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Abstract : This paper deals with homogenization of second order divergence form
parabolic operators with locally stationary coefficients.Roughly speaking, locally
stationary coefficients have two evolution scales: both an almost constant micro-
scopic one and a smoothly varying macroscopic one. The homogenization proce-
dure aims to give a macroscopic approximation that takes into account the micro-
scopic heterogeneities. This paper follows [13] and improves this latter work by
considering possibly degenerate diffusion matrices.

Résuḿe : Nous étudions l’homogénéisation d’opérateurs paraboliques du second
ordre sous forme divergence à coefficients localement stationnaires. Ces coeffi-
cients présentent deux échelles d’évolution: une évolution microscopique presque
constante et une évolution macroscopique régulière. Lathéorie de l’homogénéisation
consiste à donner une approximation macroscopique de l’opérateur initial qui tient
compte des hétérogénéités microscopiques. Cet article fait suite à [13] et généralise
ce dernier en considérant des matrices de diffusion pouvant dégénérer.

AMS classification: 60F17; (35B27; 35K65; 28D05).

1 Introduction

This paper follows [13] and deals with homogenization of second order PDEs with locally sta-
tionary coefficients by means of probabilistic tools. More precisely, we aim at describing the
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asymptotic behavior, asε goes to0, of the following Stochastic Differential Equation (SDE)

(1) Xε
t = x+

1

ε

∫ t

0
b
(
ω,
Xε

r

ε
,Xε

r

)
dr +

∫ t

0
c
(
ω,
Xε

r

ε
,Xε

r

)
dr +

∫ t

0
σ
(
ω,
Xε

r

ε
,Xε

r

)
dBr,

whereB is a standard d-dimensional Brownian motion and the parameterω evolves in a random
mediumΩ, that is a probability space with suitable stationarity andergodicity properties. For
each fixed value of the parametery ∈ R

d, the coefficientsb(ω, ·, y), c(ω, ·, y) andσ(ω, ·, y) are
stationary random fields (the parameterω stands for this randomness). That is why they are said
to be locally stationary. The generatorLε of the processXε can be written in divergence form
as

(2) Lε =
1

2
e2V (x)

d∑

i,j=1

∂

∂xi

(
e−2V (x)[a+H](ω,

x

ε
, x)

∂

∂xj

)

for an antisymmetric matrixH, a real-valued functionV anda = σσ∗.
Let us first briefly outline the chronological approach of this issue. The convergence of the

previous SDE (or the connected PDE) has been first established in the locally periodic case, that
is when the coefficients are deterministic and periodic withrespect to the variablex/ε [1, 2].
Due to the lack of compactness of a random medium, the random case raises more difficulties.
As far as we know, the first work in this context is due to Olla and Siri in [11]. The authors
considered a nearest neighbors random walk onZ evolving in a locally stationary environment.
They established an invariance principle for this process under diffusive scaling of space and
time. The main tool of the proof is the explicit formula of thecorrectors, which only holds in
dimension one under a strong diffusivity condition.

In [13], an alternative approach is suggested, which is not restricted to the dimension one.
As in the locally periodic setting, the method is based on a local analysis of the microscopic
behavior (corresponding to the variablex/ε) of the processXε to construct the so-called cor-
rectors and to identify the limiting process. However, unlike the locally periodic case, these
correctors turn out to have bad asymptotic properties at a macroscopic scale, in the sense that
the classical ergodic theory cannot describe their asymptotic behavior. Overcoming this issue is
the main contribution of [13]. The main assumption is the uniform ellipticity of the matrixa,
namely that there exits a constantM > 0 such that for allx, y,X ∈ R

d,

1

M
|X|2 ≤ (a(ω, x, y)X,X) ≤M |X|2.

This condition is very convenient for two reasons. From the dynamical angle, it ensures the
local ergodicity of the processXε. From the technical angle, it provides strong estimates of
the transition densities of the processXε as well as regularity properties of its generator. The
control of the processXε, in particular its invariant measure and its tightness, is easily derived
from this assumption.
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In this present paper, we intend to improve this latter work by removing the uniform ellip-
ticity assumption. It is replaced by microscopic ergodicity conditions (Assumption 2.5), which
seem not too far from being minimal to apply classical ergodic theory and then pass to the limit
in (1). The class of considered coefficients then includes possibly degenerate matricesa. In
other words, we can treat diffusion coefficientsa that may reduce to0 along some directions.
Under suitable assumptions, we will prove that the processXε converges to the solution̄X of a
SDE with deterministic coefficients, whose generator can berewritten in divergence form as

(3) L̄ = (1/2)e2V (x)
d∑

i,j=1

∂

∂xi

(
e−2V (x)[Ā+ H̄](x)

∂

∂xj

)
,

where the so-called homogenized coefficientsĀ and H̄ are respectively symmetric positive
and antisymmetric. It is worth emphasizing thatA may degenerate, even under strong non-
degeneracy assumptions of the initial diffusion coefficient a. We will prove that the limiting
diffusion is trapped in a fixed subspace ofR

d and possesses strong diffusivity properties along
this subspace.

We should finally point out that there are only a few papers dealing with possibly degenerate
diffusion coefficients in the whole literature about probabilistic homogenization of SDEs. In the
periodic setting, recent advances have been made by Hairer and Pardoux in [5]. Their approach
deeply differs from ours. They allow the diffusion to be strongly degenerate in some area of the
torus, and even to reduce to0 over an open domain, provided that the diffusion quickly reaches
a strongly regularizing area (typically, it satisfies a strong Hörmander type condition). Our
approach does not allow locally such strong degeneracies but does not require any regularizing
area. As a consequence, we can construct examples that are everywhere degenerate. Moreover,
the technics used in [5] rely on the compactness of the torus and cannot be adapted to the random
setting.

The structure of the paper is the following. In section 2, we introduce all the notations and
assumptions. Our results are stated in Section 4 and an example is given in Section 5. The
construction of the corrector is carried out in Section 6. Section 7 deals with the regularity
properties of the processXε such as its invariant measure and the Itô formula. Section 8is
devoted to establishing the asymptotic properties of the processXε. Section 9 explains the
proofs of the homogenization procedure. The tightness of the processXε is treated separately
in Section 10.

2 Setup and Assumptions

Random medium.From now on,d ≥ 1 is a fixed integer. Following [7], we introduce the
following
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Definition 2.1. Let (Ω,G, µ) be a probability space and
{
τx;x ∈ R

d
}

a group of measure
preserving transformations acting ergodically onΩ:

1) ∀A ∈ G,∀x ∈ R
d, µ(τxA) = µ(A),

2) If for anyx ∈ R
d τxA = A, thenµ(A) = 0 or 1,

3) For any measurable functiong on(Ω,G, µ), the function(x, ω) 7→ g(τxω) is measurable
on (Rd × Ω,B(Rd)⊗ G).

The expectation with respect to the random medium is denotedby M. Denote byL2(Ω) the
space of square integrable functions, by|.|2 the corresponding norm and by(., .)2 the associated
inner product. The operators defined onL2(Ω) by Txf(ω) = f(τxω) form a strongly contin-
uous group of unitary maps inL2(Ω). For every functionf ∈ L2(Ω), let f(ω, x) = f(τxω).
Each functionf in L2(Ω) defines in this way a stationary ergodic random field onR

d. In
what follows we will use the bold type to denote an elementf ∈ L2(Ω) and the normal type
f(ω, x) (or evenf(x)) to distinguish from the associated stationary field. The group possesses
d generators (throughout this paper,ei stands for the i-th vector of the canonical basis ofR

d)

(4) Dig = lim
h→0

Thei
g − g
h

if exists,

which are closed and densely defined. Setting

(5) C = Span
{
g ⋆ ϕ;g ∈ L∞(Ω), ϕ ∈ C∞

c (Rd)
}
, with g ⋆ ϕ(ω) =

∫

Rd

g(τxω)ϕ(x) dx,

the spaceC is dense inL2(Ω) and C ⊂ Dom(Di) for all 1 ≤ i ≤ d, with Di(g ⋆ ϕ) =
−g⋆∂ϕ/∂xi. If g ∈ Dom(Di), we also haveDi(g⋆ϕ) = Dig⋆ϕ. Forf ∈ ⋂d

i=1 Dom(Di), we
define the divergence operatorDiv by Divf =

∑d
i=1Dif . We distinguish this latter operator

from the usual divergence operator onR
d denoted by the small type div.

Locally stationary random fields.Following the notations introduced just above, for a mea-
surable functionf : Ω × R

d → R
n, (n ≥ 1), we can consider the associated locally stationary

random field(x, y) 7→ f(τxω, y) = f(ω, x, y) (or evenf(x, y)).

Structure of the coefficients. The coefficientsσ : Ω× R
d → R

d×d,H : Ω× R
d → R

d×d,
σ̃ : Ω → R

d×d andV : R
d → R denote measurable functions with respect to the underlying

productσ-fields. As explained above,σ andH define locally stationary random fields andσ̃
a stationary random field.H is antisymmetric. We define two new matrix-valued functionsby
a = σσ∗ andã = σ̃σ̃∗. Furthermore, for some positive constantΛ, the coefficientsσ,H , σ̃
andV satisfy

Assumption 2.2. (Regularity). For each fixedω ∈ Ω, the coefficientsσ(ω, ., .), H(ω, ., .)
and σ̃(ω, .) are two times continuously differentiable with respect to each variable and are, as
well as their derivatives up to order two,Λ-Lipschitzian and bounded byΛ. V is three times
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continuously differentiable and is, as well as its derivatives up to order three, bounded byΛ and
Λ-Lipschitzian.

Let us now describe the degeneracies of the matrixa. Roughly speaking, the degeneracies
of a are assumed to be controlled by the reference matrixã. To be more explicit, let us first
introduce the

Definition 2.3. Given ad×dmatrix-valued functiong : R
d → R

d×d, ad×d symmetric matrix
A and a realC > 0, g is said to be(C,A)-controlled if∀y, y′ ∈ R

d

|g(y)| ≤ CA, and |g(y)− g(y′)| ≤ CA|y − y′|,

where|M | = (MM∗)1/2 stands for the absolute value of the matrixM (given 2 symmetric
matricesA,B, the relationA ≤ B means that the matrixB −A is symmetric positive).

We now precise the control ofa by ã:

Assumption 2.4. (Control).We assume that

M−1ã(ω) ≤ a(ω, y) ≤M ã(ω)

for some strictly positive constantM and for every(ω, y) ∈ Ω × R
d. Moreover, for anyi, j ∈

{1, . . . , d} and(ω, y) ∈ Ω × R
d, the matrices∂yi

a(ω, y), ∂2
yiyj
a(ω, y),H(ω, y), ∂yi

H(ω, y),

∂2
yiyj
H(ω, y) are (M, ã(ω))-controlled. We further assume that

|σ(ω, y + h)− σ(ω, y))|2 ≤M ã(ω)|h|2

for anyy, h ∈ R
d and that

∫
Rd e

−2V (y) dy = 1.

To ensure the local ergodicity of the processXε, we make the following assumption:

Assumption 2.5(Ergodicity). Let us consider the Friedrich extension (see [4, p. 53] or Section
5) of the symmetric operator̃S defined onC ⊂ L2(Ω) by S̃ = (1/2)

∑d
i,j=1 Di(ãi,jDj). This

extension, still denoted̃S, is self-adjoint. We then assume that the semi-group generated byS̃
is ergodic, that is its invariant functions areµ almost surely constant (see e.g. Rhodes [12]).

Remark. Assumptions 2.2 may appear restrictive and can surely be relaxed (see [3] for results in this
direction in the context of quasilinear PDEs). In particular, the statement of the homogenization property
only involves the derivatives of order one with respect toy ∈ R

d (see Theorem 3.1). However, it avoids
dealing with heavy regularizing procedures that are not thepurpose of this work.

Diffusion in a locally ergodic environment.For j = 1, . . . , d, we define the coefficients
(6)

bj(ω, y) =
1

2

d∑

i=1

Di(a+H)ij(ω, y), cj(ω, y) =
e2V (y)

2

d∑

i=1

∂yi

(
e−2V [a+H ]ij

)
(ω, y).
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From Assumption 2.2, the functionsbj(ω, ., .) andcj(ω, ., .) are Lipschitzian so that, for a start-
ing pointx ∈ R

d andε > 0, we can consider the strong solutionXε of the following Stochastic
Differential Equation (SDE) with locally stationary coefficients:

(7) Xε
t = x+

1

ε

∫ t

0
b
(
X

ε
r,X

ε
r

)
dr +

∫ t

0
c
(
X

ε
r,X

ε
r

)
dr +

∫ t

0
σ

(
X

ε
r,X

ε
r

)
dBr,

where we have setX
ε
t ≡ Xε

t /ε andB is a standard d-dimensional Brownian motion (the random
medium and the Brownian motion are independent). We point out that the generator of this
diffusion could be formally written in divergence form as

(8) Lε =
1

2
e2V (x)

d∑

i,j=1

∂

∂xi

(
e−2V (x)[a+H](ω, x/ε, x)

∂

∂xj

)
.

Notations. For the sake of simplicity, we indicate the starting pointx of Xε by writing, when neces-
sary,Pε

x (andE
ε
x for the corresponding expectation), this avoids heavy notations asXε,x. We can then

consider the probability measurēPε ≡M
∫

Rd P
ε
x[.]e−2V (x) dx and its expectation̄Eε.

3 Main Results

Let us now state the main result of this paper. Under the previous assumptions, we can prove

Theorem 3.1. Homogenization.The lawP̄
ε of the processXε weakly converges inC([0, T ]; Rd)

towards the law of the processX that solves the following SDE with deterministic coefficients
(they do not depend on the mediumΩ):

(9) Xt = x+

∫ t

0
B(Xr) dr +

∫ t

0
A

1/2
(Xr) dBr.

The coefficientsA andB are of classC2 and are defined, fory ∈ R
d, by

A(y) = lim
λ→0

M[(I +Duλ)∗a(I +Duλ)(., y)],(10a)

H(y) = lim
λ→0

M[(I +Duλ)∗H(I +Duλ)(., y)],(10b)

B(y) = (1/2)e2V (y)∂y(e
−2V [A+H])(y).(10c)

Formally speaking, for eachy ∈ R
d and λ > 0, the entries

(
ui

λ(., y)
)
1≤i≤d

of the function

uλ(., y) : Ω → R
d solve the following so-called auxiliary problems, which are stated on the

random medium

λui
λ(., y)− 1

2

∑

j,k

Dj

[
(ajk +Hjk)Dku

i
λ(., y)

]
= bi(., y).
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Remark. A rigorous description ofuλ(., y) is given in Section 6. In particular, in this degenerate
framework, the ”gradients”Duλ do not exist but along the directioñσ, that is the only expression
σ̃∗Duλ can be given a rigorous sense. Because of the control ofa andH by ã (Assumption 2.4), it then
makes sense to consider formulae(10a)and(10b)(see Section 6 for further details).

Since the diffusion coefficienta is allowed to degenerate, the reader may wonder whether
the homogenized diffusion coefficient may also degenerate.The following proposition details
the structure of the limiting diffusion coefficient̄A:

Proposition 3.2. Geometry of the homogenized coefficients.The kernelK = Ker(Ā(y)) of
Ā(y) does not depend on the pointy ∈ R

d where it is computed. For eachy ∈ R
d,B(y) ∈ K⊥

(K⊥ is the orthogonal complement toK) and there exists a constantα3.2 > 0, such that

∀y ∈ R
d, ∀x ∈ K⊥, α−1

3.2|x|2〈x, Ā(y)x〉 ≤ α3.2|x|2.

In other words, for each starting pointx ∈ R
d, the limiting processX (see(9)) can be seen as

the solution of a SDE defined onx+K⊥ with a uniformly elliptic diffusion matrix̄A.

4 Example

Let us consider a simple example in the two dimensional2π-periodic case. The 2-dimensional
torusT2 is seen as the random medium equipped with the induced Lebesgue measure, still
denoted byµ to stick with the notations of the paper . We aim at constructing a degenerate
homogenized coefficient. For this purpose, let us first define

∀x ∈ R
2, σ̃(x) =

(
1 1/c
c 1

)
,

wherec 6∈ πIQ is a constant, and̃a = σ̃σ̃∗. Choose now any smooth functionU : R
2 × R

2 →
R

2×2, with bounded derivatives up to order2, 2π-periodic with respect to its first argument
x ∈ R

2 and satisfying

∀(x, y) ∈ R
2 × R

2, M−1Id ≤ UU∗(x, y) ≤M Id.

Define∀(x, y) ∈ R
2 × R

2, V (y) = e−|y|2/π, σ(x, y) = σ̃U(x, y) andH = 0. Let us check
that these coefficients satisfy all our assumptions. From the smoothness of the coefficients, it is
plain to see that Assumptions 2.4 and 2.2 are fulfilled. Assumption 2.5 results from the Weyl
equipartition theorem (c 6∈ πIQ). Theorem 3.1 thus holds.

Let us now prove that̄A is degenerate and does not trivially reduce to0. Let us denote bỹA
the homogenized coefficient associated toã. From the proof of Proposition 3.2, for anyy ∈ R

2

andX ∈ R
2, we have

C−1
〈
X, ÃX

〉
≤

〈
X, Ā(y)X

〉
≤ C

〈
X, ÃX

〉
= 0.
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So we just have to computẽA. Sinceσ̃ is constant, it is straightforward to check thatÃ actually
matches̃σσ̃∗ with the help of (45). Indeed, for a given smooth functionϕ defined onT2 and
x ∈ R

2, the right-hand side of (45) expands as

M[|σ̃(Dϕ+ x)|2] =M[|σ̃∗Dϕ|2] + 2 〈σ̃∗x, σ̃∗
M[Dϕ]〉+ 〈σ̃∗x, σ̃∗x〉

=M[|σ̃∗Dϕ|2] + 〈σ̃∗x, σ̃∗x〉 .

The infimum is then clearly reached forϕ = 0.
Finally, we let the reader check that̃A = σ̃σ̃∗ does not reduce to0 and that the vector

XK = [1 − c]∗ satisfiesÃXK = 0.
In a general way, because of the various geometries of randommedia, it is not clear whether

Ā is degenerate or not. The reader may find in [3] examples (in a slightly different framework)
where the diffusion matrix reduces to0 though the diffusion coefficientσ is elliptic over a set
of full Lebesgue measure, and conversely, an example whereσ degenerates and̄A is uniformly
elliptic.

5 Construction of unbounded operators

Throughout this paper, we will need to construct suitable extensions of unbounded operators
defined on a dense subspace of a givenL2-space. This construction is always the same and
follows [4, Ch. 3, Sect 3.] or [9, Ch. 1, Sect 2.], to which the reader is referred for further details
than those given below. That is the reason why we explain it ina generic way. We also point out
that the Friedrich extension of̃S (see Assumption 2.5) corresponds to this construction.

Consider a probability spaceΩ equipped with a probability measureP, a dense subspace
D of L2(Ω; P), a positive symmetric bilinear form〈·, ·〉 defined onD × D (‖ · ‖ denotes the
corresponding semi-norm) and a bilinear formB onD ×D that satisfies for anyϕ,ψ ∈ D

(11) α−1‖ϕ‖2 ≤ B(ϕ,ϕ), B(ϕ,ψ) ≤ α‖ϕ‖‖ψ‖

for some positive constantα > 0. Let us denote(·, ·)2 the canonical inner product onL2(Ω; P).
From now on, we will say that the unbounded operatorL onL2(Ω; P) is constructed from

(Ω,P, 〈·, ·〉 , B) if it is constructed as follows. We consider the inner product Π onD×D defined
by

Π(ϕ,ψ) = (ϕ,ψ)2 + 〈ϕ,ψ〉
and the closureH of D with respect to the corresponding norm. For eachλ > 0, the bilinear
formBλ is defined onD ×D by

Bλ(ϕ,ψ) = λ(ϕ,ψ)2 +B(ϕ,ψ).

From (11),Bλ obviously extends toH×H (this extension is still denoted byBλ). Furthermore,
it is continuous and coercive onH×H. Thus it defines a resolvent operatorGλ : L2(Ω,P)→ H,
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which is one-to-one. We can then defineL asλ−G−1
λ with domainDom(L) = Gλ(L2(Ω,P)).

This definition does not depend onλ > 0. It is readily seen that a functionϕ ∈ H belongs to
Dom(L) if and only if the mapψ ∈ H 7→ Bλ(ϕ,ψ) is L2(Ω,P) continuous. In this case, we
can findf ∈ L2(Ω,P) such thatBλ(ϕ, ·) = (f, ·)2. ThenLϕ exactly matchesf − λϕ. Note
thatB(ϕ,ψ) = −(Lϕ,ψ)2 for anyϕ ∈ Dom(L) andψ ∈ H. We point out that the unbounded
operatorL is closed and densely defined. Moreover, its adjoint operator L∗ in L2(Ω; P) coin-
cides with the operator constructed from(Ω,P, 〈·, ·〉 , B̌), where the bilinear form̌B is defined
onD ×D by B̌(ϕ,ψ) = B(ψ,ϕ). As a consequence(L∗)∗ = L.

Notations. In what follows, the notation(H, L,Dom(L), (Gλ)λ>0) = Ξ((Ω,P, 〈·, ·〉 , B))
means thatH, L, Dom(L), (Gλ)λ>0 are constructed from(Ω,P, 〈·, ·〉 , B) as explained above.

6 Auxiliary Problems

Setup and notations. Let us now focus on the different operators induced on the random
mediumΩ by the matricesa(·, y) andH(·, y), for eachy ∈ R

d. We aim at extending the
following operators defined onC by

(12) Sy ≡ 1

2

d∑

i,j=1

Di

(
aij(·, y)Dj

)
, Ly ≡ 1

2

d∑

i,j=1

Di

(
(a+H)ij(., y)Dj

)
,

according to the method detailed in Section 5.
The positive symmetric bilinear form(·, ·)1 is defined onC × C by

(ϕ,ψ)1 ≡ −(ϕ, S̃ψ)2 = (1/2)
(
ãDϕ,Dψ

)
2
,(13)

and the associated seminorm‖ · ‖1 by ‖ϕ‖21 ≡ (ϕ,ϕ)1.
For anyϕ,ψ ∈ C, we define the bilinear forms (y is fixed)

BS(ϕ,ψ) ≡ −(Syϕ,ψ)2 = (1/2)(a(·, y)Dϕ,Dψ)2,

BL(ϕ,ψ) ≡ −(Lyϕ,ψ)2 = (1/2)((a +H)(·, y)Dϕ,Dψ)2.

From Assumption 2.4 and the antisymmetry ofH , it is readily seen thatM−1‖ϕ‖21 ≤ BS(ϕ,ϕ)
(resp.M−1‖ϕ‖21 ≤ BL(ϕ,ϕ)) andBS(ϕ,ψ) ≤M‖ϕ‖1‖ψ‖1 (resp.BL(ϕ,ψ) ≤ 2M‖ϕ‖1‖ψ‖1).
We can then define

(H1,S
y,Dom(Sy), (GSy

λ )λ>0) =Ξ(Ω, µ, (·, ·)1,BS),

(H1,L
y,Dom(Ly), (GLy

λ )λ>0) =Ξ(Ω, µ, (·, ·)1,BL).

Let us additionally denote by(Ly)∗ the adjoint operator ofLy in L2(Ω). Note thatSy is self-
adjoint.
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We define the spaceD as the closure in(L2(Ω))d of the set{σ̃∗Dϕ;ϕ ∈ C}. We point
out that, wheneverϕ,ψ belong toC, 2(ϕ,ψ)1 = (σ̃∗Dϕ, σ̃∗Dψ)2, so that the application
Θ : C → D, ϕ 7→ σ̃∗Dϕ can be extended to the whole spaceH1. For each functionf ∈ H1,
we will note∇σ̃f for Θ(f) and this represents in a way the gradient of the functionf along
the directionσ̃. Similarly, for each fixedy ∈ R

d, we define for anyϕ ∈ H1 the gradient along
the directionσ(·, y). It will be denoted by∇σ(.,y)ϕ and is equal toσ(·, y)∗Dϕ for anyϕ ∈ C.
From Assumption 2.4, for eachϕ ∈ H1, the mappingy ∈ R

d 7→ ∇σ(.,y)ϕ ∈ D is continuous:

(14) ∀(y, h) ∈ (Rd)2, |∇σ(.,y+h)ϕ−∇σ(.,y)ϕ|22 ≤M |h|2‖ϕ‖21.

Fory ∈ R
d andϕ,ψ ∈ C, we derive from Assumption 2.4

(15) (Lyϕ,ψ)2 = −1

2

(
Dϕ, (a+H)(·, y)Dψ

)
2
≤ C|∇σ̃ϕ|2|∇σ̃ψ|2,

so that we can define a bilinear formT y on the whole spaceD× D such that∀ϕ,ψ ∈ C

(16) − (Lyϕ,ψ)2 = T y(∇σ̃ϕ,∇σ̃ψ).

Thanks to Assumption 2.2, we can consider the differential∂T y of T y defined, forϕ,ψ ∈ C,
by ∂T y(ϕ,ψ) = ∂y(T

y(ϕ,ψ)). From Assumption 2.4 and similarly to (15),∂T y extends to
D×D. From Assumption 2.4, it is then plain to see that the relation ∂y

(
T y(ξ, ζ)

)
= ∂T y(ξ, ζ)

still holds forξ, ζ ∈ D.
Whenever a functionb satisfies the property:

(17) ∃C > 0,∀ϕ ∈ C, (b,ϕ)2 ≤ C‖ϕ‖1,

we will say thatb ∈ H−1 and we will define‖b‖−1 as the smallest constantC satisfying this
property.

Solvability and regularity of the resolvent equation.For h ∈ L2(Ω), uλ(., y) ≡ GLy

λ h

belongs toH1 ∩ Dom(Ly) and satisfiesλuλ(·, y) − Lyuλ(·, y) = h. Suppose that the right-
hand sideh = h(·, y) depends on the parametery ∈ R

d. We now investigate they-regularity of
uλ(·, y) from the regularity ofy 7→ h(·, y) with respect to the norms| · |2 and‖ · ‖−1. We claim

Proposition 6.1. Let us considerh : y ∈ R
d 7→ h(., y) ∈ L2(Ω) andf : y ∈ R

d 7→ f(., y) ∈
L2(Ω) ∩H−1. Suppose that there existC2, C−1 such that:

1) the applicationy 7→ h(., y) ∈ L2(Ω) is two times continuously differentiable inL2(Ω).
The derivatives up to order 2 are bounded byC2 in L2(Ω) and areC2-Lipschitz inL2(Ω).

2) the applicationy 7→ f(., y) ∈ L2(Ω) ∩ H−1 is two times continuously differentiable in
H−1. The derivatives up to order 2 are bounded byC−1 in H−1 and areC−1-Lipschitz inH−1.

Then, for anyλ > 0, the solutionuλ(., y) ∈ H1 ∩Dom(Ly) of the equation

(18) λuλ(., y)−Lyuλ(., y) = h(., y) + f(., y)
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is two times continuously differentiable inH1 with respect to the parametery ∈ R
d. Further-

more there exists a constantD6.1 > 0, which only depends onM,C−1, such that the functions
gλ(., y) = uλ(., y), ∂yuλ(., y), ∂2

yyuλ(., y) satisfy the property:∀(y, h) ∈ R
2,

λ|gλ(., y)|22 + ‖gλ(., y)‖21 ≤ D6.1(1 + C2
2/λ),(19a)

λ|gλ(., y + h)− gλ(., y)|22 + ‖gλ(., y + h)− gλ(., y)‖21 ≤ D6.1(1 + C2
2/λ)|h|2.(19b)

Proof: The proof is readily adapted from [13, Prop. 4.1]. The methodconsists in differentiating
the resolvent equation (18) with respect to the parametery ∈ R

d. In the uniformly elliptic setup
[13, Prop. 4.1], this can be carried out thanks to the differentiability and the boundedness of
a,H and their derivatives up to order 2. In the degenerate setup,we need to control the matrices
a andH, as well as their derivatives up to order2 with respect to the parametery ∈ R

d, by the
matrix ã (see Assumption 2.4) in order to differentiate the functiony 7→ uλ(·, y) in H1.

Auxiliary problems: construction of the correctors.The end of this section is now devoted
to the study of the solutions of the so-called auxiliary problems, that means the solutionsui

λ(., y)
(i = 1, . . . , d) of the resolvent equations

(20) λui
λ(., y) −Lyui

λ(., y) = bi(., y),

wherebi(., y) = (1/2)
∑d

j=1Dj

[
(a +H)ji(., y)

]
. The weak form of the resolvent equation

then reads forϕ ∈ C

λ(ui
λ(., y),ϕ)2 + T y(∇eσui

λ(., y),∇eσϕ) = −(1/2)
(
(a+H)(., y)ei,Dϕ

)
2
.(21)

Having in mind to apply Proposition 6.1, we first prove

Lemma 6.2. The mappingy 7→ bi(., y) ∈ L2(Ω)∩H−1 is two times continuously differentiable
in H−1, and the derivatives are bounded and Lipschitzian inH1.

Proof: First note that for eachϕ ∈ C,

(bi(., y),ϕ)2 = −(1/2)
(
(a +H)(., y)ei,Dϕ

)
2
.

From Assumption 2.4, we easily deduce thatbi(., y) ∈ H−1 and that the mappingy ∈ R
d 7→

bi(., y) ∈ H−1 is bounded and Lipschitzian.
From Assumption 2.4 again, it is readily seen that theH−1 derivatives ofbi coincide, for

1 ≤ k ≤ d, with the classical derivatives∂yk
bi and

(∂yk
bi(., y),ϕ)2 = −(1/2)

(
(∂yk

a+ ∂yk
H)(., y)ei,Dϕ

)
2
≤ C‖ϕ‖1.

Since∂yk
a(ω) and∂yk

H(ω) are(M, ã(ω))-controlled, the derivatives are bounded and Lips-
chitzian inH1. The same job can be carried out for the second order derivatives. Details are left
to the reader.
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From Proposition 6.1 (withh = 0 andf = bi), the mappingy 7→ ui
λ(., y) is two times

continuously differentiable inH1. We now investigate the asymptotic behavior ofui
λ as well as

its derivatives, asλ goes to zero.

Proposition 6.3. For each fixedy ∈ R
d and1 ≤ i ≤ d, the family(∇eσui

λ(., y))λ converges to a

limit ξ̃i(., y) ∈ L2(Ω)d asλ goes to0. The same property holds for the derivatives, namely that
the families(∇eσ∂yj

ui
λ)λ, (∇eσ∂2

yjyk
ui

λ)λ (1 ≤ i, j, k ≤ d) respectively converge to∂yj
ξ̃i(., y),

∂2
yjyjkξ̃i(., y) in L2(Ω)d. Furthermore, we have

λ|ui
λ(., y)|22 + λ|∂yj

ui
λ(., y)|22 + λ|∂2

yjyk
ui

λ(., y)|22 → 0, asλ tends to0,

and, each functiongλ(., y) = ui
λ(., y), ∂yk

ui
λ(., y), ∂ykyl

ui
λ(., y) satisfies the property:

λ|gλ(., y)|22 + ‖gλ(., y)‖21 ≤ C6.3(22)

λ|gλ(., y + h)− gλ(., y)|22 + ‖gλ(., y + h)− gλ(., y)‖21 ≤ C6.3|h|2(23)

for everyy, h ∈ R
d, whereC6.3 is a positive constant independent ofλ > 0 andy ∈ R

d.

Proof: The proof does not deeply differ from Proposition 4.3 in [13], but we nevertheless
set it out because of its importance. From (19a) (note thatC2 = 0), we getλ|ui

λ(., y)|22 +

|∇eσui
λ(., y)|22 ≤ C. Denote bỹξi(., y) ∈ L2(Ω)d a weak limit of the family(∇eσui

λ(., y))λ as
λ goes to0. Passing to the limit in (21), it is plain to see that∀ϕ ∈ C

(24) T y(ξ̃i(., y),∇eσϕ) = −(1/2)
(
(a+H)(., y)ei,Dϕ

)
2
.

SinceT y is coercive onD × D, this proves the uniqueness of the weak limit inD. Gathering
(21) and (24), we get

(25) λ(ui
λ(., y),ϕ)2 + T y(∇eσui

λ(., y),∇eσϕ) = T y(ξ̃i(., y),∇eσϕ).

Choosingui
λ(., y) = ϕ yields:

λ|ui
λ(., y)|22 + T y

(
∇eσui

λ(., y),∇eσui
λ(., y)

)
≤ T y

(
ξ̃i(., y), ξ̃i(., y)

)
+ ǫ(λ),

where the functionǫ(λ) exactly matchesT y
(
ξ̃i(., y),∇eσui

λ(., y)− ξ̃i(., y)
)

and thus converges

to 0 asλ goes to0. Hencelim supλ→0 T
y
(
∇eσui

λ(., y),∇eσui
λ(., y)

)
≤ T y

(
ξ̃i(., y), ξ̃i(., y)

)
.

Denote byT S the symmetric part ofT y

T S(ϕ,ψ) = (1/2)
[
T y(ϕ,ψ) + T y(ψ,ϕ)

]
, ϕ,ψ ∈ D.

From Assumption 2.4 and the antisymmetry ofH , we have

M−1(σ̃∗Dϕ, σ̃∗Dϕ)2 ≤ T S(∇eσϕ,∇eσϕ) ≤M(σ̃∗Dϕ, σ̃∗Dϕ)2, ϕ ∈ C.

12



By density arguments, the quadratic form associated toT S defines a norm onD equivalent to the
canonical inner product. Moreover, we have just proved thatthe family(∇eσui

λ(., y))λ is weakly
convergent inD to ξ̃i(., y) andlim supλ→0 T

S
(
∇eσui

λ(., y),∇eσui
λ(., y)

)
≤ T S

(
ξ̃i(., y), ξ̃i(., y)

)
.

Thus the convergence is strong with respect to the norm onD associated toT S , and conse-
quently(∇eσui

λ(., y))λ strongly converges in(L2(Ω))d to ξ̃i(., y). From this together with (25),
we get

λ|ui
λ(., y)|22 + |∇eσui

λ(., y)− ξ̃i(., y)|22 → 0 asλ→ 0.

This proves the first part of the statement for the functionui
λ(., y). The second part results from

Proposition 6.1, statements (19a) and (19b) (withC2 = 0). The same job can be carried out for
the successive derivatives ofui

λ(., y) up to order2.

7 Dynamics of the processXε. Preliminary results

Notations.All the results of this section are valid for any value of the parameterε. However, to
simplify the notations, we chooseε = 1 and thus remove the parameterε from the notations. So
the processX stands for the processXε defined by(7). Finally we denote byPV the probability
measuree−2V (y) dy ⊗ dµ onΩ× R

d and byMV the coresponding expectation.

This section is devoted to the study of theΩ × R
d-valued process(τXω,X), such as its

invariant distribution and the Itô formula. Since these properties are more easily established
when the processX possesses regularizing properties, namely that the diffusion coefficienta
is uniformly elliptic, most of the following proofs are carried out through vanishing viscosity
methods, that is, in considering a family of non-degeneratediffusion processes that converges
toX.

Invariant distribution. Let us introduce a standard d-dimensional Brownian motionB̃ in-
dependent ofB. For each fixed(ω, n) ∈ Ω× N̄

∗ and for anyx ∈ R
d, we define the Itô process

Xn as the solution of the SDE (with the conventionn−1 = 0 if n =∞)

Xn
t = x+

∫ t

0
(b+ c− n−1∂yV )(ω,Xn

r ,X
n
r ) dr +

∫ t

0
σ(ω,Xn

r ,X
n
r ) dBr + (n/2)−1/2B̃t.

Note that, forn = ∞, X∞ coincides with the processX. For n ∈ N̄
∗, the processXn

defines a continuous semigroupPn onCb(R
d) (continuous bounded functions). Its generator

Ln coincides onC2(Rd) with

(26) Ln =
1

2
e2V (x)

∑

i,j

∂xi

(
e−2V (x)(a+H + n−1Id)ij(ω, x, x)∂xj

·
)
.

Forn ∈ N
∗, it is well-known that the distribution ofXn

t (t > 0) admits a densitypn(ω, t, x, ·)
with respect to the Lebesgue measure (cf. [14, Sect. II.2]),which is bounded from above
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by a constantC that only depends onΛ, n, t. Thus the semigroup associated toXn (n ∈
N

∗) continuously extends toL2(Rd, e−2V (x) dx). Let us denote by(Ln)∗ the adjoint ofLn in
L2(Rd, e−2V (x) dx), which coincides onC2(Rd) with

(27) (Ln)∗ =
1

2
e2V (x)

∑

i,j

∂xi

(
e−2V (x)(a−H + n−1Id)ij(ω, x, x)∂xj

·
)
.

Now, for ϕ,ψ ∈ C∞
c (Rd), let us compute

∫
Rd LnPn

t ϕ(x)ψ(x)e−2V (x) dx. From [8],
Pn

t ϕ ∈ C2(Rd) so thatLnPn
t ϕ can be computed with the help of (26). By integrating by

parts, we obtain

(28)
∫

Rd

LnPn
t ϕ(x)ψ(x)e−2V (x) dx =

∫

Rd

Pn
t ϕ(x)(Ln)∗ψ(x)e−2V (x) dx.

Moreover, we haveLnPn
t ϕ = Pn

t Lnϕ ∈ Cb(R
d). Choose now a function̺ ∈ C∞

c (Rd) that
matches1 over the ballB(0; 1). Defineψm(x) = ̺(x/m). It is readily seen that the sequence
(Lnψm)m is bounded inL∞(Rd) and uniformly converges to0 on the compact subsets ofR

d.
Thus, choosingψ = ψm in (28), and passing to the limit asm goes to∞, we get

(29) ∀ϕ ∈ C∞
c (Rd),

∫

Rd

LnPn
t ϕ(x)e−2V (x) dx = 0.

In particular, for anyϕ ∈ C∞
c (Rd),

∫
Rd P

n
t ϕ(x)e−2V (x) dx =

∫
Rd ϕ(x)e−2V (x) dx, in such a

way that, by density arguments, the probability measuree−2V (x) dx is invariant for the process
Xn (n ≥ 1). Then classical arguments of SDE theory ensure that the sequence of processes
(Xn)n converges in law inC([0, T ]; Rd) to the processX asn goes to∞. We deduce that∫

Rd Ptϕ(x)e−2V (x) dx =
∫

Rd ϕ(x)e−2V (x) dx holds forϕ ∈ Cb(R
d). The semigroup associated

to X thus extends toLp(Rd; e−2V (x) dx) for p ≥ 1 and the probability measuree−2V (x) dx is
also invariant for this semigroup.

Finally, for eachϕ ∈ Cb(Ω × R
d) (i.e. for each fixedω ∈ Ω, the functionx 7→ ϕ(τxω, x)

is continuous and bounded by a constant independent ofω) andn ≥ 0, we deduce from the
previous remarks and the invariance of the measureµ under space translations that

(30) Ē[ϕ(τXn
t
ω,Xn

t )] = MV [ϕ(τxω, x)] = MV [ϕ(ω, x)],

so that the mappingϕ ∈ Cb(Ω× R
d) 7→ Pn

t (ϕ) = Ex[ϕ(τXn
t
ω,Xn

t )] continuously extends to
Lp(Ω× R

d; PV ) for anyp ≥ 1 and (30) holds forϕ ∈ Lp(Ω× R
d; PV ).

It ô’s formula. We now aim at establishing the Itô formula to the process(τXω,X) and
to the function(x, y) 7→ uλ(ω, x, y), whereuλ is the solution of the resolvent equation (18),
with functionsh(., y) andf(., y) satisfying the assumptions of Proposition 6.1. This latter
proposition describes the regularity ofuλ with respect to the variabley. Due to the possible
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degeneracies ofσ, the difficulty actually lies in the regularity with respectto the parameter
x ∈ R

d. To apply the Itô formula and get round technical difficulties, we use viscosity methods
again, namely that we look at the operatorλ−Ly − n−1

∆ for n ∈ N
∗. Obviously, there is no

difficulty in solving the corresponding resolvent equationwith the techniques used in Section 6
(it suffices to replacea by a+ n−1Id and to choosẽa = Id)

(31) λu
(n)
λ (·, y)−

(
Ly + n−1

∆
)
u

(n)
λ (·, y) = h(·, y) + f(., y).

The strategy then consists in applying the Itô formula in the non-zero viscosity setting and
then in lettingn tend to∞. Thanks to the regularizing parametern ∈ N

∗ , the Itô formula holds
in the non-zero viscosity setting (cf [13, Sect. 5]). The following formula thus holds

du
(n)
λ (Xn

t ,X
n
t ) =(λu

(n)
λ − h− f)(Xn

t ,X
n
t ) dt + [c− n−1∂yV ] ·Du(n)

λ (Xn
t ,X

n
t ) dt

+ (∇σ(.,y)u
(n)
λ )∗(Xn

t ,X
n
t ) dBt + n−1/2(Du

(n)
λ )(Xn

t ,X
n
t ) dB̃t(32)

+ b∂yu
(n)
λ (Xn

t ,X
n
t ) dt + [c− n−1∂yV ] · ∂yu

(n)
λ (Xn

t ,X
n
t ) dt

+ (∂yu
(n)
λ )∗σ(Xn

t ,X
n
t ) dBt + n−1/2(∂yu

(n)
λ )(Xn

t ,X
n
t ) dB̃t

+ (1/2)trace([a+ n−1Id]∂2
yyu

(n)
λ )(Xn

t ,X
n
t ) dt

+ trace([a+ n−1Id]D∂yu
(n)
λ )(Xn

t ,X
n
t ) dt.

Having in mind to letn tend to∞ in (32), let us now describe the behavior ofun
λ asn tends to

∞. We first claim:

Proposition 7.1.

(33) lim
n→∞

[
|u(n)

λ (., y)− uλ(., y)|2 + ‖u(n)
λ (., y) − uλ(., y)‖1 + n−1|Du(n)

λ (., y)|22
]

= 0,

and that there exists a constantD34 (independent ofn andy ∈ R
d) such that

(34) |u(n)
λ (·, y + h)− u(n)

λ (·, y)|22 + ‖u(n)
λ (·, y + h)− u(n)

λ (·, y)‖21
+ n−1|Du(n)

λ (·, y + h)−Du(n)
λ (·, y)|22 ≤ D34|h|2.

Moreover, the same properties hold for the sequences(∂yk
u

(n)
λ )n, (∂

2
ykyl

u
(n)
λ )n and their cor-

responding limits(∂yk
uλ)n, (∂

2
ykyl
uλ)n, for 1 ≤ k, l ≤ d.

Proof. Since the proofs of (33) and (34) can be adapted from the proofof Proposition 6.3, we
just set out the guiding line of (33).

To clarify the notations, we forget for a while the dependence on the parametery. First
multiply (31) byu(n)

λ and integrate with respect to the measureµ so as to obtain the estimate:

λ|u(n)
λ |22 + |∇eσu

(n)
λ |22 + n−1|Du(n)

λ |22 ≤ C
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for some constantC only depending on|h|22/λ and‖f‖2−1. From this estimate, we deduce

that the family(n−1Du
(n)
λ )n strongly converges to0 in (L2(Ω))d asn → ∞ and that, up to

extracting a subsequence, the family(u
(n)
λ )n weakly converges inH1 asn→∞. Multiply once

again (31) by a test functionϕ ∈ C, integrate with respect to the measureµ and then pass to the
limit asn→∞ to identity the weak limit inH1 as being necessarily equal touλ. So the whole
family (u

(n)
λ )n is weakly convergent inH1 (not up to a subsequence). It just remains to prove

that the convergence actually holds in the strong sense. We can integrate (31) and (18) against a
test functionϕ ∈ C. Since the right-hand sides of (31) and (18) coincide, this yields:

λ(u
(n)
λ ,ϕ)2 + T y(∇eσu

(n)
λ ,∇eσϕ) + n−1(Du

(n)
λ ,Dϕ)2 = λ(uλ,ϕ)2 + T y(∇eσuλ,∇eσϕ).

Chooseϕ = u
(n)
λ and pass to the limit asn→∞ and get

lim
n→∞

(
λ|u(n)

λ |22 + T y(∇eσu
(n)
λ ,∇eσu

(n)
λ ) + n−1|Du(n)

λ |22
)

= λ|uλ|22 + T y(∇eσuλ,∇eσuλ).

As in Proposition 6.3, this is sufficient to establish the strong convergence of(u(n)
λ )n in H1 and,

consequently, the convergencen−1|Du(n)
λ |22 → 0 asn→∞.

We are now in position to conclude. Going through formula (32), we are faced with func-
tionals of type

∫ s
t gn(Xn

r ,X
n
r ) dr (concerning the martingale terms, it suffices to work on their

quadratic variations), whereMV [|gn − g0|]→ 0 asn tends to∞ and

(35) ∀(y, h) ∈ R
d × R

d, |gn(., y + h)− gn(., y)|2 ≤ C|h|

where the constantC depends neither onn ∈ N nor y, h ∈ R
d. From Lemma 7.3 below,

we prove the convergence of the functional towards
∫ s
t g0(Xr,Xr) dr in P̄-probability and as a

consequence the

Theorem 7.2. Leth,f be two functions satisfying the assumptions of Proposition6.1. Letuλ

be the solution of the resolvent equation:

λuλ(·, y) −Lyuλ(·, y) = h(·, y) + f(·, y).

Then the following It̂o formula holds (we reintroduce the parameterε):

εduλ(X
ε
t ,X

ε
t ) =ε−1(λuλ − h− f)(X

ε
t ,X

ε
t ) dt + c ·Duλ(X

ε
t ,X

ε
t ) dt

+ (∇σ(.,y)uλ)∗(X
ε
t ,X

ε
t ) dBt + b∂yuλ(X

ε
t ,X

ε
t ) dt

+ ε(∂yuλ)∗σ(X
ε
t ,X

ε
t ) dBt + εc · ∂yuλ(X

ε
t ,X

ε
t ) dt

+ (ε/2)trace(a∂2
yyuλ)(X

ε
t ,X

ε
t ) dt + trace(aD∂yuλ)(X

ε
t ,X

ε
t ) dt.
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Lemma 7.3. Consider a sequence of functionsgn ∈ L1(Ω × R
d; PV ) (n ≥ 0) such that

MV [|gn−g0|]→ 0 asn→∞ and for any(y, h) ∈ R
d×R

d, |gn(., y+h)−gn(., y)|2 ≤ C|h|
for some constantC that depends neither onn nor y, h ∈ R

d.
ThenĒ[|gn(Xn

r ,X
n
r )− g0(Xr,Xr)|]→ 0 asn→ 0.

Proof: First, suppose thatg0 is bounded. Let us consider a smooth mollifierp : R
d → R and

̺ ∈ C∞
c (Rd) such that̺ = 1 over the ballB(0; 1). We define form, q ≥ 1, pm(·) = mdp(m ·),

̺q(·) = ̺(·/q) andgm,q
0 (ω, x) =

∫
Rd g0(τ−x′ω, x′)̺q(x

′)pm(x− x′) dx′. Then, from (30),

Ē[|gn(Xn
r ,X

n
r )− g0(Xr,Xr)|] ≤MV [|gn − g0|] + 2MV [|gm,q

0 − g0|]
+ Ē[|gm,q

0 (Xn
r ,X

n
r )− gm,q

0 (Xr,Xr)|].

With classical convolution techniques, we can prove thatm, q can be chosen large enough to
make the term2MV [|gm,q

0 − g0|] small. Then, from the Lipschitz regularity of the coefficients
(Assumption 2.2), the classical theory of SDEs ensures thatEx[sup0≤t≤T |Xn

t −Xt|2] ≤ n−1D
for some constantD that only depends onM , Λ andT . For each fixedm, q ≥ 1 andω ∈ Ω, the
functionx 7→ gm,q

0 (x, x) is continuous with compact support so that
∫

Rd Ex[|gm,q
0 (Xn

r ,X
n
r ) −

gm,q
0 (Xr,Xr)|]e−2V (x) dx → 0 asn → ∞. Then, the Lebesgue theorem (gm,q

0 is bounded
independently fromω ) proves that̄E[|gm,q

0 (Xn
r ,X

n
r )−gm,q

0 (Xr,Xr)|] converges to0 asn goes
to∞. Therefore,n can be chosen large enough to make this latter term small. Finally, from
the assumptions of the lemma, even if it means considering largern, the termMV [|gn − g0|] is
small too. The proof is then easily completed in the case wheng0 is bounded.

If g0 is not bounded, it suffices to consider forn ≥ 0 andR > 0, gR
n = max(−R;min(gn;R)).

It is readily checked that the sequence(gR
n )n still satisfies all the assumptions of the lemma in

such a way that̄E[|gR
n (Xn

r ,X
n
r ) − gR

0 (Xr,Xr)|] → 0 asn → 0, for each fixedR > 0. Then,
from (30),Ē[|gR

n (Xn
r ,X

n
r )− gn(Xn

r ,X
n
r )|] ≤MV [|gR

n − gn|] and

lim
R→∞

lim
n→∞

MV [|gR
n − gn|] = lim

R→∞
MV [|gR

0 − g0|] = 0.

Since we have

Ē[|gn(Xn
r ,X

n
r )− g0(Xn

r ,X
n
r )|] ≤ Ē[|gR

n (Xn
r ,X

n
r )− gn(Xn

r ,X
n
r )|]

+ Ē[|gR
n (Xn

r ,X
n
r )− gR

0 (Xr,Xr)|] + Ē[|gR
0 (Xr,Xr)− g0(Xn

r ,X
n
r )|],

the proof is then easily completed in this case too.

8 Asymptotic Theorems

Classical ergodic theorem.In this section, we aim at exploiting the asymptotic properties of
the processXε, more precisely Assumption 2.5, in order to describe the asymptotic behavior
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of functionals of type
∫ t
0 Ψ(X

ε
r,X

ε
r ) dr for a suitable locally stationary random fieldΨ. The

classical ergodic theory leads us to guess that the local ergodicity assumption 2.5 makes this
functional average with respect to its first variable. More precisely,

Theorem 8.1. (Ergodic Theorem)Let us considerΨ : Ω×R
d → R such thatMV [|Ψ|] < +∞.

DenotingΨ(y) = M[Ψ(·, y)], the following convergence holds:

(36) Ē
ε
[

sup
0≤s≤t

|
∫ s

0
Ψ(X

ε
r,X

ε
r ) dr −

∫ s

0
Ψ(Xε

r ) dr|2
]
−−−→
ε→0

0.

Proof: This result can be proved in the same way as [13, Th. 6.1]. The only difference consists
in establishing:g ∈ Dom(Ly) ⊂ H1 andLyg = 0 implies thatg is constantµ almost surely.
In the uniformly elliptic setting, it turns out that the derivativesDig reduce to0 and, as a conse-
quence,g is constant. In the degenerate framework, we need to use Assumption 2.5 as follows.
From Assumption 2.4,‖g‖21 ≤ M‖g‖21,y = −(g,Lyg)2 = 0. In particular,BSy

(g, ·) = 0.
Henceg ∈ Dom(Sy) andSyg = 0. Thusg is constant (Assumption 2.5).

Asymptotic theorem for highly oscillating functionals.Theorem 8.1 describes the asymp-
totic behavior of functionals of type

∫ t
0 Ψ(X

ε
r,X

ε
r ) dr in order to pass to the limit in (7). How-

ever, as explained in [13], additional difficulties arise inthe random setting in comparison with
the periodic one. In particular, we must describe the asymptotic behavior of the functional∫ t
0 Ψε(X

ε
r,X

ε
r ) dr for a family (Ψε)ε that need not be convergent inL1(Ω×R

d; PV ) but satis-
fies a sort of uniform Poincaré inequality. Unlike [13, Theorem 6.3], technical difficulties due
to the degeneracy of the diffusion coefficienta occur. In particular, because of the lack of Aron-
son type estimates, the tightness of the processXε is not obvious. To prove this tightness, all
asymptotic convergences need be established inC([0, T ]; Rd) (note thesup in (38)). This is one
of the main difficulty of Theorem 8.2 below in comparison withthe uniformly elliptic setting
(see [13, Theorem 6.3]). The strategy consists in expressing

∫ t
0 Ψε(X

ε
r,X

ε
r ) dr as the sum of

two martingales thanks to time reversal arguments, and thenin using the Doob inequality. The
Poincaré inequality (37) ensures that the martingales possess suitable asymptotic properties.

Theorem 8.2. (Ergodic theorem II)Let us consider, for eachε > 0, a functionΨε ∈ L2(Ω ×
R

d; PV ) satisfying the following Poincaré inequality: for anyϕ(ω, x) = χ(ω)̺(x), (χ, ̺) ∈
C × C∞

c (Rd),

(37) MV [Ψεϕ] ≤ Cε

(
MV [|σ∗(D + ε∂y)ϕ|2]

)1/2
,

for some family(Cε)ε>0 satisfyingεCε → 0 asε→ 0. Then

(38) Ē
ε
[

sup
0≤s≤t

|
∫ s

0
Ψε(X

ε
r,X

ε
r ) dr|2

]
−−−→
ε→0

0.
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Proof: In what follows, we say thatϕ ∈ CΠ if ϕ(ω, y) = χ(ω)̺(y), where(χ, ̺) ∈ C ×
C∞

c (Rd). We aim at constructing, as prescribed in Section 5, the unbounded operators on
L2(Ω × R

d; PV ) that coincide onCΠ for n ∈ N̄
∗ with (here we use the conventionn−1 = 0 if

n =∞)

Sn,εϕ =(1/2)e2V
∑

i,j=1,...,d

(Di + ε∂yi
)
[
e−2V (a+ n−1Id)ij(Dj + ε∂yj

)ϕ
]
,(39)

Ln,εϕ =(1/2)e2V
∑

i,j=1,...,d

(Di + ε∂yi
)
[
e−2V (a+H + n−1Id)ij(Dj + ε∂yj

)ϕ
]
.(40)

Forε > 0, n ∈ N̄
∗ andϕ,ψ ∈ CΠ, we define the corresponding bilinear forms

〈ϕ,ψ〉n,ε = (1/2)MV

[
(Dϕ+ ε∂yϕ)∗(a+ n−1Id)(Dψ + ε∂yψ)

]
,(41)

Bn,ε(ϕ,ψ) = (1/2)MV

[
(Dϕ+ ε∂yϕ)∗(a+H + n−1Id)(Dψ + ε∂yψ)

]
.(42)

Clearly, 〈·, ·〉n,ε is positive symmetric (denote by‖ · ‖n,ε the corresponding seminorm). Note
that, for each fixedε > 0, the seminorms(‖ · ‖n,ε)n∈N∗ are all equivalent. Moreover, for
n ∈ N̄

∗, ‖ϕ‖2n,ε ≤ Bn,ε(ϕ,ϕ) andBn,ε(ϕ,ψ) ≤ 2M2‖ϕ‖n,ε‖ψ‖n,ε for anyϕ,ψ ∈ CΠ (see
Assumption 2.4). From Section 5, we can define

(Hn,ε, S
n,ε,Dom(Sn,ε), (GS,n,ε

λ )λ>0) = Ξ(Ω× R
d,PV , 〈·, ·〉n,ε , 〈·, ·〉n,ε),

(Hn,ε, L
n,ε,Dom(Ln,ε), (GL,n,ε

λ )λ>0) = Ξ(Ω× R
d,PV , 〈·, ·〉n,ε , Bn,ε).

and we denote by(Ln,ε)∗ the adjoint operator ofLn,ε in L2(Ω× R
d; PV ).

Let us now consider a family(Ψε)ε of functions inL2(Ω×R
d; PV ) satisfying (37) for some

family (Cε)ε>0 such thatεCε → 0 asε → 0. Fix n ∈ N̄
∗. Defineϕn,ε ≡ GS,n,ε

ε2 (Ψε), which
satisfiesε2MV [ϕn,εψ] +

〈
ϕn,ε,ψ

〉
n,ε

= MV [Ψεψ] for anyψ ∈ Hn,ε. Choosingψ = ϕn,ε,

using (37) and the standard estimateab ≤ a2/2 + b2/2 leads to

ε2MV [|ϕn,ε|2] + ‖ϕn,ε‖2n,ε = MV [Ψεϕn,ε] ≤ Cε

√
2‖ϕn,ε‖0,ε ≤

√
2Cε‖ϕn,ε‖n,ε

≤ C2
ε + ‖ϕn,ε‖2n,ε/2

in such a way that

(43) ε2MV [|ϕn,ε|2] + ‖ϕn,ε‖2n,ε/2 ≤ C2
ε .

Once again, to apply the Itô formula, we use vanishing viscosity methods in order to get
round the lack of regularity ofϕn,ε because of the degeneracy ofa. In the non-degenerate
framework (n ≥ 1), from [13, Proof of Lemma 6.3], standard convolution technics provide us
with a Hn,ε-sequence(ϕm

n,ε)m∈N of smooth functions, namely that for each fixedω ∈ Ω the
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functionx 7→ ϕm
n,ε(τx/εω, x) is aC∞(Rd)-function, such thatMV [|ϕm

n,ε−ϕn,ε|2 + |Sn,εϕm
n,ε−

Sn,εϕn,ε|2] + ‖ϕm
n,ε −ϕn,ε‖2n,ε → 0 asm goes to∞.

We are now going to use a time reversal argument. Let us consider the process (introduced
in Section 7)

Xn,ε
t = x+

∫ t

0
(ε−1b+c−n−1∂yV )(ω,X

n,ε
r ,Xn,ε

r ) dr+

∫ t

0
σ(ω,X

n,ε
r ,Xn,ε

r ) dBr+(n/2)−1/2B̃t,

whereX
n,ε
r = Xn,ε

r /ε. As explained in Section 7, its generator coincides onC2(Rd) with

Ln,ε =
e2V (x)

2

∑

i,j

∂xi

(
e−2V (x)(a+H + n−1Id)ij(ω, x/ε, x)∂xj

·
)

and admitse−2V (x) dx as invariant measure. Furthermore, for a fixedT > 0, the generator of
the time reversed processt 7→ Xn,ε

T−t with initial law e−2V (x) dx coincides with the adjoint of

Ln,ε in L2(Rd; e−2V (x) dx). For eachϕ ∈ C2(Rd), it exactly matches

(Ln,ε)∗ϕ =
e2V (x)

2

∑

i,j

∂xi

(
e−2V (x)(a−H + n−1Id)ij(ω, x/ε, x)∂xj

ϕ
)

As a consequence, observe that, for any0 ≤ s ≤ t ≤ T ,

ϕm
n,ε(X

n,ε
t ,Xn,ε

t ) =ϕm
n,ε(X

n,ε
s ,Xn,ε

s ) +

∫ t

s
[Ln,ε(ϕm

n,ε(·/ε, ·))](X
n,ε
r ,Xn,ε

r ) dr

+ (
−→Mm,n,ε

t −−→Mm,n,ε
s ),

where
−→Mm,n,ε is a martingale with respect to the forward filtration(Fn,ε

t )0≤t≤T andFn,ε
t is the

σ-algebra onRd generated by{Xn,ε
r ; 0 ≤ r ≤ t}. In the same way,

ϕm
n,ε(X

n,ε
s ,Xn,ε

s ) =ϕm
n,ε(X

n,ε
t ,Xn,ε

t ) +

∫ t

s
[(Ln,ε)∗(ϕm

n,ε(·/ε, ·))](X
n,ε
r ,Xn,ε

r ) dr

+ (
←−Mm,n,ε

t −←−Mm,n,ε
s ),

where
←−Mm,n,ε is a martingale with respect to the backward filtration(Gn,ε

t )0≤t≤T andGε
s is the

σ-algebra onRd generated by{Xn,ε
r ; t ≤ r ≤ T}. Add these two expressions:

−2ε−2

∫ t

s
Sn,εϕm

n,ε(X
n,ε
r ,Xn,ε

r ) dr = (
−→Mm,n,ε

t −−→Mm,n,ε
s ) + (

←−Mm,n,ε
t −←−Mm,n,ε

s ).

We further mention that the quadratic variations of both martingales exactly match

ε−2

∫ t

s
[(D + ε∂y)ϕ

m
n,ε]

∗a[(D + ε∂y)ϕ
m
n,ε

]∗
(X

n,ε
r ,Xn,ε

r ) dr,
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in such a way that the Doob inequality yields

Ē
ε
[

sup
0≤s≤t

|
∫ s

0
Sn,εϕm

n,ε(X
n,ε
r ,Xn,ε

r ) dr|2
]
≤ 16Tε2‖ϕm

n,ε‖2n,ε.

Lettingm go to∞, reminding thatε2ϕn,ε − Sn,εϕn,ε = Ψε and using (43) leads to

Ē
ε
[

sup
0≤s≤t

|
∫ s

0
Ψε(X

n,ε
r ,Xn,ε

r ) dr|2
]
≤ 32Tε2‖ϕn,ε‖2n,ε + 2Tε4MV [|ϕn,ε|2] ≤ 68Tε2C2

ε .

We then complete the proof in lettingn go to∞ and in using the fact thatXn,ε converges in
C([0, T ]; Rd) towardsXε asn goes to∞.

9 Proof of Theorem 3.1 and Proposition 3.2

Proof of Theorem 3.1. Section 10 below is devoted to proving the tightness of the family of
processes(Xε)ε in C([0, T ]; Rd). It remains to prove that there is a unique possible weak limit
for all converging subsequences.

From now on, the correctorui
λ (λ > 0 and1 ≤ i ≤ d) stands for the solution of (20).

Applying the Ito formula (Theorem 7.2) to the correctors leads to

dXε
t =− εduε2(X

ε
t ,X

ε
t ) + ε(∂yuε2)∗σ(X

ε
t ,X

ε
t ) dBt

+ [εuε2 + εc · ∂yuε2 + (ε/2)trace(a∂2
yyuε2)](X

ε
t ,X

ε
t ) dt

+ [b∂yuε2 + c · (I +Duε2) + trace(aD∂yuε2)](X
ε
t ,X

ε
t ) dt

+ [σ +Duε2σ](X
ε
t ,X

ε
t ) dBt

≡dΘ1,ε
t + dΘ2,ε

t + dΘ3,ε
t + dΘ4,ε

t

Concerning the first term, we havēEε
[
|Θ1,ε

t |2
]
≤ (1 + T )ε2MV

[
|uε2|2 + M2|∂yuε2|2

]
for

0 ≤ t ≤ T . This latter quantity converges to0 asε goes to0 from Proposition 6.3. The same
job can be carried out forΘ2,ε and the same conclusion holds.

The main difficulty actually lies in the termΘ3,ε, especially in the part corresponding to
b∂yuε2. Concerning the remaining partc · (I + Duε2) + trace(aD∂yuε2), it is readily seen
(see Proposition 6.3) that it converges inL2(Ω×R

d; PV ) and thus Theorem 8.1 can be applied.
As a consequence, we have

Ē
ε
[

sup
0≤t≤T

∣∣
∫ t

0
[c·(I+Duε2)+trace(aD∂yuε2)](X

ε
r,X

ε
r ) dr−

∫ t

0
Φ̄(Xε

r ) dr
∣∣2]→ 0 asε→ 0,

whereΦ̄(y) = limλ→0 M[c · (I +Duλ) + trace(aD∂yuλ)(·, y)]. It remains to treat the term
(b∂yuε2)ε. Note that theL2-norm ofb∂yuε2 need not be convergent. That is why we have in
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mind to use Theorem 8.2. Up to introducing new correctors, wewill prove thatb∂yuε2 can be
divided into two parts, satisfying respectively Theorems 8.1 and 8.2. To understand how this
decomposition occurs, let us consider a test functionϕ ∈ CΠ. Then two successive integrations
by parts yield, for1 ≤ i, j ≤ d, (we use the convention of summation over repeated indices)

MV

[
bj∂yj

ui
ε2ϕ

]
= (1/2)MV

[
Dp(a+H)pj∂yj

ui
ε2ϕ

]

= −(1/2)MV

[
(a+H)pj(Dp∂yj

ui
ε2ϕ+ ∂yj

ui
ε2Dpϕ)

]

= −(1/2)MV

[
(a+H)pj

(
Dp∂yj

ui
ε2ϕ+ ∂yj

ui
ε2(Dp + ε∂yp)ϕ

)]

+(ε/2)MV

[
(a+H)pj∂yj

ui
ε2∂ypϕ

]

= −(1/2)MV

[
(a+H)pjDp∂yj

ui
ε2ϕ

]
− (1/2)MV

[
∂yj
ui

ε2(Dp + ε∂yp)ϕ
]

−(ε/2)MV

[
∂yp(a+H)pj∂yj

ui
ε2ϕ+ (a+H)pj∂

2
yjyp

ui
ε2ϕ

]

+εMV

[
(a+H)pj∂yj

ui
ε2ϕ∂ypV

]
.

So, for 1 ≤ i ≤ d, define the correcting part Corri
ε(ω, y) = (ε/2)∂yp (a + H)pj∂yj

ui
ε2 +

(ε/2)(a + H)pj∂
2
yjyp

ui
ε2 − ε(a + H)pj∂yj

ui
ε2∂ypV , theL2-converging part Conviε(ω, y) =

−(1/2)(a+H)pjDp∂yj
ui

ε2 andL2-diverging part Diviε(ω, y) = [bj∂yj
ui

ε2+Corriε−Conviε](ω, y).
From the previous calculation, Divi

ε satisfies the ”Poincaré inequality” (37), namely that for

any functionϕ in CΠ, MV

[
Ψεϕ

]
≤

(
MV [|∂yu

i
ε2 |2]

)1/2(
MV [|(D + ε∂y)ϕ|2]

)1/2
. Moreover,

Proposition 6.3 ensures thatε
(
MV [|∂yu

i
ε2|2]

)1/2 → asε goes to0. Consequently, (38) holds
for Divi

ε. Thanks to Proposition 6.3, the family(Corriε)ε converges inL2(Ω× R
d; PV ) towards

0. As a consequence,̄Eε
[( ∫ t

0 Corriε(X
ε
r,X

ε
r ) dr

)2]
tends to0 asε goes to0. Then, Theorem

8.1 ensures that̄Eε
[
sup0≤t≤T |

∫ t
0 Conviε(X

ε
,Xε

r ) dr −
∫ t
0 Γ(Xε

r ) dr|2
]
→ 0 asε → 0, where

Γ(y) ≡ limλ→0−(1/2)M
[
(a+H)pjDp∂yj

ui
λ(·, y)

]
. To sum up, this proves that

(44) Ē
ε
[

sup
0≤t≤T

|
∫ t

0
b · ∂yu

i
ε2(X

ε
,Xε

r ) dr −
∫ t

0
Γ(Xε

r ) dr|2
]
→ 0

asε tends to0.
Concerning the martingale partΘ4,ε, it suffices to apply Theorem 8.1 to the quadratic vari-

ations.
Hence each possible limit pointX in C[0, t]; Rd) of the processXε must solve the mar-

tingale problemXt = x +
∫ t
0 B(Xr) dr +

∫ t
0 A

1/2
(Xr) dBr, where the entries of̄B are given

by

Bi = lim
λ→0

M
[
− (1/2)(a +H)pjDp∂yj

ui
λ + cj(δij +Dju

i
λ) + apjDj∂ypu

i
λ

]

= lim
λ→0

M
[
(1/2)(a +H)pjDp∂yj

ui
λ + cj(δij +Dju

i
λ)

]

=
e2V

2
∂yj

(
e−2V lim

λ→0
M

[
(a+H)pj(δij +Dpu

i
λ)

])
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Thanks to Proposition 3.2, it is readily seen that the coefficientsB andA
1/2

are two times
continuously differentiable with bounded derivatives up to order two. In particular, they are
Lipschitzian and there exists a unique solution to the corresponding martingale problem.

Proof of Proposition 3.2. The strategy consists in introducing the homogenized diffusion co-
efficient associated to the operatorS̃ and in comparing it withĀ(y). So we define thed × d
nonnegative symmetric matrix̃A as the unique symmetric matrix satisfying (this is the classical
variational formula for the homogenized coefficient associated toS̃, see [10] for further details)

(45) ∀x ∈ R
d, 〈x, Ãx〉 = inf

ϕ∈C
M

[
|σ̃∗(Dϕ+ x)|2

]
.

Due to Assumption 2.4, we have for each functionϕ ∈ C,

M−1〈x, Ãx〉 ≤M−1
M

[
|σ̃∗(Dϕ+ x)|2

]
≤M

[
|σ∗(·, y)(Dϕ + x)|2

]
.

SinceC is dense inH1, we can chooseϕ = uλ(·, y) · x and then pass to the limit asλ tends to
0. We obtainM−1〈x, Ãx〉 ≤ 〈x,A(y)x〉.

Now we turn to the auxiliary problems (subsection 6). Denoting by L the closure of
{σ̃∗ζ, ζ ∈ L2(Ω; Rd)}, we can extendT y to the wholeL as follows

(46) ∀ζ,θ ∈ L2(Ω,Rd), T y(σ̃∗ζ, σ̃∗θ) = (1/2)
(
[a+H ](·, y)ζ,θ

)
2
.

The underlying quadratic form is still denoted byT y(·). Furthermore, from Assumption 2.4,
for some positive constantC only depending onM , we have

(47) T y(σ̃∗ζ, σ̃∗θ) ≤ CT y(σ̃∗ζ)1/2T y(σ̃∗θ)1/2.

Equation (24) then reads, for any functionϕ ∈ C,
(48)
∀x ∈ R

d, T y(ξ̃(·, y)x, σ̃∗Dϕ) = −(1/2)([a +H ](·, y)x,Dϕ
)
2

= −T y(σ̃∗x, σ̃∗Dϕ).

From (10a), (46) and (48), we have for any functionϕ ∈ C

〈x,A(y)x〉 = 2 lim
λ→0

T y
(
σ̃∗x+∇eσuλ(·, y)x

)
= 2T y(σ̃∗x+ ξ̃(·, y)x)

= 2T y(σ̃∗x+ ξ̃(·, y)x, σ̃∗x+ σ̃∗Dϕ)

≤ 2CT y(σ̃∗x+ ξ̃(·, y)x)1/2T y(σ̃∗x+ σ̃∗Dϕ)1/2.

Gathering this with the inequalityT y(σ̃∗x+ σ̃∗Dϕ) ≤ MM
[
|σ̃∗x+ σ̃∗Dϕ|2

]
and (45), we

deduce〈x,A(y)x〉 ≤ 2C2M〈x, Ãx〉.
It just remains to prove that the drift termB is orthogonal toK = KerA(y). Due to

(10c) and the fact thatK = KerA(y) does not depend ony ∈ R
d, it suffices to prove that

KerH(y) ⊂ KerA(y) = K. But this is an easy consequence of (10a), (10b) and Assumption
2.4, especially|H(ω, y)| ≤M2a(ω, y).
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10 Tightness

We now turn to the tightness of the processXε, ie we want to prove that the family(Xε)ε is tight
in C([0, T ],Rd) equipped with the uniform topology. That step of our result deeply differs from
the uniform elliptic case [13]. Indeed, uniform ellipticity of the diffusion matrix provides strong
transition density estimates of the processXε, the so-called Aronson estimates, from which the
tightness ofXε is then easily derived. Of course, in the degenerate framework, tightness ofXε

cannot be tackled this way. The method presented below is inspired from [15] and is based on
the idea that the processXε is not too far from being reversible at a microscopic scale. The
contributions of the macroscopic variations make a drift appear, unlike in [15].

Let us now go into details. As in Section 6, we can solve the following equation fori =
1, . . . , d andλ > 0

(49) λwi
λ(., y) − Sywi

λ(., y) = bi(., y)

and get the same properties as in Proposition 6.3, namely

Proposition 10.1. For each fixedy ∈ R
d and1 ≤ i ≤ d, the family(∇eσwi

λ(., y))λ converges
to a limit ζ̃i(., y) ∈ L2(Ω)d as λ goes to0. The same property holds for the derivatives,
that is, the families(∇eσ∂yj

wi
λ)λ, (∇eσ∂2

yjyk
wi

λ)λ (1 ≤ i, j, k ≤ d) respectively converge to

∂yj
ζ̃i(., y), ∂

2
yjyjkζ̃i(., y) in L2(Ω)d. Furthermore, the functionwi

λ as well as its derivatives

∂yj
wi

λ, ∂2
yjyk

wi
λ satisfy (6.3) and estimates(22) and (23), for some positive constantC10.1

independent ofλ > 0 andy ∈ R
d.

As in the proof of Theorem 8.2, we want to use a time reversal argument. Once again, we
are faced with the lack of smoothness ofwλ in order to apply the Itô formula. To overcome
this difficulty, we proceed as in Section 7. Since the arguments are quite similar, we just outline
the main ideas without further details. Let us consider, forn ≥ 1, λ > 0 and1 ≤ i ≤ d, the
solutionwi,n

λ of the following equation

(50) λwi,n
λ (., y)− Syw

i,n
λ (., y) − n−1∆wi,n

λ (., y) = bi(., y)

Introducing a sequence of regularizing sequence of mollifiers (̺m)m∈N ∈ C∞
c (Rd × R

d)
(smooth functions with compact support), we define

w
i,n
λ,m(ω, y) =

∫

R2d

w
i,n
λ (τ ′xω, y − y′)̺m(x′, y′) dx′ dy′,

which is a smooth function. Following the proof of Theorem 8.2, under the invariant measure
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e−2V (x) dx of the processXn,ε, we can write

wi,n
ε2,m

(X
n,ε
t ,Xn,ε

t ) =wi,n
ε2,m

(X
n,ε
s ,Xn,ε

s ) +

∫ t

s
[Ln,ε(wi,n

ε2,m
(·/ε, ·))](Xn,ε

r ,Xn,ε
r ) dr(51)

+ (
−→Mε,n,m

t −−→Mε,n,m
s ),

wi,n
ε2,m

(X
n,ε
s ,Xn,ε

s ) =wi,n
ε2,m

(X
n,ε
t ,Xn,ε

t ) +

∫ t

s
[(Lε)∗(wi,n

ε2,m
(·/ε, ·))](Xn,ε

r ,Xn,ε
r ) dr(52)

+ (
←−Mε,n,m

t −←−Mε,n,m
s ),

where
−→Mε,n,m and

←−Mε,n,m are two martingales respectively with respect to the forward filtra-
tion (Fn,ε

s )0≤s≤T ≡ σ {Xn,ε
r ; 0 ≤ r ≤ s} and with respect to the backward filtration(Gn,ε

s )0≤s≤T ≡
σ {Xn,ε

r ; s ≤ r ≤ T}. The quadratic variations of both martingales match

ǫ−2

∫ .

0
(Dwi,n

ε2,m
+ ε∂yw

i,n
ε2,m

)∗(a+ n−1Id)(Dwi,n
ε2,m

+ ε∂yw
i,n
ε2,m

)(X
n,ε
r ,Xn,ε

r ) dr.

Adding up (51) and (52), passing to the limit asm→∞ (as explained in [13, Lemma 5.3]) and
n→∞ (as explained in Section 7) and using (49) leads to

ε−1

∫ t

s
bi(X

ε
r,X

ε
r ) dr =

∫ t

s
[εwi

ε2 + (1/2)trace(aD∂yw
i
ε2)](X

ε
r,X

ε
r ) dr(53)

+

∫ t

s

e2V

2

[
divy

(
e−2V a[Dwi

ε2 + ε∂yw
i
ε2]

)]
(X

ε
r,X

ε
r ) dr

+ (1/2)

∫ t

s
Div(a) · ∂yw

i
ε2(X

ε
r,X

ε
r ) dr

+ ε(
−→Mε

t −
−→Mε

s) + ε(
←−Mε

t −
←−Mε

s)

≡ E1,ε
s,t + E2,ε

s,t + T 1,ε
s,t + T 2,ε

s,t ,

whereε
−→Mε andε

←−Mε are two martingales, respectively with respect to the forward filtration
(Fε

s )0≤s≤T ≡ σ {Xε
r ; 0 ≤ r ≤ s} and with respect to the backward filtration(Gε

s)0≤s≤T ≡
σ {Xε

r ; s ≤ r ≤ T}, with quadratic variations

(54)
∫ .

0
(Dwi

ε2 + ε∂yw
i
ε2)

∗a(Dwi
ε2 + ε∂yw

i
ε2)(X

ε
r,X

ε
r ) dr.

Theorem 8.1 establishes the following convergence

lim
ε→0

Ē
ε
[

sup
0≤t≤T

∣∣∣E1,ε
0,t + E2,ε

0,t −
∫ t

0
Ḡ(Xε

r ) dr
∣∣∣
]

= 0,
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where
Ḡ(y) = M

[
(1/2)trace(σ∂yξi)(., y) + (e2V /2)divy

(
e−2V σξi

)
(., y)

)]
.

From Proposition 10.1 and (22),̄G is bounded so that the tightness of the processt 7→
∫ t
0 Ḡ(Xε

r ) dr
in C([0, T ],R) results from the Kolmogorov criterion. The tightness ofE1,ε + E2,ε follows.

Let us investigate now the termT 1,ε
s,t = (1/2)

∫ t
s Div(a)·∂yw

i
ε2(X

ε
r,X

ε
r ) dr. Note that it can

not be treated with Theorem 8.1 because theL2-norm ofDiv(a)∂ywε2 need not be bounded.
Inspired by the proof of Theorem 3.1 in Section 9, we define

Ψ
i
ε ≡ Div(a)·∂yw

i
ε2+trace(aD∂yw

i
ε2)+εdivy(a)·∂yw

i
ε2+εtrace(a∂

2
yyw

i
ε2)−2εapj∂yj

ui
ε2∂ypV.

By making two successive integrations by parts as in Section9, we establish for anyϕ ∈
C × C∞

0 (Rd):

MV [Ψi
ε,ϕ] = −MV [a∂yw

i
ε2 · (Dϕ+ ε∂yϕ)]

Prop. 10.1
≤ CεMV [|σ∗(Dϕ+ ε∂yϕ)|2]1/2,

where the family(εCε)ε converges to0 asε goes to0. Theorem 8.2 then ensures that

Ē
ε
[

sup
0≤s≤t

( ∫ t

s
Ψε(X

ε
r,X

ε
r ) dr

)2]
→ 0

asε goes to0. Thanks to Theorem 8.1 and Proposition 10.1, we have

Ē
ε
[

sup
0≤s≤t

∣∣
∫ s

0
trace(aD∂ywε2)(X

ε
r,X

ε
r ) dr −

∫ s

0
Φ̄(Xε

r ) dr
∣∣2

]
→ 0

asε goes to0, whereΦ̄(y) = limε→0 M[trace(aD∂ywε2)(·, y)]. The Kolmogorov criterion
and Proposition 10.1 ensure the tightness inC([0, t]; R) of the process

∫ ·
0 Φ̄(Xε

r ) dr. More-
over, from Proposition 10.1 and (30), the process

∫ .
0

[
εdivy(a) · ∂yw

i
ε2 + εtrace(a∂2

yyw
i
ε2) −

2εapj∂yj
ui

ε2∂ypV
]
(X

ε
r,X

ε
r ) dr converges in law inC([0, T ]; R) to 0. This proves the tightness

of T 1,ε in C([0, t]; Rd).
It just remains to treat the martingale termT 2,ε. According to Theorem 4.13 in [6], it

suffices to establish the tightness of the brackets of these two martingales (see (54)). Their
tightness results from Theorem 8.1, Proposition 10.1 and the Kolmogorov criterion again. The
tightness ofXε is now clear.
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