1Y (v, VoY) + n—1|Du§">|§> = Nual2 + TY(Vuy, Vouy).

As in Propositior] 6]3, this is sufficient to establish thesty convergence c(fu&"))n in H; and,

consequently, the convergerme1|Du(A”)|§ — 0asn — oo. O

We are now in position to conclude. Going through form{ild)(3& are faced with func-
tionals of typef: gn (XM, X7') dr (concerning the martingale terms, it suffices to work onrthei
quadratic variations), whefdy [|g,, — go|] — 0 asn tends tooo and

(35) V(y,h) e R* xRY, |g,(.,y+h)—g,(.y)l2 < Clh|

where the constanf’ depends neither on € IN nor y,h € R%. From Lemmg 7|3 below,
we prove the convergence of the functional towaffig, (X, X,) dr in P-probability and as a
consequence the

Theorem 7.2. Leth, f be two functions satisfying the assumptions of Proposfidn Letu,
be the solution of the resolvent equation:

/\U)\(‘,y) - LZ]U’)\('?Z/) = h(>y) + f(vy)
Then the following & formula holds (we reintroduce the parametgr
eduy (X, X5) =y — h — £)(X;, X{) dt + ¢ - Duy(X;, X7) dt
+ (VoY) (X, X§) dBy + bdyun (X, X§) dt
+ s(ayuA)*o—(Yi, X[)dB; +ec- 8yuA(Y§, X;)dt
+ (6/2)trace(a8§yux)(7§, X§) dt + trace(aDdyuy ) (X,, X{) dt.
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Lemma 7.3. Consider a sequence of functiops € L'(Q x R%Py) (n > 0) such that
My [|g,, — gol] — 0 asn — oo and for any(y, h) € R? xR%, |g,,(.,y +h) —g,.(.,y)|]2 < C|h]
for some constant’ that depends neither amnor y, h € R,

ThenE||g,, (X", X™) — go(X,., X,.)|] — 0 asn — 0.

Proof: First, suppose thaj, is bounded. Let us consider a smooth mollifier R — R and
0 € C(R%) such thatp = 1 over the ballB(0; 1). We define formn, ¢ > 1, p,(-) = mip(m-),
04(-) = o(-/q) andgy"(w, ) = [pa Go(T—ww, z")0q(¢")pm(x — 2’) dz’. Then, from [30),

Ellgn (X7, X7) = go(Xr, X;)|] <My [lg,, — gol] + 2My [|lgg™? — gol]
+ Eflgo" (X7, X71) — g0 (X0, X))

With classical convolution techniques, we can prove thaf can be chosen large enough to
make the tern2My [|g;"? — g,|] small. Then, from the Lipschitz regularity of the coeffidien
(Assumptior[ 2]2), the classical theory of SDEs ensuresithatipy«;« | X' — X¢|?] < n~'D
for some constanb that only depends of/, A and7'. For each fixedn, ¢ > 1 andw € , the
functionz — gy (z, z) is continuous with compact support so tfaf, E..[|g," (X", X)') —
90" (X, X,)|le™? @) dz — 0 asn — oo. Then, the Lebesgue theoremy]"? is bounded
independently fronw ) proves thal[|gy" (X7, X*) — g5 (X, X,)|] converges tO asn goes
to co. Therefore,n can be chosen large enough to make this latter term smalallyifrom
the assumptions of the lemma, even if it means considerimggra, the termMy[|g,, — gol] iS
small too. The proof is then easily completed in the case wjygs bounded.

If g, is not bounded, it suffices to consider for> 0 andR > 0, g2 = max(— R; min(g,,; R)).
It is readily checked that the sequen@g?),, still satisfies all the assumptions of the lemma in
such a way thak|[|gZ(X", X7) — ¢f'(X,, X,)|] — 0 asn — 0, for each fixedR > 0. Then,
from ),E[‘QE(XZL, X;L) - gn(Xﬁﬂ X:L)H < M\/Hgg - gnH and

Jim lim My [lgl — g,|] = Jim My [|g¢f — gol] = 0.

Since we have

El|gn (X7, X7) = g0(X7", X7)| < Ellgn (X7, XT) = ga(X7, X)]]
+Ellgy (X7, X7') = g6 (Xp, X)) + El 95 (Xr, Xr) — g0(X7", X,

the proof is then easily completed in this case too. O

8 Asymptotic Theorems

Classical ergodic theoremin this section, we aim at exploiting the asymptotic projesriof
the processY®, more precisely Assumptidn 2.5, in order to describe thenasytic behavior

17



of functionals of typefot \If(Yi,Xﬁ) dr for a suitable locally stationary random field The
classical ergodic theory leads us to guess that the locabimity assumptiof 215 makes this
functional average with respect to its first variable. Morecisely,

Theorem 8.1. (Ergodic Theorem) et us conside® : QxR? — R such thatVly [|¥|] < +oc.
Denoting¥ (y) = M[¥ (-, y)], the following convergence holds:

(36) E°[ sup | w(Yi,Xf)dr—/ U(XE)dr[*] — 0.
0<s<t Jo 0 e—0

Proof: This result can be proved in the same way[aF [13, Th. 6.1]. Tihedifference consists
in establishing:g € Dom(LY) C H; andLYg = 0 implies thatg is constanf: almost surely.
In the uniformly elliptic setting, it turns out that the deativesD,g reduce td and, as a conse-
quenceg is constant. In the degenerate framework, we need to usemsn[2.5 as follows.
From Assumptiorf 2}4g[|} < Mllg|}, = —(g,LYg)2 = 0. In particular,3°"(g,-) = 0.
Henceg € Dom(SY) andSYg = 0. Thusg is constant (Assumptlo. h2.5). O

Asymptotic theorem for highly oscnlatlng functionalsTheoren{ 8]1 describes the asymp-
totic behavior of functionals of typ% U( X , X&) dr in order to pass to the limit ir[(7). How-
ever, as explained iff J]L3], additional dlfflculties arisdéhe random setting in comparison with
the periodic one. In particular, we must describe the asgtigpbehavior of the functional
fo (X7, X2) dr for a family (¥, ). that need not be convergentin (Q x R?; Py-) but satis-
fies a sort of unlform Poincaré inequality. Unlike][13, Them 6.3], technical difficulties due
to the degeneracy of the diffusion coeffici@nbccur. In particular, because of the lack of Aron-
son type estimates, the tightness of the procésss not obvious. To prove this tightness, all
asymptotic convergences need be establishéd [0, 7']; R?) (note thesup in B8)). This is one
of the main difficulty of Theoreri §.2 below in comparison witte umformly elliptic setting
(see [1B, Theorem 6.3]). The strategy consists in exprgsglr\lf X , XZ)dr as the sum of
two martingales thanks to time reversal arguments, andithesing the Doob inequality. The
Poincaré inequality (37) ensures that the martingalesgssssuitable asymptotic properties.

Theorem 8.2. (Ergodic theorem Il)Let us consider, for each> 0, a function®, € L?(Q x
RY; Py) satisfying the following Poincérinequality: for anyp(w,z) = x(w)o(x), (x,0) €
C x CX(RY),

(37) My [®.¢] < C.(My (o™ (D +edy)el) %,
for some family(C: ).~ satisfyingeC. — 0 ase — 0. Then
(38) E[ sup | [ U.(X,,X5)dr[*] — 0.

0<s<t Jo e—0
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Proof: In what follows, we say thapp € Cpy if p(w,y) = x(w)o(y), where(x, o) € C x
C>(R%). We aim at constructing, as prescribed in Secfipn 5, the umited operators on
L*(Q x R%; Py) that coincide orCy for n € IN* with (here we use the conventiorm! = 0 if
n = o)

(39) S =(1/2)e?V Z (D; + €0y,) [e_zv(a +n71d);;(D; + dy, )],

i,j=1,....d
(40) L™ p =(1/2)e?" Z (D; +€0y,)[e7* (a+ H +n~1d)y;(D; + €9y, )]
i,j=1,....d

Fore > 0,n € IN* andp, ¥ € Cry, we define the corresponding bilinear forms

(41) (P, 1), . = (1/2)My [(Dg + €0,0)"(a +n~'1d)(Dyp + edy3p)],
(42)  B..(p, %) = (1/2)My [(Dg + 0,0)* (a + H + n~'1d)(Dyp + 0,3)].

Clearly, (-, -),, . is positive symmetric (denote ly- |, the corresponding seminorm). Note
that, for each fixed > 0, the seminormg|| - ||, -)new- are all equivalent. Moreover, for

neWN* ol . < Buc(p, ) and B, (@, 1) < 2M3(|pll c|[9)]|n,c for anyp, b € Cr (see
Assumptior{ 2]4). From Sectigh 5, we can define

(HTL,&‘» Sn,e? Dom(sn’€)7 (G§7n’€))\>0) = (Q X Rda ]PV7 <'7 '>n,€ 5 <'7 >n 5)7

(Hy, ., L™, Dom (L), (GE")350) = 2(2 x R Py, (), Bue).

>77/78 ’ )

[1]

and we denote byL™¢)* the adjoint operator of.™¢ in L2(Q2 x R%; Py,).
Let us now consider a familj® . ). of functions inL?(Q2 x R?; Py/) satisfying [3f) for some
family (C:)c>o such thatC. — 0 ase — 0. Fix n € IN*. Definep,, . = G°™4(®.), which

2

satisfiess>My [, Y] + (P ), . = My[®.9] for anyep € H, .. Choosingy = ¢, .,
using [3f) and the standard estimate< /2 + b /2 leads to

EMy [l *] + 1 enelne = Mv[¥ep, ] < Cov2llnclloe < V2Ce|lpncline
< O+ llpnelline/2

in such a way that
(43) My ([ ] + l@neline/2 < C2.

Once again, to apply the Itd formula, we use vanishing \dgganethods in order to get
round the lack of regularity ofp,, . because of the degeneracy @f In the non-degenerate
framework ¢ > 1), from [I3, Proof of Lemma 6.3], standard convolution teckrprovide us
with a Hl,, .-sequencé ;. )men of smooth functions, namely that for each fixede (2 the
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functionz — @I (7, /.w, x) is aC>(R?)-function, such thably |, — ¢, | +|S™“ ). —
S5y, ] + 1l — e el — 0 asm goes tooo.

We are now going to use a time reversal argument. Let us camsid process (introduced
in Section[})

t t
X[ = o+ / (e tote—n"10, V) (w, X%, X€) dr+ / o(w, X5, X" dB,+(n/2)"/?B,,
0 0

whereX " = X;° /. As explained in Sectiof] 7, its generator coincidesZBiR?) with
eZV(:c)

2

LTV = Z ascz‘ (6_2V(m) (a + H + n_lld)ij(w7 x/E’ ‘T)axj ' )
i,J

and admits—2"(®) dz as invariant measure. Furthermore, for a fifed> 0, the generator of
the time reversed process— X,°, with initial law e=2"(®) dz coincides with the adjoint of

L™ in L2(R% e=2V(®) dz). For eachy € C?(RY), it exactly matches

eZV(:c)

(ﬁn’e)*QD = 5 Z 8% (6—2V(r) (a — H+ ’I’L_lld)ij (w’ l’/&, $)8xj 90)
.3

As a consequence, observe that, forany s <t < T,
t
e (X5 X0) =on (X7, X309 + / L7 (g (-2, NI, X ) dre
S
+ (m;nvnva _ ﬂgn”l’e),

where M™n< is a martingale with respect to the forward filtratigh,"“)o<;< andF,"< is the
o-algebra orR? generated by X;°; 0 < r < t}. In the same way,

t
P (X3 X7%) =l (X, X)) + / (L7 (e /e M X dr
(M = M),

whereM™ "< is a martingale with respect to the backward filtratigh**)o<;<7 andge is the
o-algebra orR? generated by X;°;t < r < T'}. Add these two expressions:

t — — — “— —
—2e2 [ S (0, X7 dr = (M = M) + (M — M),

We further mention that the quadratic variations of bothtingales exactly match

t
e / (D + edy) el al(D + €dy) i) (X5, X7) dr,
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in such a way that the Doob inequality yields

S
B[ s | [ Sm G (0, X0) dr?] < 16Tl
>8>

Letting m go tooo, reminding thats2<pn7£ — 8™, . = ¥, and using[(43) leads to

S
E[ sup | [ Wo(X)°, X1°)dr|?] < 32T, .||2.. + 2T My |, . |*] < 68T=*C2.
0<s<t JO
We then complete the proof in letting go to oo and in using the fact thaX™*¢ converges in
C([0,T); R?) towardsX ¢ asn goes toc. O

9 Proof of Theorem[371 and Propositio3]2

Proof of Theorem [3:1. Section[I0 below is devoted to proving the tightness of theilfaof
processe$X¢). in C([0,T];RY). It remains to prove that there is a unique possible weak limi
for all converging subsequences.

From now on, the correctory (A > 0 and1 < i < d) stands for the solution of (0).
Applying the Ito formula (Theorerh 7.2) to the correctorsdeso

AdX§ = — edug(Xy, X7) + e(Qyue) o (X;, X§) dB;y
+ [eug2 + ec - Oyuz + (5/2)trace(a8§yu€2)](7§, X7)dt
+ [b0yucz + ¢ - (I + Dug2) + trace(aDdyu)| (X, X§) dt
+ [0 + Du20](X;, X{) dB;
=dO," +dO;* + dO}* + dO,*

Concerning the first term, we ha®& [|0,°?] < (1 + T)e2My [|u|? + M?|9,u.2|?] for
0 <t < T. This latter quantity converges tase goes to0 from Propositior{ 6]3. The same
job can be carried out fa®?° and the same conclusion holds.

The main difficulty actually lies in the terr®3<, especially in the part corresponding to
boyu.2. Concerning the remaining patt- (I + Du.2) + trace(aD0,u.2), it is readily seen
(see Propositiof §.3) that it convergedif|Q2 x R; Py/) and thus Theorefn §.1 can be applied.
As a consequence, we have

t t
E°[ sup ‘/ [c-(I+Du€2)+trace(aD8yu€2)](Yi,X;f)dr—/ @(Xﬁ)dr‘z] — 0ase — 0,
0 0

0<t<T

where®(y) = limy_oM[c - (I + Duy) + trace(aDdyu,)(-,y)]. It remains to treat the term
(bdyu.2).. Note that theL.2-norm of bd,u.> need not be convergent. That is why we have in
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mind to use Theorein §.2. Up to introducing new correctorsylleprove thatbd,u.» can be

divided into two parts, satisfying respectively Theorgni &nd[8. To understand how this
decomposition occurs, let us consider a test fungjgon Cr;. Then two successive integrations
by parts yield, forl <1, j < d, (we use the convention of summation over repeated indices)

My [bjayj’u;‘P} = (1/2)My [Dp(a‘FH)pjayjué%P}
= —(1/2My [(a + H)y;(Dpdy,uzo@ + Oy, uis Dpp)

= —(1/2)My [(a + H)p; (Dy ayJua2‘P+ayJ ulz(Dp + 29y, )p)]
+(e/2)My [(a+ H )y, ulay, 0]
= —(1/2)My|[(a + H),;D ayjua“P] (1/2)My [0y, ;2 (D + €0y, )]

—(e/2)My [ayp(a + H)p;0y, ua2‘»" + (a+ H)pjayjyp 52‘»"]

+eMy [(a + H)p;0,, uls 0, V].
So, for1 < i < d, define the correcting part Cofw,y) = (¢/2)9y,(a + H)m@y]u62 +
(/2)(a + H),;02 e Wez — €(a + H)p;iOy u ',8,,V, the L2-converging part Corifw, y) =
—(1/2)(a+H),; D,d,,u', andL*-diverging part Di¥ (w, y) = [b;d,,u’,+Corri—ConV](w, y).
From the previous calculation, Disatisfies the "Poincaré inequality] (37), namely that for
any functiony in Cr;, My [®.¢]| < (My[|0, u€2| ])1/2 (My[|(D + €0 )cp|2])1/2 Moreover,
Proposition[6]3 ensures thatMy [|0,uL.| ]) — ase goes to0. Consequently,[(38) holds
for Div’. Thanks to Propositiop 8.3, the famlqy:orr“) converges in.?(Q x R%; Py) towards
0. As a consequencéi:f[(fO Cort.(X, Xa) dr) | tends to0 ase goes to0. Then, Theorem

B3 ensures tha® [ supg<,<7 | f; Coni (X", Xg) dr — [ T(XE)dr|?] — 0 ase — 0, where
T(y) = limy—o —(1/2)M[(a + H),; D, 8y]uA( y)]. To sum up, this proves that

t t
(44) E°[ sup | [ b-9, ul (X5, XE) dr — / T(X%) dr|2] — 0
0<t<T Jo 0

ase tends ta0.

Concerning the martingale pa#t**, it suffices to apply Theorefn 8.1 to the quadratic vari-
ations.

Hence each possible limit poidt in C[0,];R?) of the processX® must solve the mar-
tingale problemX; = = + fot B(X,)dr + fo Al (X,.) dB,, where the entries aB are given
by

Bj = lim M[ — (1/2)(a + H)y; Dpdy;uj + ¢;(3ij + Djul) + ap;D;0y,u3]
= lim M[(1/2)(a + H)y; Dp0,,u) + ¢;(3i; + Djuy)]

62V

= 0y, (7" lim M[(a + H)y;(0;; + Dyu))])
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Thanks to Propositiofp 3.2, it is readily seen that the cdeffis B andA'? are two times
continuously differentiable with bounded derivatives opotder two. In particular, they are
Lipschitzian and there exists a unique solution to the epoading martingale problem. O

Proof of Proposition [3.2. The strategy consists in introducing the homogenized sldfu co-
efficient associated to the operat§rand in comparing it withA(y). So we define the x d
nonnegative symmetric matrif as the unique symmetric matrix satisfying (this is the otads
variational formula for the homogenized coefficient asated toS, see [IP] for further details)

(45) Vo e RY,  (z, Az) = inf M[|&*(Dep + )]
pE

Due to Assumptiofi 2}4, we have for each functipre C,
MYz, Ax) < M7'M[|57* (D + 2)*] < M[|o*(-,y)(De + z)|*].

SinceC is dense irH;, we can choose = wu,(+,y) - « and then pass to the limit astends to
0. We obtainM ~!(z, Az) < (z, A(y)z).

Now we turn to the auxiliary problems (subsectifjn 6). Demptby L the closure of
{6%¢, ¢ € L*(;RY)}, we can extend™ to the wholel. as follows

(46) V¢,0 € L*(Q,RY), TY(6%¢,6%0) = (1/2)([a + H](-,y)¢,0),.

The underlying quadratic form is still denoted @/ (-). Furthermore, from Assumptidn .4,
for some positive constaidt only depending o/, we have

(47) TY(6%¢,6%0) < CTY(6*¢) YTV (676)'/2.

Equation [24) then reads, for any functigne C,
(48) B
vz € RY, TY(E(,y)z, 6" Dy) = —(1/2)([a + H](,y)z, Dy), = —TY(6*z,6" Dep).

From (10h), [(46) and (#8), we have for any functipre C
(2, Aly)x) = 2 lim TV (5" + V7ur(,y)z) = 2TY(6x + £(,y)a)

= 2TY(6*z + £(-,y)x, 0"z + 6" D)

<20TY (6" x + &(-,y)x) >TY(6*x + 6" Dyp)'/2.
Gathering this with the inequalitf’¥ (6*z + 6" Dy) < MM([|e*z + 6*Dy|?] and (4}), we
deduce(z, A(y)z) < 2C2M (x, Az).

It just remains to prove that the drift ter is orthogonal toK = Ker A(y). Due to

(0¢) and the fact thakl = Ker A(y) does not depend op € RY, it suffices to prove that

Ker H(y) C KerA(y) = K. But this is an easy consequence [of [10&),](10b) and Assompti
R.4, especiallyH (w, y)| < M?a(w,y). O
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10 Tightness

We now turn to the tightness of the process, ie we want to prove that the familyX ©). is tight
in C([0, 7], R?) equipped with the uniform topology. That step of our resaktply differs from
the uniform elliptic cas€]]3]. Indeed, uniform elliptigiof the diffusion matrix provides strong
transition density estimates of the procéss the so-called Aronson estimates, from which the
tightness ofX© is then easily derived. Of course, in the degenerate framewightness ofX
cannot be tackled this way. The method presented belowpsréausfrom [1§] and is based on
the idea that the process® is not too far from being reversible at a microscopic scalee T
contributions of the macroscopic variations make a drifiesy, unlike in [15].

Let us now go into details. As in Sectiph 6, we can solve thiefohg equation fori =
1,...,dand\ >0

(49) 2w () — §¥wi () = bil., y)
and get the same properties as in Proposifion 6.3, namely

Proposition 10.1. For each fixedy € R and1 < i < d, the family(Vawg(.,y))A converges

to a limit Ei(.,y) € Lf(Q)d as A goes to0. The same property holds for the derivatives,
that is, the familieg V79, w' ), (V"@jjykwg)A (1 < 4,5,k < d) respectively converge to

0y, y), 02, 1 Ci( ) in L2(Q). Furthermore, the functions’, as well as its derivatives
d,,wh, 95, w) satisfy (6.3) and estimategpd) and (£3), for some positive constariifo ]
independent ok > 0 andy € R¢.

As in the proof of Theorerh §.2, we want to use a time revergalraent. Once again, we
are faced with the lack of smoothnessof in order to apply the Itd formula. To overcome
this difficulty, we proceed as in Sectifjn 7. Since the argumare quite similar, we just outline
the main ideas without further details. Let us consideryfor 1, A > 0 and1 < i < d, the
solutionw’™ of the following equation

(50) A0S (L y) — YW (Ly) — T AW (L y) = bi(y)

Introducing a sequence of regularizing sequence of matifie,,)mewy € CF°(RY x RY)
(smooth functions with compact support), we define

wi @ y) = | wi"(mw,y =y )om(asy) da’ dy,
R

which is a smooth function. Following the proof of Theorgrd,&inder the invariant measure
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e=2V(®) dz of the process{™¢, we can write

: — ) _ t ) .
(51) wz, (X0, X)) =g, (X7, X0) + / L™ (Wl (e, NI X dr
S
+(ME™™ - M,
52 L Y”’e XE) = i,n Y”’e Xnyf‘: ! LEV* i,n Yﬂ,e Xe) d
(52) wly, (X0°X09) =wli! (X5, X0%) + [ (L9 (wls, (/e DI, X dr
S

2.m
— —
+ (M M),
where M&™™ and M*™™ are two martingales respectively with respect to the fodwaira-

tion (Fs")o<s<t = 0 {X;"%;0 < r < s} and with respect to the backward filtratie®; ) p<s<7 =
o {X,"%;s < r < T}. The quadratic variations of both martingales match

¢ 2 / (Dw'y'  +edyw’y ) (a+n'Id)(Dw') +edyw?y (X, X dr.
0 b b b b

Adding up (51) and[(2), passing to the limitias— oo (as explained in[13, Lemma 5.3]) and
n — oo (as explained in Sectidh 7) and usifg](49) leads to

t t
(53) 5_1/ bi(X,, XE) dr = / [ew!s 4 (1/2)trace(aDdyw!s)|(X,, X5) dr

t 2v
+/ %[divy(e_zva[Dwég +€8yw22])}(7i,Xﬁ)dr

+(1/2) / Div(a) - Oywis(X5, X2) dr
S
+e(M — M2) + e(M; — M2)
= By + Bo + 107 + 147,
wheresMe andM® are two martingales, respectively with respect to the fodwdtration

(FSo<s<r = 0 {X5;0 <r < s} and with respect to the backward filtrati¢g: )o<s<r =
o {XZ;s <r < T}, with quadratic variations

(54) /0 (Dw's + edyw's) a(Dw's + cdyw’s) (X0, X2) dr.
Theoren8]1 establishes the following convergence

t
lim E°[ sup ‘Eol’f—kEg’f—/ G(Xﬁ)dr“ =0,
e—0 0<t<T ’ ’ 0
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where )
G(y) = M[(1/2)trace(a0,&;)(.,y) + (¥ /2)div, (e 7V 0&;) (-, )]

From Propositiof 10} 1 anfl {22y, is bounded so that the tightness of the process [ G(X?) dr
in C([0,T],R) results from the Kolmogorov criterion. The tightnessife + E2< follows.

Let us investigate now the terfil; = (1/2) [ Div(a)-d,w’,(X,, X¢) dr. Note that it can
not be treated with Theorefn B.1 because ERenorm of Div(a)d,w.: need not be bounded.
Inspired by the proof of Theorefn B.1 in Sect{dn 9, we define

¥' = Div(a)-9yw’s+trace(aDoyw’,)+edivy(a)-Oyw’, +z—:trace(a<9§y'wig )—22a,,;0y,ul20,, V.

By making two successive integrations by parts as in Se@iowe establish for anyp €
C x C§°(RY):

. . Prop.
My [PL, ] = —Mv[aﬁyw(’g (D + an‘P)] < C:My[lo™(Dy + an‘P)’2]1/27

where the family(eC.). converges t® ase goes to0. Theoren{8]2 then ensures that

_ L 2
EE[ sup (/ \Ife(Xi,Xf)dr> } — 0
0<s<t s

ase goes ta). Thanks to Theorerh §.1 and Propositfon 110.1, we have

E‘E[ sup |/ trace(aDaywaz)(Yi,Xf)dr—/ @(X,‘f)dr‘z] — 0
0

0<s<t 0

ase goes to0, where®(y) = lim._.o M|trace(aDd,w.2)(-,y)]. The Kolmogorov criterion
and Propositioff 10.1 ensure the tightnesg’ifi0, t]; R) of the processf, ®(X) dr. More-
over, from Propositiof 10.1 anfi {30), the procéss$ediv, (a) - d,w’, + ctrace(ad],wi,) —
2ea,,;0y,u,0,,V](X,, XE) dr converges in law ir'([0, 7); R) to 0. This proves the tightness
of 1< in C ([0, t]; RY).

It just remains to treat the martingale teffi. According to Theorem 4.13 iff][6], it
suffices to establish the tightness of the brackets of thesemartingales (sed_(b4)). Their
tightness results from Theorgm]8.1, Proposifion]10.1 aaddimogorov criterion again. The
tightness ofX ¢ is now clear. O
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