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ABSTRACT

. The numerical simulation described in this paper
1s based wupon the boundary element method. The
effects of the surface conducting film on the

potential distribution of insulating systems are
considered. A particular interface condition is used
for the resistive surface of insulators. This
approach allows fast subsequent analysis for
different positions and resistances of the surface
layers.
1. INTRODUCTION
For the design of = high-voltage insulating

systems, it is very important to
conducting film effects aver the
insulators (pollution, semi~conducting
anti-pollution).

The presence of the surface current
the insulating system distorts the
potential distribution. There are many
papers. presenting a numerical

analyse the
surface of
glaze for

throughout
capacitive
published
analysis of this

effect, in which the finite difference method, the
finite element method and the charge simulation
method are used [11,{2].

These methods , however , suffer from some

inconveniences: the charge simulation method is very
sensitive to the number of charges chosen for a
particular problem; the suggestion that the solution
quality increases with the number of charge is not
necessarily true [31, For the finite element onr
finite difference method, the entire volume of. the
problem must be subdivided, making 1t difficult to
treat arbitrarily thin conducting film.

Since the phenomenon can be considered an

interfacial one, it is logical to use the boundary
element method (BEM) for the simulation of this
problem. In this paper we present  a numerical method
based on BEM for the simulation of conducting film
effects.
2. BOUNDARY INTEGRAL EQUATION
Tre= X of elactric fralds cagquiraes the
solution of the Laplace’'s equation in one or severzal
conditions., The

regionics) Y with the beundary
equivzlent forsiula of the Laplace's eguation is:

. 5G .
c,¢m=—-j£(cj>b—n—€l'qacm (o
weth '
- - ¢ 0@
6= Y= 65y

as shown in the previcus publications [41, where:

is the boundary of V

is the normal vector of &

is the distance between the poini. P and the
current peint of integratien

Cp is the sclid angle viewing from the point P

¢ is the potential

€ is the relative permitivity.

A M

By cheesing va set of pcints P on Z  and us

the classical finite element technique, the equaticn
(1) can be written as:
C, 0P = @ _ 1 (2
g ; Z. (B4 =GBy )

where:

k is the subszript of the beoundary element
i is the subscript of the discrete ncde of an
element
is the value of § at the discrste node
Y,, 1is the value of ¥ at the discrete node

AH and Bygdepend conly on the geometry and can he
calculated. '

Te selve (2) three types of boundary
have to be considered:

+ Dirichlet: ¢=V

» Neumenn:® Y=0 far a

« § 204 ¥V are both uckacun for an

Tne equation (2, :1s estaplished on each discretle
point of the boundary with the first two types of
boundary conditions.

On interfaces, equation (2) is established tuwice
on each discrete point for the two concerned regions.

So we can -establish equation (2) as many as the
nurvber of unknowns for a problem with several
different dielectric mediums. After resolution, one

obtains the distributions of
anywhere by reusing (2).

The field is obtained in the same
using the agradients of the two weighting
(6, oG/on).

Y ois

and ¥ on & ana

manner. by
functicns

caontinuous through the interface of tuc
dielectrics, on condition that there is no conducting
film on this interface, otherwise a particular
interface. condition should be used.
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3. INTERFACE CONOITION FOR THE CONDUCTING SURFACE

tet S be =Y pillbox-shaped clesed surface
{figure 1) of end areas F, over the surface, whose
height ol is equal to the conducting film's thickness.

region 2
{€2)

Figure t: The pillbeox construc-

ted fer deriving the boundary
condition of the conducting
surface

The charge conservation gives the fellowing

jwB ) S =0 (3)

J is the current density
[} is the displacement

W 15 the freguengy
iw

Assuming dl is negligible in compariscn with the
AF radius and AF is alsc very small, (3) can be
written as follows:

JT-0 =iwe 1y, + @) 4F (4)
s

wrere ¥ and ¥ are the velues of Y oon ¥, but

defined in qifferent media -

tets & = dl.J be the surface current density,
we have:

hm '.‘Sy.d;’ = V-z: JweE LY+ Y

Af=c© AF dI ' H 58

g1~ ¢

Using the Ohm's law, cne cbiains the boundary
cenditien fer conducting surface:

o -

Y, =-y +)LJ—(UV-ES (8

whare:

E,is the tangential field on the interface
o is the surface conductivity.

As we have defined the interpclation
afYon the boundary, can be calculated.

expression

4. CALCULATION OF V.Es
one has:

= E Pw,v, @ $7)
» t
H

where Pi  1s the interpclating funciien: u and v  are
the local curvilinear coordinates.

Or the boundary element (3D),

By using differential operators in 2d
curvilinear space, one obiains:
- 1 a 3
vis= - =2 e + 50 an
N/_ ou ’ o -l (8
30 w oD
ith: a, = g% =— + S/
with u S v
a = g 9% , 90 (g1
where 3V ou
g is the determinant of the covariant metr:icsl
matrix
g™, g9 and Y are the elements of the

contravariant metrical matrix:

—_ _ X T _ oy ™ oz T~

= + o0z
e & ' v It ov X B T —e:' ey
e“.%1+§§J+§%k &, 8, ey. e, (1@

o
2
<
"
1]
i)
[
<

(9% =1[9w]™

For the erthogenal lecal coerdinates:

=_ 1 _i@ 1 >0 1 QQ t o9w i &Yuy
Chegbvrg ety (5 R e W
4100 (1 00w 1 08w (e

2 v (9 av gl oV
where gQu . Ge and g, are the elements of the

covariant metrical matrix.

For the axisymmeiric case, the expression 1s
meore simpla:
) 2 o 172
= 19 1 &R | 3R &R au 51 y09 -
V-E= ’W’+{J2n ﬁ_ﬁ(éubu3+Tou3'] U

where:

,13—') +(§£)2

The relaticn (&) 1i1s true under the condaticn
that the surface current is not zero. If there is nro
surface cur~ent, the conducting film has to be

treated by an other method.

5. CONDUCTING FILM WITH FLOATING POTENTIAL

When the conducting film 1s not connected by
electredes, there is no surface current (for exemple
the surface pellutien film is interrupted by the 4
bands), in this case, the conducting film behav
iteelf Llike & good conducter with fleoating potential.
{3Y czn be written as:

‘.W ¢ =0 (1a
s

is the two surfaces of the

This relation alleows us zstablish =
cupplementary equation 2and the tue
conducting film can be treated as the boundery wuwith
the Dirichlet's boundary condition.

where S




Numerically, we double the discrete elements of
"conducting part of insulator’s surface (these
elements constitute a closed surface), so that (14)
can be imposed over these elements. Figure 2 shows an

example in the axisymmetric case.

(o -’ B
\/”/’, region I
€ [ -

o

region |

N

Figure 2: AB-conducting film
with fleating potential on which
the discrete elements are doubled

The integration of equation (1) established at
the point C' is over the boundary of the medium i
the integration of this equation established at C is
over the boundary of the medium II.
Although C and C' are geomatrically the same
point, we can obtain two different equations because
the boundaries of the two media are not the same. The

points A, B become the geometrical singular points
and Y has not a unique value on these points.

The numerical method proposed in {41 is. very
convenient for treating these points.

It is obvious that this technigque can be used
for treating metallic films. [f the metallic film .
in a medium, nct over the surface of insulater, we
can add an artificial interface in order that the
metallic film becomes a part of this interface

(figure 32).

conductive film

artificial interface

Figure 3: Artificial interface

The metallic film can alsc be treated as scurce.
In such region, (1) becemes:

[ 4G 1 . (15)
Coin - . . {15)
'¢ )= JZ‘?ZT ('WG"‘ 3 "S;TG“
wnere:
T is the surface charge density
Sc is the surface of the metallic film.

This treatement can reduce the

number \of
unknowns , but complicates programming.
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6. SOME EXAMPLES

The above develeopment is now applied in PHIZD
program [4]1 for the simulation in 30 space and 1n
FHIAX program (5] for axisymmetric cases.

The illustrating results of some examples are
given here.

Figure 4 chows the peotential distribution over
the surfaces of an insulator between two elactreodes.
0f 4 surfaces, only one is conductive. It can bs saen
that the presence of the surface current disterts ths
potential distribution:

elecerode @ =]

I

/ <onducting

Surface

AR

conduiring
surface
a/‘
L
B e
>’ \ o
4 €lectrode @ =0 .
Figure 4: Potential distribu-
tion over the surfaces. of an
insulater
Figure 5§ gives an example for an ciisymmetr:s
case. It shows the effect of the fleating potential
film on the potential distribution:

W
1

Figure 5: Petential distribu-
tion for an axisymmetric insu-
lator where AB is the resistance

surface and the
segment the
film

dark-1line
floating peotential
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7. CONCLUSLION

Conducting film effects are very easy to be
tmplemented with the boundary integral equation
method using a particular boundary condition.

This approach allows fast subsequent analysis
for different positions and resistances of the
conducting films. In addition, the influence of the
metallic foils with floating potential can be easily
simulated.
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