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The second Graen's identity permits to write (2)

ABSTRACT as [11: -
A numerical methed basgd upon the boundary - - 36 a‘A’ . (3
element method 1is described to solve steady-state CpA" )= - tA —a—n— G~ lds —u )y G odv
skin effect problems in axisymmetry. This method can b on v
be used to treat problems with very small skin where:
depth. N
The program realised is designed for engineers' G = e_'\ ;4",-
assistance, so special attention has been paid to r distance between pcint P and the current
accuracy and validation. Besides current density point of integration
distribution which is graphicaly displayed, all A . -ipTw
global magnitudes can be immediately obtained as boundary of the region U
finmal results from the program. Cp solid angle viewing Z from the point P
In axisymmetry, the potential A has only one
component , so equation (3) becomes:
CDA‘D' == (cos?A%—f—; - coslpﬂ-aa—%ld:
1. INTRODUCTION z <45
- M Jycos 9 G dv
The distribution of eddy currents in induction v
problems 1s very difficult to be calculated by the It can be demonstrated that:
finite element method when the skin depth (which is
determined by resistivity, permeability and JA _ A 05
: X - = @Y — cosa— 2
excitating frequency) is very small. an R
In this paper a numerical method suitable for
this problem in axisymmetry based upen the boundary where:
element method (BEM) is described. It retains all
the advantages of the BEM and avoids surface %°= - Mt
integration of the source term.
Ht tangential component of the magnet:cz

field, continuous through the interface
of different media .
Y. and R are defined in the following figure:

2. THE BOUNDARY INTEGRAL FORMULATION !
The formulation of the vector and scalar
potential a-0 is adapted to model the problem:
8= rot A

- 3A/3t + grad ¢

mi
u

Assuming that permeability p is constant, we
obtai&(?.l:

A4 -~ jpruh = - p Tex (23
uher‘i:
Jex 1 exciting current density
o ¢ conductivity of the conductor
w/2w:  frequency which will produce the skin Figure 1: Typical arlsymmetriz
effect.

problem
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Using the relation (5) 1n equation (4), the
number of unknowns can be reduced and the
interface condition {(continuity of the normal
component of the flux density and of the tangential
components of the magnetic field) is implicitly
assured.

The weighting functions 6 and 36/3dn depend only
on the geometry: equation (4) can be written as:

AP = — | [Asa+ =Fon - B¥ 0] gt
"R 8
L )
T MY Jycos@G dv
wherea! v
G = cos¢ Gde 6 = cos @ _g—f]d: 7

3. TRANSFORMATION OF VOLUME INTEGRAL OF THE SOURCE

Because of the axisymmetry of the inductor, the
volume integral in (6) is reduced to the surface
integral:

(g

B Y ), cos@g6dv = 2 Jily | Rcos@Gdp ) dR a2 (8)

\ S o

where S 1s the section of the exciting coil (see
figure 2).

- Figure Z -

Using the hypothesis that Jex is constant over
the section of the exciting coil and that the eddy
current is negligible in the exciting coil (these
are well verified when the wire section 1is very
small vis-a-vis the dimension of the problem) , the
surface integration in (8) can be translated as an
one dimensional integral:

Bl ncospody = 2TIa b N @z (8)
Vv L
with:
T
N= ww[r+R“m¢lmR—Rﬁm¢+'d“”(‘m

[

This transformation facilitates the geometry
description and numerical calculation of this term.

4. THE KERNEL CALCULATIONS

In (6), 6, and GL, are called the kernels of
the boundary integral. Because the functien 6 has a
singular point {(for r = @), the integrals <(8) ars
non—-proper, some precautions must be taken 1i1n  the
numerical calculation of the kernels.

For the non-cenducting region, the function G
becomes:

6 = 1/4mwr (11

so it is cenvenient to write (6) as:

Gax =fcos¢ Gide +
c

- G
Ca = fc°5¢ g—n, dc + cosg g—g’dc = Gait Gy
[

cos® Gy;dc = G, + Gaxs

3

[

with:

a eAT_ .
IR 6, = ——— (1T
aTr

G, (r) is well defined for every value of the
variable r, so Gmu and G;xlcan be directly obtained
by numerical integral.

6=

It can bhe derived as:
()

R A. 2
Gaxy = = 2sin~gQ —
BT [RESLE el ERRPY
o V1 = Ksinle (14
- R=2 2
=GB + (G~ kad]
with:
¥ = 4.r.R/D?
D : as shown in figure 3
K, E : complete elliptic 1integral of first and

second kind [31

o4

ﬁﬂ,A__HA)Qf,z)

D

TePIRp, Zp )

P

- Figure 3 -

The numerical calculatien of integrals K and £
can be easily done in several ways [1]. 6Ly can
also be expressed 1n the similar way.



By using the 1soparametric finite elements for
boundary discretization, one obtains:

Co AP = Zk [Z(Akid.. — B Wib) - i ]i15)
!

with: |

. cosa
dy, = —. evUHGu + e G"y{uxn
‘I
b, = - PiU: Gax J, tUr du
h ' ) (18)
=1
|l
e, = 02
k N Su du
-1
where:

ko subscript of the boundary finite elements

1 subscript of the weighting functions

P(u) : weighting function

J(u) jacobien ( dl = J(u).du )

Ay Wit values of A and Y at the discrete point

of finite elements
S5.VALIDATION

The program that we have realised 1is designed
for engineers assistance, the validation has been
done in several ways:

S.1 Experiment:

The dissipating power of steady-state eddy
current 1in a block of cylindrical metal is measured
under different excitation frequencies and 1is
compared with the results calculated by our program.
Figure 4 shows the experimental system. We have used
a digital wattmeter whose accuracy is @.5% for the

frequency range 1@Hz-1KHz.
The dimension of the sample and the boundary
discretization are illustrated in figure S. Figure 6

shows the distribution of the induction lines
resulting from the numerical calculation.
The comparision of the calculated results with

the measurement proves the good precision of the
numerical calculation, 1in spite of the large
discrete elements. The differences in active power

is less than 5% (see table 1),

1

f [Hzl 100 300 500 )

P W] 2.09 9.196
(measured)

P LWl
(computed)

0.0919 (@.1968 | 0.2824 | 0.357

- Table t -

5.2 Comparision with the finite element method:
The program ACDC [Z]1 based wupon the

finite

element method is already used by industries. We use
it as a reference for the calculation low
freguences. The results of the potential A calculated

by the two programs are almost identical.

—

\\\;.__/,,// ﬁu>0
)
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Figure 4: The experimental system
1: Charge Z2: Inducter
3: Wattmeter 4: Source
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Figure §: The dimensions  of
the sample and the boundary

discretization
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5.3 Indirect validation for high frequency:

For high frequency, the skin depth is very
small, ACDC can't be used and the power factor cosf
15 very bad, neither the measurement can be used for
validation.

When the skin depth tends tc zero, 1t can bhe
shown that the phase angle of the complex dissi-
pating power tends to 45, so we use 1t as a
reference for the validation in high frequence.

The results are in table 2. It can be seen that
the validation is proved.

IS
S
Iy
[S]
w
©
[=2]
©

f [kHz1

skin depth [mml| 12.2 | 5.46 |3.858 |2.228 |1.575

o] 51.45| 49.1 | 47.89 | 45.7 |45.6
- Table 2 -

6. CONCLUSION

The program realised gives excellent results. It
needs a very short geometry description time.
Besides current density distribution, all global
magnitudes can he immediatly obtained as final
results from the program.

But 1t can't treate the saturation phenomenon.
Although it has been shown that the BEM 1is
applicable for some weakly non-linear problems by an
iterative solution(4), the non-linear terms are
treated as forcing functions and it is necessary to
subdivide the saturable regions inte finite
elements. When the skin depth is very small, we meet
the same difficulty as in the finite element method.
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