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Revisiting the constitutive equations of unsaturated porous solids
using a Lagrangian saturation concept
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SUMMARY

This paper aims at revisiting the constitutive equations of unsaturated porous solids at the light of a
Lagrangian saturation concept. By referring the currently wetted porous volume to the reference con-
figuration, the Lagrangian saturation is the state variable associated with the interfacial energy changes
only, irrespective of the elastic energy required for deforming the solid matrix. The Lagrangian saturation
concept provides the basis of a generic approach to the theory of poroelastoplasticity in unsaturated
conditions. We successively examine the case where the saturating fluids occupy disconnected networks
and the case where the networks are connected so that the saturating fluids can invade the porous solid
or recede from it. The analysis provides the restricted situations where the averaged pore pressure may
play the role of an effective pore pressure. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The understanding of the mechanical behaviour of unsaturated porous solids is relevant to various
materials and applications. Examples are many: cement-based materials in civil engineering, woods
in building industry, rocks and soils in geosciences, gels in physical chemistry, living tissues and
bones in biomechanics, etc. Although most of the physical phenomena to which these materials
are subjected are the same, namely consolidation, temperature changes, drying shrinkage, cryo-
suction, osmotic phenomena, etc., similar early approaches have been often separately elaborated,
depending on the context of applications. We may, for instance, refer to the celebrated pioneering
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1676 O. COUSSY

works of Terzaghi in soil mechanics [1], of Biot in rocks mechanics [2], and of Powers in cement-
based materials science [3].

Through the years a global consensus has emerged that, whatever the targeted applications,
the mechanics of fully or partially saturated porous media may be successfully addressed with
the general tools of continuum mechanics. The difficulty of extending continuum mechanics to
fluid-infiltrated porous media resides in the two-phase character of the medium. Two steps have to
be distinguished. The first step is to extend the macroscopic balance laws of continuum mechanics,
relative to the mass, the momentum, the energy, and the entropy, to a multiphase porous medium.
Nowadays, based on extensive works this goal may be considered as satisfactorily achieved.
The most convincing approach is to work out averaging methods. Starting from the microscopic
scale, that is, from the scale of the material points within the constitutive phases themselves,
they provide the field equations which can be ultimately associated with a multiphase continuum.
Without pretending to the exhaustiveness, we refer the reader to [4–11]. Another close intermediary
viewpoint is to express the balance laws by starting from the mesoscopic scale, that is, from the
scale of the constitutive phases already considered as material points. This viewpoint has been
initiated early by Biot [2, 12], and extensively developed in [13–15]. It has been shown that both
viewpoints are finally equivalent [16].

Once the balance laws are derived, the second step is to extend the usual constitutive equations
of solids to fluid-infiltrated porous solids. The cornerstone of this extension is the multiphase
Clausius–Duhem inequality resulting from the first and the second laws of thermodynamics relative
to the macroscopic scale of the elementary representative volume. This inequality permits the
determination of the couples of state variables which are energy conjugate. This determination
is the basis of the derivation of the general form that the constitutive equations have to take
for each wide class of behaviours (elastic, plastic, etc.), in order to be consistent regarding the
transformations of energy whatever the scale at which these transformations actually occur. Once
the constitutive equations derived from this non-questionable thermodynamic basis, micro–macro
considerations [11] may then be subsequently and independently used for providing assessments
of the macroscopic properties these constitutive equations involve. In saturated conditions, the
theory of poroelasticity, as initiated by Biot [2] for infinitesimal transformations, and its natural
extension to poroplasticity, are now widely accepted as the consistent extension to fluid-infiltrated
porous solids of the usual theory of elastoplasticity of solids (see [17, 18], for an introduction to
poroelasticity, and among others [15, 19] for irreversible behaviours). In addition to the macroscopic
stress, the pore pressure plays the role of an extra loading parameter, acting on the internal solid
walls of the porous solid. The pore pressure energy conjugate variable is then identified with the
change in porosity.

The extension of saturated constitutive equations to unsaturated conditions is still a matter of
debate. In order to recover the familiar saturated conditions, this extension is often worked out
through the quest of a unique ‘effective’ pore pressure accounting equivalently for the effects of
the pressure of all the saturating fluids acting separately on the internal solid walls. Among other
works, we refer the reader to [20–24]. The natural candidate for this effective pore pressure is the
space-averaged pore pressure. The averaged pressure is the sum of the fluid pressures weighted by
the pore volume fraction related to each fluid. The pore volume fraction used in the summation is
generally defined with regard to the current overall porous volume. Such a pore volume fraction
may be coined as the Eulerian saturation since it refers to the current configuration. Since the current
configuration undergoes a deformation, there is a contribution of the current pore deformation to
the Eulerian saturation. As a consequence, an infinitesimal change in the Eulerian saturation does
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UNSATURATED CONSTITUTIVE EQUATIONS USING A LAGRANGIAN SATURATION 1677

not only relate to the further invasion of the porous volume by the corresponding fluid, but also
to the further deformation of the porous volume already invaded by the same fluid. Irrespective of
the assumption of infinitesimal transformations, this precludes the use of the Eulerian saturation
from providing an energy balance accounting for the energy involved in the invasion process
separately from that involved in the deformation process. The purpose of this paper is to overcome
this difficulty by using a Lagrangian saturation concept recently introduced in [25, 26] to address
the mechanics of confined crystallization. In contrast to the Eulerian saturation, the Lagrangian
saturation refers the current saturation process to the initial configuration and thereby is irrespective
of the pore deformation. This concept will reveal as being efficient to separately capture the case of
disconnected networks, where the saturating fluids remain in contact with the same internal solid
walls, and the case of connected networks, where new solid–fluid interfaces are created during the
drainage or the imbibition of the porous solid.

In order to introduce the general energy viewpoint and concepts extensively used later on, we
first revisit the familiar case of saturated porous solids, showing that the theory holds irrespective
of the ideal or non-ideal character of the saturating solution. In the second section, we extend
the approach to unsaturated conditions where the saturating fluids occupy disconnected networks.
We show that the validity of using the space-averaged pore pressure as an effective pore pressure
is founded on the assumption of the iso-deformation of the porous networks. This assumption
remains questionable for most of the natural porous materials so that the validity of the effective
pore pressure concept turns out to be limited. In the last section, we show how the Lagrangian
saturation concept is the key to the extension of the previous analysis to the more difficult case of
connected networks, by capturing the particular role played by the change in the energy associated
with the solid–fluid interface in the formulation of the constitutive equations of unsaturated porous
solids. The relevance of using the net stress and the capillary pressure as effective stresses, which
has been proved to be appropriate in the specific context of soil mechanics [27], can be finally
explored in this more general context.

2. REVISITING SATURATED POROELASTOPLASTICITY

The thermodynamics of heterogeneous substances goes back to the works of Gibbs [28] and
Duhem [29]. They have furnished the long-celebrated Gibbs–Duhem equation extensively used in
the thermodynamics of mixtures. Affiliated with the same energy approach, the thermodynamics
of non-rigid saturated porous materials have been initiated by Biot [12], allowing to extend
the Clausius–Duhem inequality to porous solids [13, 15]. The Clausius–Duhem inequality is the
cornerstone of any energy approach to the constitutive equations of materials. This section intends
to briefly revisit the thermodynamics of saturated porous solids in order to provide the natural
framework to further explore unsaturated conditions.

2.1. Lagrangian and Eulerian porosity: solid matrix incompressibility

Consider an infinitesimal representative element of porous solid extracted from a porous continuum.
This element of porous solid consists of both a solid matrix (the solid mineral for a rock, the solid
grains for a soil), and a connected porous volume which may be filled by one (saturated conditions)
or several fluids (unsaturated conditions). In the undeformed reference configuration the overall
volume of the porous solid element is d�0. Its porous volume is �0 × d�0, where �0 stands for the
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1678 O. COUSSY

(initial) porosity. At current time t the porous volume is � × d�0, where � stands for the current
porosity. Since porosity � refers the current porous volume to the reference volume d�0, � can
be coined as the Lagrangian porosity [15]. Let � then be defined as the change in the Lagrangian
porosity, that is

� = � − �0 (1)

so that �× d�0 captures the overall change of the porous volume with regard to the reference
configuration. As any strain related to a (porous) solid, � is also a Lagrangian variable.

The current porous volume may also be referred to the current overall volume d� of the porous
solid element. The related porosity is the Eulerian porosity n defined by

n × d�= �× d�0 (2)

In all that follows we will restrict ourselves to infinitesimal strains, the extension to finite transfor-
mations presenting no specific difficulty with regard to standard continuum mechanics (see [15]).
If � denotes the overall volumetric strain of the porous solid, the current overall volume d� is then
linked to the initial volume d�0 by

d�= (1 + �) d�0 (3)

so that

� = (1 + �)n (4)

From (4) one might think that the Lagrangian porosity � and the Eulerian porosity n may be
indifferently used under the assumption of infinitesimal strains where �� 1. This is not correct
with regard to their infinitesimal variations. In fact, since n0 = �0 and that � dn is a second-order
term, from (1) and (4) we get

d�= d�� dn + �0 d� (5)

The strain work per unit of initial volume d�0 related to the porous solid associated with the pore
pressure p applying on the internal solid walls of the porous network is p d�= p d� �= p dn. The
use of expression p dn instead of p d� would mislead to neglect the term p�0 d� which, according
to (5), has the same order of magnitude as p dn, even under the assumption of infinitesimal strains.
As a conclusion, even in the usual case of infinitesimal strains, a distinction has still to be made
between the Lagrangian porosity and the Eulerian porosity, whereas the use of the former must
be preferred.

The overall volumetric strain � of the porous solid results from both the volumetric strain �s of
its solid part, i.e. the solid matrix, and from the change � of the Lagrangian porosity. The balance
of all the volume changes [15] provides the relation

�= (1 − �0)�s + � (6)

For some usual porous solids, as for instance soils, the solid matrix is formed of incompressible
grains so that �s = 0 and the previous relation reduces to

� = � (7)
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2.2. Gibbs–Duhem equality for the saturating solution

In this first section, the porous volume is assumed to remain fully saturated by a solution. However,
the solution is assumed to be a mixture formed of several species. The species are referred to by
index � = 1, 2 . . . . Let then n� × d�0 be the number of moles of the species � currently present in
the porous volume occupied by the solution, so that n� represents the (Lagrangian) macroscopic or
apparent molar density of species �. Let p be the pressure of the solution and �� the current molar
chemical potential of species �. The isothermal Gibbs–Duhem equality related to the solution can
be written in the form

� dp − n� d�� = 0 (8)

2.3. State equations of saturated poroelasticity

During its physical evolution the system d�0 exchanges moles of species � with the adjacent
infinitesimal systems forming the two-phase continuum so that d�0 is an open thermodynamic
system. To derive the associated Clausius–Duhem equality, let then �i j be the overall stress
components to which the system d�0 is subjected; let also εi j be the current overall infinitesimal
strain components capturing the deformation with regard to the reference configuration. Finally,
let Fop be the overall Helmholtz free energy of the open element per unit of its initial volume
d�0, that is, including both the free energy of the solid part of the porous solid and that of the
saturating solution. The first and the second laws of thermodynamics applied to the open system
d�0 between times t and t + dt combine to provide the isothermal Clausius–Duhem inequality in
the form

�i j dεi j + ∑
�

�� dn� − dFop�0 (9)

In addition to the familiar strain work �i j dεi j related to the deformation of the infinitesimal
element d�0, the added term �� dn� is the free energy supply associated with the change in the
molar content dn� of species �. Inequality (9) states that the difference between the overall free
energy supply whatever its form, and the infinitesimal free energy dFop eventually stored by the
open system, cannot be negative since it is possibly dissipated into heat.

From the energy balance (9) related to the open system d�0, we want now to extract the energy
balance related to the porous solid only, the porous solid being the material obtained by removing
the bulk solution and whose internal solid walls are subjected to pressure p of the solution. Let
then F be the Helmholtz free energy of the porous solid per unit of its initial volume d�0. As a
direct consequence of the additive character of the free energy, the Helmholtz free energy of the
porous solid can be written in the form

F = Fop −
(∑

�
n��� − �p

)
(10)

Using (8) and (10) into (9), we get

�i j dεi j + p d� − dF�0 (11)

Energy balance (11) holds irrespective of the solution composition and, thereby, of its ideal or
non-ideal character. Actually, it relates to the porous solid only, the extra term p d� accounting
for the work supplied to the porous solid through its internal solid walls whatever the origin of
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the pore pressure p. Owing to the additive character of energy, F is also the free energy of the
solid matrix forming the solid part of the porous solid. In order to emphasize this aspect, referring
to the solid matrix by index s, we write

F = Fs (12)

Use of (1) and (12) allows us to rewrite (11) in the equivalent form

�i j dεi j + p d� − dFs�0 (13)

For a porous elastic solid (poroelastic solid) there is no dissipation and (13) reduces to an equality

�i j dεi j + p d� − dFs = 0 (14)

From (14) we finally obtain the state equations of saturated poroelasticity in the form

�i j = �Fs
�εi j

, p= �Fs
��

(15)

2.4. Linear poroelasticity and poroelastic properties

Alternatively, we can introduce the Legendre transform Ws of Fs with regard to �

Ws = Fs − �p (16)

and rewrite (13) in the form

�i j dεi j − � dp − dWs = 0 (17)

From (17) we now derive the state equations of saturated poroelasticity in the form

�i j = �Ws

�εi j
, �= −�Ws

�p
(18)

For the sake of simplicity, we adopt a reference configuration free of stress and pore pressure.
In linear poroelasticity, Ws is then a quadratic form of its arguments εi j and p. Restricting to an
isotropic porous solid and letting again � be the volumetric strain εkk , from (18) we finally get

�i j = (K − 2G/3)��i j + 2Gεi j − bp�i j (19)

� = b� + p/N (20)

where properties K and G are the bulk modulus and the shear modulus of the empty porous solid,
that is, with a zero pore pressure (p= 0); poroelastic properties b and N are, respectively, the Biot
coefficient [2] and the Biot modulus [14]. These macroscopic poroelastic properties are linked to
the bulk modulus ks of the solid matrix forming the solid part of the porous solid according to the
well-known relations (see, for instance, [15])

b= 1 − K/ks, 1/N = (b − �0)/ks (21)

Constitutive equation (19) may be formally rewritten in the form

�′′
i j = (K − 2G/3)��i j + 2Gεi j (22)
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where

�′′
i j = �i j + bp�i j (23)

may be coined as Biot’s effective stress since constitutive equation (22) looks the same as the
one related to an ordinary elastic solid with K and G as elastic properties. If the solid matrix is
incompressible (�s = 0 in (6)), ks goes to infinity so that b goes to 1 and 1/N goes to zero in (21).
As expected constitutive equation (20) then reduces to relation (7) expressing the incompressibility
of the solid matrix while Biot’s effective stress �′′

i j reduces to the celebrated Terzaghi’s effective
stress �′

i j of soil mechanics defined by

�′
i j = �i j + p�i j (24)

Constitutive equations (19) and (20) can be easily extended to thermoporoelasticity in the form

�i j = (K − 2G/3)��i j + 2Gεi j − bp�i j − 3aK��i j (25)

� = b� + p/N + 3a�� (26)

where 3a and 3a� are the volumetric thermal dilation coefficients related, respectively, to the
empty porous solid and to the porous volume. It can be shown (see, for instance, [15])

a = �s, a� = �s(b − �0) (27)

where 3�s is the volumetric thermal dilation coefficient of the solid matrix.

2.5. Saturated poroplasticity

Saturated poroelasticity can be easily extended to saturated poroplasticity by considering the plastic
deformation ε

p
i j and the plastic change of porosity �p. For the sake of simplicity, we will restrict

to ideal poroplasticity, ignoring possible hardening effects which can be easily addressed in the
general framework proposed here (for hardening effects and the associated frozen energy see,
for instance, [15, 30]). Accordingly, the free energy F has for arguments the elastic deformation
εi j − ε

p
i j and the elastic change of porosity � − �p. We write

Fs = Fs(εi j − ε
p
i j , � − �p) (28)

Substitution of (28) in (13) and use of (15) provide

�i j dε
p
i j + p d�p�0 (29)

In the general case, ε
p
i j and �p are independent variables and will be governed by separate flow

rules so that the plastic yield function f will have �i j and p as separate arguments. Restricting to
associated flow rules for the sake of simplicity, we write

dεpi j = d	
� f (�i j , p)

��i j
, d�p = d	

� f (�i j , p)

�p
(30)

where d	 stands for the plastic multiplier.
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1682 O. COUSSY

From (6), irrespective of saturated or unsaturated conditions, we get the plastic volume balance
in the form

dεpkk = d�p = (1 − �0) d�
p
s + d�p (31)

In the particular case of a plastically incompressible solid matrix, that is d�ps = 0, the previous
volume balance reduces to

dεpkk = d�p (32)

Substitution of (32) in (29) provides

�′
i j dε

p
i j�0 (33)

where �′
i j is Terzaghi’s effective stress we defined in (24). According to (30) and (33), the

plastic yield function f has then to take the specific form f = f (�′
i j ). Since the solid matrix

forming the solid part of the porous solid may be simultaneously elastically compressible (that is,
ks �=∞, b �= 1) and plastically incompressible (that is, (32) holds), Biot’s (elastic) effective stress,
�′′
i j = �i j + bp�i j , and Terzaghi’s (plastic) effective stress, �′

i j , may be simultaneously relevant for
the same porous material without necessarily coinciding.

3. UNSATURATED POROELASTOPLASTICITY FOR DISCONNECTED NETWORKS

3.1. Lagrangian saturation

We now consider the case where the porous volume is formed of two disconnected porous net-
works referred to by index J = 1, 2. By disconnected we mean that the porous networks are not
communicating so that each porous network J remains fully saturated by the same fluid J in all
the subsequent evolutions of the porous solid. The overall porosity is �0 in the reference initial
configuration, and � in the current configuration. The overall porosity � can be split into two
partial (Lagrangian) porosities, �1 and �2, according to

�= �1 + �2 (34)

Similarly to the overall porosity, the current partial porosity �J may be written in the form

�J =�0SJ + �J , S1 + S2 = 1 (35)

Substituting the decomposition (35) of �J in (34), and the result of this substitution in (1), the
overall change � of the initial porosity �0 which can be due only to the deformation, is now split
into the contributions �1 and �2 related to each network according to

�=� − �0 = �1 + �2 (36)

Since �J finally represents in (35) the contribution to the partial porosity �J due only to the
deformation of the porous network J , the term �0SJ is the current partial saturation related to the
fluid J prior to any deformation. In this section, the two porous networks are disconnected so that
each fluid occupies a part of the porous volume which is always delimited by the same internal
solid walls. As a result SJ will remain constant, resulting in dSJ = 0, and the variation of the
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partial Lagrangian porosity �J is only due to the deformation of the porous network J, resulting
in d�J = d�J . As explored in the next section, this will be no longer true in the case of connected
porous networks since each fluid may then invade the porous solid, or recede from it so that the
fluids do not remain in contact with the same internal solid walls throughout the evolutions of the
porous solid.

The current partial saturation sJ is more usually defined with regard to the deformed current
configuration according to

�J = �sJ , s1 + s2 = 1 (37)

In contrast to SJ , even in the case of disconnected porous networks, the saturation sJ will not
remain constant because of the deformation of the porous volume. Saturation sJ stands for the
current volume fraction of fluid J relatively to the deformed current porous volume �× d�0 so
that it can be coined as the Eulerian saturation. In contrast SJ is always related to the undeformed
initial porous volume �0 × d�0 and it can be coined as the Lagrangian saturation. As for the
porosity in saturated conditions, the use of the Lagrangian saturation SJ , instead of the Eulerian
saturation sJ , will shortly turn out to be more efficient, even in case of infinitesimal strains.

3.2. Unsaturated thermoporoelasticity

With definition (35), energy balance (14) extends in the form

�i j dεi j + p1 d�1 + p2 d�2 − dFs = 0 (38)

and, analogously to (15), we have

�i j = �Fs
�εi j

, p1 = �Fs
��1

, p2 = �Fs
��2

(39)

Accordingly, constitutive equations (25) and (26) extend in the form

�i j = (K − 2G/3)��i j + 2Gεi j − b1 p1�i j − b2 p2�i j − 3aK��i j (40)

�1 = b1� + p1/N11 + p2/N12 + 3a1� (41)

�2 = b2� + p1/N12 + p2/N22 + 3a2� (42)

When p1 = p2 we must retrieve the saturated case so that we get

b= b1 + b2, 1/N11 + 2/N12 + 1/N22 = 1/N , a1 + a2 = a� (43)

where b, N and a� are the thermoporoelastic properties related to the porous solid previously
introduced and, thereby, still subjected to relations (21) and (27). It can be further shown (see [14]
and Appendix A) that

1/NJ J + 1/N12 = (bJ − �0SJ )/ks, aJ = �s(bJ − �0SJ ) (44)

3.3. Effective pore pressure and the iso-deformation assumption

The first relation of (43) allows us to write

b1 = b
, b2 = b(1 − 
) (45)
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1684 O. COUSSY

where 
 is a constant depending on the fixed Lagrangian saturation S1. Using relations (21),
(43)–(45) in (40), we get

�i j = (K − 2G/3)��i j + 2Gεi j − b[
p1 + (1 − 
)p2]�i j − 3aK��i j (46)

� = �1 + �2 = b� + {[b
 − �0S1]p1+[b(1−
)−�0S2]p2}/[N (b−�0)]+3a�� (47)

If we replace the pore pressure p by 
p1 + (1 − 
)p2 in the constitutive equation (25) related
to the saturated case, we get (46). On this only basis 
p1 + (1 − 
)p2 is often claimed to act
as an effective pore pressure as the pore pressure p does in the saturated case. Unfortunately,
the substitution of p= 
p1 + (1 − 
)p2 in the second constitutive equation (26) does not provide
(47). In fact, with no further information, relations (43) and (44) capitalize all that can be actually
derived in the unsaturated isotropic poroelastic case.

A useful assumption, sometimes implicitly made [8, 15], or explicitly explored [31], may be
the iso-deformation of the two porous networks. This assumption states that the porous volume
occupied by each of the two fluids deforms the same whenever they are subjected to no pressure
and temperature variations. This assumption amounts to writing

p1 = p2 = � = 0 : �1/(�0S1) = �2/(�0S2) (48)

Substitution of (48) in (41) and (42) provides

b1/S1 = b2/S2 (49)

Substituting (49) in the first of relations (43), we get the identification

bJ = bSJ , 
 = S1 (50)

Because of relations (44) and (50), it can be easily shown that the porous volumes related to each
fluid keep deforming the same provided they are subjected to the same pressure and temperature
variations (see Appendix A). Using (50) in (46) and (47), constitutive equations (25) and (26) of
saturated thermoporoelasticity are now both retrieved, provided that the effective pore pressure p is
identified with S1 p1 + S2 p2. Although the inappropriate use of the Eulerian saturations sJ defined
in (37) may unfortunately lead to the opposite conclusion (see [15] and Appendix B), the pressure
S1 p1 + S2 p2 may play the role of an effective pore pressure if and only if the iso-deformation
assumption (48) holds. This conclusion has been already reached in [31] from micromechanical
arguments. The iso-deformation assumption (48) holds in limited situations. For instance it holds
in the dilute approximation for spherical pores. Unfortunately, as soon as the dilute approximation
is no more relevant, it can be shown that (50) does not apply because of the coupling between the
deformation of pores having different sizes. Accordingly the use of S1 p1 + S2 p2 as an effective
pore pressure remains questionable for most of natural materials.

3.4. Unsaturated poroplasticity

Analogously to the saturated case, in addition to the plastic deformation ε
p
i j , unsaturated poro-

plasticity consists of considering a plastic change in partial porosity �p
J relatively to each porous

network so that (29) and (30) extend in the form

�i j dε
p
i j + p1 d�

p
1 + p2 d�

p
2�0 (51)
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and

dεpi j = d	
� f (�i j , p1, p2, S1)

��i j
, d�p

J = d	
� f (�i j , p1, p2, S1)

�pJ
(52)

The overall plastic porosity is the sum of the partial plastic porosity and we write

d�p = d�p
1 + d�p

2 (53)

As a consequence, the general relation (32) capturing the plastic incompressibility of the solid
matrix, i.e. d�ps = 0, is now expressed in the form

dεpkk = d�p
1 + d�p

2 (54)

According to (52) and (54), the plastic yield function f has then to take the specific form

f = f (�i j + p1�i j , �i j + p2�i j ) (55)

involving the two ‘effective stresses’ �i j + p1�i j and �i j + p2�i j . In contrast to the saturated
case, even though the plastic incompressibility condition (54) holds as for soils, no unique plastic
effective stress may thereby be unquestionably identified.

Relation (53) suggests the existence of a material constant � such that

d�p
1 = � d�p, d�p

2 = (1 − �) d�p (56)

depending, in particular, on the fixed Lagrangian saturation S1. However, it must be pointed out
that, in contrast to the material constant 
 defined by (45) and whose existence is ensured by
the linearity of the poroelastic behaviour, there is no reason that such a material constant � does
exist whatever the material considered. If a function � may always be formally introduced through
relation (56), in the general case its current value depends on the current loading (�i j , pJ ) through
the flow rule. The introduction of � will then present no actual interest. Relation (56), where � is a
material constant depending on S1, remains an assumption. Substituting then (56) in (51), we get

�i j dε
p
i j + [�p1 + (1 − �)p2] d�p�0 (57)

The parallel between (57) and (29) shows that �p1 + (1 − �)p2 plays the role of an effective
pressure now regarding the poroplastic behaviour. It is then tempting to extend the iso-deformation
assumption (48) to the plastic case in the form

� = S1, (d�p
J = SJ d�

p) (58)

so that �p1 + (1 − �)p2 is identified with the averaged pore pressure S1 p1 + S2 p2.
Combining the plastic incompressibility condition (32), with the plastic iso-deformation

assumption (58), (57) reduces to (33) provided that �′
i j is now identified with

�′
i j = �i j + (S1 p1 + S2 p2)�i j (59)

When letting S1 p1 + S2 p2 play the role of an effective pore pressure, Terzaghi’s definition (24)
of the effective stress with regard to the plastic behaviour is then ultimately recovered. However,
the plastic iso-deformation assumption (58) may hold only in limited situations, similar to the one
evoked when discussing the validity of the iso-deformation assumption (48).
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4. UNSATURATED POROELASTOPLASTICITY FOR CONNECTED NETWORKS

We now want to examine the more general case of connected porous networks. In this case,
the porous volume is partially saturated by a non-wetting fluid, referred to by index nwF, while
the remaining porous space is filled by a wetting fluid, referred to by wF. A familiar situation
encountered in many applications is the case where the wetting fluid is liquid water while the
non-wetting fluid is air. More generally they may be a gas or a liquid, pure fluids or mixtures. The
saturating fluids are only assumed to be immiscible and to remain connected. For water-infiltrated
granular materials like soils, this amounts to assuming that the liquid water content trapped in
the intergranular menisci in the air-dominated part of the porous volume is negligible and whose
effects can be accounted for through more specific approaches [32]. As for disconnected porous
networks, current partial (Lagrangian) porosities �wF and �nwF can then be associated with the
wetting and the non-wetting fluid, respectively, and (11) extends in the form

�i j dεi j + pwF d�wF + pnwF d�nwF − dF�0 (60)

4.1. Solid–fluid interface energy and the Lagrangian saturation

Similarly to (35), we now write

�wF =�0SwF + �wF, �nwF = �0SnwF + �nwF, SwF + SnwF = 1 (61)

However for connected porous networks, the fluids can now invade the porous solid, or recede
from it, so that they are no more in contact with the same internal solid walls delimiting the
porous network. As a result the Lagrangian saturations SwF and SnwF are no more constant.
The reference state may be conveniently chosen as fully saturated by one of the two fluids,
the wetting fluid, for instance, so that we have SwF = 1 in the reference state. The associated
initial pore pressure is generally equal to the atmospheric pressure taken as the zero pressure
reference. If now we force the non-wetting fluid to enter the porous solid by increasing the
pressure difference pnwF − pwF, the non-wetting fluid saturation SnwF will increase. The wetting
fluid will be simultaneously drained and SwF will decrease according to the last of relations (61).
During the drainage the porous networks simultaneously deform. As previously mentioned, owing
to its very definition the Lagrangian saturation SwF still refers the currently wetted zone to the
undeformed reference configuration. Actually, SwF�0 × d�0 is the porous volume delimited in the
undeformed reference configuration by the internal solid walls that will remain wetted in the current
deformed configuration. In the current deformed configuration the same wetted walls delimit the
deformed volume (SwF�0 + �wF) × d�0, the volume �wF × d�0 capturing the current change of
the initial porous volume SwF�0 × d�0 due to the deformation.

Substituting (61) in (60), we get

(�i j dεi j + pwF d�wF + pnwF d�nwF) − �0(pnwF − pwF) dSwF − dF�0 (62)

Owing to the previous analysis the first term in parenthesis is still identified with the strain work
supplied to the porous solid between time t and t + dt . The second term identifies with the energy
required to create new inner interfaces between the fluids and the solid matrix, provided that we
only consider the energy needed to make the interface between the two fluids move and we neglect
the energy needed to deform it. According to (62), and in contrast to the case of disconnected
networks, the free energy F does change not only because of the deformation of the porous
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solid, but also because of the change in the energy associated with the fluid–solid interface
resulting from the variation of SwF. As a result the identification (12) of F with the free energy
Fs of the solid matrix no longer holds. Accounting for the interface energy changes, but ignoring
the influence of the temperature for the sake of simplicity, we write

F = Fs(εi j ,�wF, �nwF, 
) + �0U (SwF) (63)

The first term Fs(εi j , �wF,�nwF, 
) still stands for the free energy associated with the solid matrix.
The current value of the free energy depends on the current partition of the porous volume between
the wetted part and the non-wetted part. This is captured through the dependence of F on the
variable 
, which itself is a function of the current saturation SwF and whose notation refers to
relation (45), anticipating relation (69). The term �0U accounts for the current value of the energy
of the interface between the solid and the fluids. Similar to the assumption implicitly made in
the saturated case, the effects of the deformation of the internal walls of the porous solid on the
interface energy are assumed to be negligible, so that only the Lagrangian saturation SwF has been
retained as argument of the interface energy U per unit of porous volume �0 × d�0.

4.2. Unsaturated poroelasticity and capillary hysteresis

In case of a poroelastic solid, analogously to state equations (39) we now write

�i j = �Fs
�εi j

, pwF = �Fs
��wF

, pnwF = �Fs
��nwF

(64)

Following the previous analysis we made for the case of disconnected porous networks and
restricting to isothermal conditions, (64) allows us to extend (40)–(42) in the form

�i j = (K − 2G/3)��i j + 2Gεi j − bwF pwF�i j − bnwF pnwF�i j (65)

�wF = bwF� + pwF/NwF−wF + pwF/NwF−nwF (66)

�nwF = bnwF� + pwF/NwF−nwF + pnwF/NnwF−nwF (67)

Substitution of (63) and (64) in (62) provides

−�0(pnwF − pwF) dSwF − �0 dU − �Fs
�


d
�0 (68)

In linear poroelasticity Fs is a quadratic function of its arguments, εi j , �nwF, and �nwF. The
coefficients of this form are function of 
 as, for instance, the coefficients bwF and bnwF which,
similar to b1 and b2 in (45), have to satisfy

bwF = b
(SwF), bnwF = b[1 − 
(SwF)] (69)

Accordingly, �Fs/�
 is a second-order term since it only involves quadratic terms such as εi jεkl ,
εi j�wF or nwF, or �wF�nwF and that εi j , �nwF, �nwF are infinitesimal quantities. As a result,
neglecting �Fs/�
 in (68) we get

−(pnwF − pwF) dSwF − dU�0 (70)
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Inequality (70) captures the dissipation associated with capillary hysteresis. In the absence of
significant capillary hysteresis (70) becomes an equality and we may write

pnwF − pwF = − dU (SwF)

dSwF
(71)

It results in a one-to-one relationship between the capillary pressure pnwF− pwF and the saturation
SwF which can be retrieved at the pore scale [33]. In contrast to (71), capillary hysteresis implies
that the relation linking pnwF − pwF and SwF will not be the same for a drainage process (SwF ↓)
than for an imbibition process (SwF ↑). Thereby, for the same value of the capillary pressure
pnwF − pwF, the 
 variable, and accordingly the poroelastic properties involved in (65)–(67), will
not have the same values in a drainage process and in an imbibition process. As a result, in a
drainage–imbibition test a capillary-induced irreversibility of the strain history will be observed,
even though the porous solid is elastic. Capillary hysteresis can be addressed in the formalism of
plasticity [24, 34, 35].
4.3. Unsaturated poroplasticity for connected porous networks

The poroplastic analysis we did for disconnected porous networks extends to the case of connected
porous networks in a similar way, by replacing εi j , �wF, and �nwF in (65)–(67) by, respectively,
εi j − ε

p
i j , �wF − �p

wF,�nwF − �p
nwF. We now write the plastic dissipation in the form

�i j dε
p
i j + pwF d�

p
wF + pnwF d�

p
nwF�0 (72)

with the related plastic flow rule

dεpi j = d	
� f

��i j
, d�p

wF = d	
� f

�pwF
, d�p

nwF = d	
� f

�pnwF
(73)

where f is the plastic yield function:

f = f (�i j , pwF, pnwF, SwF) (74)

In contrast to S1 which remained constant in (52), the Lagrangian saturation SwF is no more a
constant in (74). As a result, even in the absence of any capillary hysteresis, the history of the
plastic deformation and of the plastic change of porosity will depend on the chronology of the
saturation history SwF relatively to the chronology of the plastic loading �i j , pwF, and pnwF.

Plastic flow rule (73) is quite general. In various domains as in soil mechanics, the solid matrix
is formed of grains and may be considered as plastically incompressible, that is d�ps = 0. Updating
the notations of (54) we then write

dεpkk = d�p = d�p
wF + d�p

nwF (75)

Substitution of (75) in (72) provides

(�i j + pnwF�i j )dε
p
i j − (pnwF − pwF)d�

p
wF�0 (76)

so that the flow rule becomes

dεpi j = d	
� f

�(�i j + pnwF�i j )
, d�p

wF = −d	
� f

�(pnwF − pwF)
(77)
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where the plastic yield function (74) is expressed in the form

f = f (�i j + pnwF�i j , pnwF − pwF, SwF) (78)

We retrieve here the need for defining two effective stresses, even though the solid matrix is
plastically incompressible. The analysis which led to (55) for disconnected porous networks would
have here lead to the choice of the two effective stresses �i j + pwF�i j and �i j + pnwF�i j . This
choice of one stress variable relative to the voids filled by the wetting fluid, and one distinct stress
variable relative to the voids filled by the non-wetting fluid, has been already suggested in [35]. In
conformity with usual practice in soil mechanics [27], the alternative choice retained in (77)–(78)
consists of the so-called net stress �i j + pnwF�i j associated with the plastic strain increment dεpi j ,
and of the pressure difference pnwF − pwF associated with the plastic increment of partial porosity
change d�p

wF. However, this alternative choice may lead to some confusion with regard to the
twofold role played by the pressure difference pnwF − pwF. In addition to be the loading plastic
parameter associated with d�p

wF, the pressure difference pnwF − pwF also stands for the capillary
pressure which, according to (71), is the energy conjugate variable of saturation SwF with regard
to interface energy U .

The general plastic flow rule (73) accounts only for the irreversible change of porosity due to
the current plastic yielding. It does not account for the irreversible porosity change previously
undergone by the infinitesimal porous volume newly invaded (or left) by the fluid considered. This
contribution can be roughly accounted for by modifying (73) in the form

d�p
wF = d	

� f

�pwF
+ (�p

nwF − �p
wF) dSwF, d�p

nwF = d	
� f

�pnwF
− (�p

nwF − �p
wF) dSwF (79)

Incremental constitutive equations (79) guarantee that the overall plastic porosity change d�p is
actually only due to the current plastic yielding according to

d�p = d�p
wF + d�p

nwF = d	

(
� f

�pwF
+ � f

�pnwF

)
(80)

Incremental constitutive equations (79) also guarantee that the internal solid walls of the porous
solid keep the memory of the irreversible changes of partial porosities previously undergone,
whatever the current state of saturation is. For instance, let us consider a complete drainage
process leaving the porous solid fully saturated by the non-wetting fluid, that is SwF = 0, and
resulting in a final plastic porosity �p = �p

nwF. If later on the porous solid is subjected to an
imbibition process (SwF ↑) that is purely elastic (d	= 0), incremental constitutive equations (79)
guarantee that, during the imbibition, the porous solid will keep the memory of the plastic change
�p =�p

nwF previously undergone during the former drainage. In short, Lagrangian partial plastic
porosity changes are associated with the irreversible deformation undergone by the solid internal
walls delimiting the volumes currently occupied by the saturating fluids. They are not associated
with the saturating fluids themselves.

5. SUMMARY AND CONCLUSIONS

Through an energy approach we revisited the constitutive equations of unsaturated porous solids
at the light of a Lagrangian saturation concept. The Lagrangian saturation is the cornerstone to
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distinguish the energy required for the invasion of the porous network by the non-wetting fluid
from the energy required for the simultaneous deformation of the porous solid. The creation of
new inner solid–fluid interfaces involves changes of the interface energy, whereas the deformation
of the porous solid involves only the elastic energy stored by the solid matrix. The Lagrangian
saturation is the appropriate state variable describing the interface energy changes, while it is a
frozen variable in the expression of the constitutive equations of the porous solid. The distinction
between the two mechanisms that the Lagrangian saturation concept permits is promising and has
already proved to be successful in the poroelastic analysis of confined crystallization [25, 26].

Based on the Lagrangian saturation concept, the energy approach has provided the natural exten-
sion of the standard theory of saturated poroelasticity and poroplasticity to unsaturated conditions.
Using mainly macroscopic arguments, the analysis has revealed that the use of the averaged pore
pressure as an effective pore pressure may not be general. Its validity was shown to be ultimately
based on the assumption of the iso-deformation of the porous networks. The theory has been suc-
cessfully extended to the case of connected porous networks. As for elastoplastic ordinary solids,
the main interest of the approach is to provide a generic framework for recognizing the physical
status of each variable and for formulating the constitutive equations of unsaturated elastoplastic
porous solids, prior to premature assumptions concerning the poroelastic properties, the plastic
yield function, and the flow rule. The specification of the latter, which will involve the microstruc-
ture of the porous network, may be worked out by combining adequately the promising approaches
offered by micro-poromechanics [11, 36] and experimental observations. It is actually hoped that
the above developments might usefully drive the experimentalists to pursue a direction where they
are most likely to produce new results.

APPENDIX A

The macroscopic-averaged mean stress �= �kk/3 is the space averaged of the microscopic stress
so that we may write

�= (1 − �0)�s − �0S1 p1 − �0S2 p2 (A1)

In (A1) the membrane effects associated with the surface energy of the solid–fluid interfaces have
been assumed to be negligible. As a result, pJ is the pressure actually transmitted to the solid
matrix through the internal solid walls delimiting the porous volume that the fluid J occupies.
Consider then an experiment where

�=−p, pJ = p, � = 0 (A2)

A combination of the last two equations provides

�s = −p (A3)

so that the volumetric strain �s related to the solid matrix (assumed to be homogeneous) is

�s =−p/ks (A4)

In the particular experiment defined by the loading condition (A2) we have

�=�J/(�0SJ ) = �s (A5)
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since the solid matrix is loaded by the same uniform pressure on all its boundaries. Substituting
(A5) in (A4), we get

� =�J/(�0SJ ) = −p/ks (A6)

Use of (A6) in (41) or (42), where we let pJ = p and � = 0, finally provides the first relation of
(44).

The most direct derivation of the second relation of (44) invokes the additive character of
entropy. Following [15] the expression of entropy variation �−�0 of the linear poroelastic solid is

� − �0 = 3a� + 3(ab1 − a1)p1 + 3(ab2 − a2)p2 + C�

T0
� (A7)

where C� is the heat capacity of the porous solid at zero stress and zero pore pressure. The entropy
variation of the solid matrix is

�s − �0
s = 3�s�s + C�s

T0
� (A8)

Substitution of (A1) in (A8) provides

(1 − �0)(�s − �0
s ) = 3�s� + 3�s�0S1 p1 + 3�s�0S2 p2 + (1 − �0)C�s

T0
� (A9)

Owing to the additive character of entropy, whatever the values of �, pJ , and � we must have

� − �0 = (1 − �0)(�s − �0
s ) (A10)

A comparison of (A7) and (A9) provides the second relation of (44) and in addition we get the
relation C� = (1−�0)C�s . Substituting (50) in (44), while using the relations (21) and (27) related
to N and a, in addition to (50) we finally get

1/NJ J + 1/N12 = SJ/N , aJ = SJa� (A11)

Using (A11) and (50) in (41) and (42), irrespective of any temperature variation the iso-deformation
assumption (48) finally results in

p1 = p2 = p : �1/�0S1 = �2/�0S2 (A12)

APPENDIX B

When expressing the momentum balance for the mixture, the use of the Eulerian saturation is
generally preferred to the use of the Lagrangian saturation. When subsequently addressing the
energy and entropy balance this may mislead to the general conclusion that the averaged pressure
plays the role of an effective pore pressure [15]. To further explore this point let us here assume that
no irreversibility of any kind occurs. The Clausius–Duhem inequality then becomes an equality
and energy balance (11) extends in the form

�i j dεi j + pI d�I + pII d�II − dF = 0 (B1)
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where we used the indices I and II in order to address simultaneously the case of disconnected
networks (I= 1, II= 2) and the case of connected porous networks (I=wF, II= nwF). Updating
the notations, we write

�I =�sI, �II = �sII, sI + sII = 1 (B2)

and

�I = �0SI + �I, �II = �0SII + �II, SI + SII = 1 (B3)

Substituting (B2) in (B1) and using (1), we derive

�i j dεi j + (sI pI + sII pII) d� − �(pII − pI) dsI − dF = 0 (B4)

which agrees with the expression derived in [15, 34]. In the case of an incompressible solid matrix,
we have dεkk = d� and we get

[�i j + (sI pI + sII pII)�i j ] dεi j − �(pII − pI) dsI − dF = 0 (B5)

which agrees with the expression independently derived in [37]. Energy balance (B4) allows us to
conclude that

sI pI + sII pII = �F
��

, −�(pII − pI) = �F
�sI

(B6)

In infinitesimal transformations � may be replaced by �0 in (B5) and we get

sI pI + sII pII = �F
��

, −�0(pII − pI) = �F
�sI

(B7)

According to the first equation of (B6) or (B7), the pressure sI pI + sII pII is the energy conjugate
variable of the overall porosity change � as the pore pressure p does in saturated conditions. It is
thereby tempting to conclude on general grounds that sI pI + sII pII plays the role of an effective
pore pressure and that the second equation in (B7) is the state equation governing the capillary
invasion of the porous solid, resulting in

F = Fs(εi j , �, 
) + �0U (sI) (B8)

where Fs(εi j , �, 
) stands for the free energy (15) of the porous solid related to the saturated case,
and where U (sI) accounts for the change of the energy of the solid–fluid interface. Unfortunately,
this cannot constitute a general approach for the simple reason that the second equation of (B7),
when combined with (B8), is unsuitable for the case of disconnected networks where no capillary
invasion occurs so that no change in the interface energy is involved.

To make the link between the state equation formulation (B7) with the formulation carried out
in the main text, let us restrict to infinitesimal transformations where � and �I or II are infinitesimal
quantities. From (B2) and (B3) we then derive

�I � �0(sI − SI) + �SI, �II � �0(sII − SII) + �SII (B9)

and we write

Fs = Fs(εi j ,�I =�0(sI − SI) + �SI, �II = �0(sII − SII) + �SII, 
) (B10)
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In the case of disconnected networks (I= 1, II= 2) the Lagrangian saturations SI and SII are
constant whereas the Eulerian saturations sI and sII are not. Letting F = Fs in state equations
(B7), the latter are then easily recognized to be an alternative, although abstruse, formulation of
state equations (15). In the case of connected networks (I=wF, II= nwF), formulation (B7) of
the state equation does not derive benefit from expression (63) of F , so that the formulation is
not operational since the key relations (64) are lost. Besides the iso-deformation assumption (48)
amounts to writing

�I/SI = �II/SII = � (B11)

This results in sI − SI = sII − SII = 0 in (B9). As a result, instead of having to consider both �I
and �II as independent variables, only the overall porosity change � is involved in the expression
(B10) of Fs. Equation (B10) then reduces to the form (B8). As a conclusion (B8) turns out to
be an alternative way of formulating the iso-deformation assumption (B11) but does not derive
from (B7).
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