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Abstract

boundary element
been shown to be an effective and
effictent method for the solution of two
dimensional [1] and axisymmetric [2]
electromagnetic field problems. The method

The Hybrid finite element -
method has

allows for any regtion in the problem to be
representied by either Tinite elements or
boundary elements. Thus Llhe user can solve
open boundary problems or certain classes of

exterior problems [3] by using the boundary
element method and still retain the nonlinear
capability of the finite elemenl method for
regions with nonlinear materials. The method
is now extended to three dimensional scalar
potential problems. An example is presented
here for a three dimensional problem. The
results were then compared to a closed form
solution,

Three Dimensional Formulation
In the following formulation the unknown is

the scalar potential, which is the solution of
Laplace’s equation, in both the finite element

and boundary element regions. This section
gives the basis of the formulation for the
finite elements and the boundary elements

which was used on the example in the following
section.

Finite Element Region: In the finite element

region the unknown potential satisfies
Laplace’s equation. In Galerkin form this
becomes

J”(Vza)wdQ + ” (%)wds = 0
Q

where w is a
variable 3¢ /2 n

weighting function and the pew
appears only on the boundary of

the problem. Expanding ¢ in terms of
polynomials and choosing w = gi we obtain
for an element
S(e)ﬁ + q=20
Where
doi dai |, ooi odod ool dod
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q = IJ - ajds

Boundary elements: Aprlying Green’s theorem
to Laplace’s equation we obtain an expression
for the potential in terms of the potential
and its normal derivative on the boundary.

g
8 = - H ® 5+ 65

Where Y= 1 for a point inside the region
Yy= 0 for a point outside the region
Y= the fraclion of the intermnal angle

made by the surface at the field point. (e.g.

0.5 if the point is on a straight line)
This expression is evaluated directly by the
point matching melhod. Gauss quadrature 1is

used to perform the integration.

Assembly of the maitrix: In symbolic form the

system matrix is as follows

a—— peer——

|

ng;" JajGi %g'j

Wt

where the unknown @ exists at each node point

and the unknown 3¥/3n exists at each node on
the boundary.

Example problem: In order 1o verify the
formulation, an example was taken from
eleclrostatics. The example chosen was a

counducting sphere having an applied potential.
The sphere is imbeded in uniform homogeneous
space. The region in between Lhe sphere and
an arbitrarily c¢hosen cube was represented by
finite elements. In this case the finite
elementis were letrahedra and were generaled
by the Delauny method {4], the boundary
elements were the triangular faces of tLhe
tetrahedra which were in comwmon with the
exterior cube. See figure 1.

The system matrix has the
shown below in figure 2. It should be
pointed out that while the finite element
equations are sparse , the boundary element
equations are in general fully populated, i.e.
all unknowns on the boundary are coupled 1o
each other. Another point influencing the
choice of a solution technique is that the
boundary element equations will generally be
nonsymmetric. The method chosen in this case

was the preconditioned biconjugate gradient
method [5].

Matrix solution.

form
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FIGURE 1. CONDUCTING SPHERE IN FREE SPACE

Discussion of results: The problem was solved

using both first and second order elements,
An equipotential plot in the finite element
region is shown in figure 3. The

corresponding electric field vectors are shown
in figure 4. Due to the large number of
unknowns and the large bandwith of the system
matrix an option for inclusion of symmetry
boundary conditions was added. Figure 5 shows
the 1/8Bth section of the problem which was
solved next. Figure 6 shows the corresponding
equipotential plot which is smoother than that
of figure 3 due to the smaller size of the

elements. Figure 7 shows the potential as a
function of radius which agrees well with the
analytic solution
V = Vo(R/Ro)

Conclusions: The Hybrid method has been
successfully extended to three dimensional
problems. A solution to a full three
dimensional problem was obtained nusing a

relatively small number of unknowns.
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FIGURE 3. EQUIPOTENTIAL PLOT IN THE
ELEMENT REGION
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FIGURE 2. FORM OF THE SYSTEM MATRTX
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FIGURE 4. ELECTRIC FIELD VECTORS CORRESPONDING
TO FIGURE 3

FIGURE 5. SPHERE WITH SYMMETRY CONDITTON
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FIGURE 6. EQUIPOTENTIAL PLOT OF FIGURE 5§
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FIGURE 7. POTENTTAL wve. RADIUS TN THE FINITE
ELEMENT REGION
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