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Skew Constacyclic Codes over Galois Rings

D. Boucher∗, P. Solé†and F. Ulmer‡

January 21, 2008

Abstract

We generalize the construction of linear codes via skew polynomial rings by using Galois
rings instead of finite fields as coefficients. The resulting non commutative rings are no longer
left and right Euclidean. Codes that are principal ideals in quotient rings of skew polynomial
rings by a two sided ideals are studied. As an application, skew constacyclic self-dual codes
over GR(42) are constructed. Euclidean self-dual codes give self-dual Z4−codes. Hermitian
self-dual codes yield 3−modular lattices and quasi-cyclic self-dual Z4−codes.

Keywords: cyclic codes, skew polynomial rings, self-dual codes, Z4−codes, modular lattices

Introduction

Polynomial rings and their ideals are essential to the construction and understanding of cyclic
codes. For the first time in [5] non commutative skew polynomial rings have been instead of
linearized polynomials used to construct a generalization of cyclic codes. In that approach, it is
necessary to use as alphabet a finite field with a non trivial Galois automorphism, like, e.g. F4.
In the present work we extend that approach by considering as alphabets Galois rings of even
characteristic like, e.g. GR(42). The technical difficulty in passing from field alphabet to ring
alphabet is that the skew polynomial rings are not Ore rings; in particular they are no longer
left and right Euclidean. However, left and right division by unitary polynomials are still well
defined. Therefore codes that are principal ideals generated by unitary polynomials in quotient
rings of skew polynomial rings by a two sided ideal are studied. In particular the problem of
finding central polynomials, that is generators of principal two sided ideals is addressed.

As an application self-dual codes over GR(42) are constructed, and used for three of the four
applications of [14].

1)Self-dual Euclidean codes give self-dual Z4 codes by projection on a trace orthogonal basis.
Many Type I codes in length 24 are obtained and classified by the root systems of their Construc-
tion A lattice. New coding constructions of the Odd Leech lattice, the only unimodular lattice
of norm 3 in dimension 24 are given thus supplementing the results of [15]. Some new Type II
codes in length 24 are also obtained, that yield the Leech lattice by Construction A, though not
being Lee-optimal in the sense of Rains [20]. A Type I code in length 40 is constructed that is
not Type IV. In fact its Lee and Euclidean distance are better than what would be possible for
a Type IV code of that length [9].

2)Self-dual Hermitian codes build 3-modular lattices. In particular a simpler construction of
one of the two extremal such lattices in dimension 28 is given.
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3)Self-dual Hermitian codes yield self-dual quasi-cyclic codes over Z4 by the cubic construc-
tion. Self-dual Type II codes are obtained in length 24 and classified by their symmetrized
weight enumerator and root system.

The material is organized as follows. Section 1 contains generalities on skew polynomial
rings over Galois rings. Section 2 defines the codes generated by principal ideals in quotient
rings where Xn − 1 is replaced by a central polynomial. Section 3 explains how to generate
central polynomials by using the notion of bound and gives a few examples. Section 4 considers
parity check matrices and duals of the constacyclic codes defined before. Section 5 constructs
Euclidean self-dual codes over GR(42). Section 6 is devoted to self-dual Z4 codes and their
unimodular lattices. Section 7 studies Hermitian self-dual codes over GR(42) and 3−modular
lattices. Section 8 considers the cubic construction of self-dual Z4 codes from Hermitian self-dual
codes over GR(42).

1 Skew polynomials over Galois rings and their quotients

We follow the presentation of the finite Galois ring GR(4m) given in [23]. Denote Z4 the ring
Z/4Z and consider the homomorphism

ϕ: Z4 → Z2 = F2

0, 2 7→ 0
1, 3 7→ 1

and denote by a the image ϕ(a). There is a natural extension

ϕ̃: Z4[X] → Z2[X] = F2[X]
n∑

i=0

aiX
i 7→

n∑
i=0

aiX
i

We again denote by f the image ϕ̃(f).
We define GR(4m) as the ring Z4[X]/(h) where h ∈ Z4[X] is a monic polynomial of degree m

such that h ∈ F2[X] is a primitive irreducible polynomial with the property that the root ξ = X̃
of h in F2[X]/(h) is a generator of the multiplicative group of the field. In the following we will
use the fact that each element of GR(4m) can be uniquely written as α0 +α1ξ + . . .+αm−1ξ

m−1

with αi ∈ Z4 for 0 ≤ i ≤ m− 1.
To define an automorphism it is more convenient to use the 2-Adic representation in which
the elements of GR(4m) are uniquely written as a + 2b ∈ GR(4m) where a and b belong to
{0, 1, ξ, . . . , ξ2m−2} ([23], Section 6.2). We denote by θ the generalized Frobenius map a + 2b 7→
a2 + 2b2, which is a ring automorphism of GR(4m) of order m. The group of automorphisms
of GR(4m) is cyclic of order m and generated by θ. The subring of those elements that are
left fixed by θ are the elements of Z4 (cf. [23], Theorem 6.11). In the following we denote by
GR(4m)∗ the set of invertible elements and we use the fact that this set is left invariant by all
automorphisms θi.

One defines a ring structure on the set

GR(4m)[X, θ] = {αnXn + . . . + α1X + α0 |αi ∈ GR(4m) and n ∈ N}

of formal polynomials where the coefficients are written on the left of the variable X. The
addition in GR(4m)[X, θ] is defined to be the usual addition of polynomials and the multiplication
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is defined by the basic rule Xα = θ(α)X (α ∈ GR(4m)) and extended to all elements of
GR(4m)[X, θ] by associativity and distributivity. As usual two polynomials are equal if and
only if all their coefficients are equal.

Lemma 1 The center Z(GR(4m)[X, θ]) of GR(4m)[X, θ] is Z4[Xm].

Proof. The subring of the elements of GR(4m) that are fixed by θ is Z4 (cf. [23], Theorem 6.11).
For any integer i ∈ N, the power Xi m is also in the center Z(GR(4m)[X, θ]) of GR(4m)[X, θ].
This follows form the fact that m is the order of the automorphism θ, showing that for any
a ∈ GR(4m)[X, θ] we have Xi ma = (θm)i(a)Xi m = aXi m. This shows that f = β0 + β1X

m +
β2X

2m + . . . + βsX
s m with βi ∈ Z4 is a central element. Conversely, for f in Z(GR(4m)[X, θ]),

considering Xf − fX and αf − fα for α ∈ GR(4m) one proves that f ∈ Z4[Xm].

Since GR(4m) contains zero divisors, many properties of skew polynomial rings over fields
are no longer true :

Example. The following are two distinct factorizations of X4 − 1 ∈ GR(42)[X, θ] into
irreducible monic polynomials (X+1)(X+1)(X+2ξ+1)(X+2ξ+3) and (X2+2ξ+1)(X2+2ξ+3).
This shows that the degrees in different factorizations of the same polynomial are not unique
up to permutation.

The ring GR(4m)[X, θ] is no longer left or right Euclidean, but left or right division can be
defined for some elements. Consider f =

∑s
i=0 αiX

i and g =
∑t

j=0 βjX
j . If s ≥ t and the

leading coefficients βt of g is invertible, then:

1. We can define a right division of f by g. We simply note that the degree of

f − αs

θs−t(βt)
Xs−tg

is less than the degree of f . To prove this, it is sufficient to compute the leading coefficients
of both polynomials and see that they cancel. In the above we use the fact that θs−t is
also an automorphism and that the image of an invertible element is invertible. Iterating
the above by subtracting further left multiples of g from the result until the degree is less
than the degree of g, we obtain polynomials q̃ and r̃ such that deg(r̃) < deg(g) (as usual
we set the degree of 0 to be −∞) and

f = q̃ g + r̃

If r̃ = 0 we say that g is a right divisor of f .

2. Similarly to the right division, we can define a left division of f by g using the fact that
the degree of

f − g

(
θ−t

(
αs

βt

)
Xs−t

)
is less than the degree of f . To prove this, it is again sufficient to compute the leading
coefficients of both polynomials and see that they cancel. In the above we use the fact
that θ−t is also an automorphism and that the image of βt is again an invertible element.
Iterating the above by subtracting further right multiples of g from the result until the
degree is less than the degree of g, we obtain polynomials q̃ and r̃ such that deg(r̃) < deg(g)
and

f = g q̃ + r̃

If r̃ = 0 we say that g is a left divisor of f .
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We will also need the fact that the remainder of a division of f by a monic polynomial
g ∈ GR(42)[X, θ] is unique. Suppose

f = q̃1 g + r̃1 = q̃2 g + r̃2

are two right divisions by g, then

(q̃1 − q̃2) g = r̃2 − r̃1.

If q̃1 − q̃2 is not zero, then the right polynomial is of degree at least the degree of g, while the
right polynomial is of degree at most one less than the degree of g. Therefore q̃1 = q̃2, from
which we get r̃2 = r̃1. The proof for left division is similar.

Example. In GR(42)[X, θ] the polynomial X−ξ is a right divisor of X2−1. This is obtained
via

(X2 − 1)−X(X − ξ) = X2 − 1−X2 + Xξ = ξ2X − 1

(here Xξ = θ(ξ)X = ξ2X) and in the next step

(ξ2X − 1)− ξ2(X − ξ) = ξ2X − 1− ξ2X + ξ3 = 0

Therefore the remainder is 0 and the left quotient (of the right division) is X + ξ2. We get

X2 − 1 = (X + ξ2) (X − ξ)

Note that not all left or right ideals in GR(4m)[X, θ] are principal, but in the following we
will focus on those ideals. If I ⊆ GR(4m)[X, θ] is a two sided ideal, then, by the correspon-
dence of ideals, the left (resp. right) ideals of GR(4m)[X, θ]/I are the left (resp. right) ideals of
GR(4m)[X, θ] containing I.

2 Codes defined by principal ideals with monic generator

Lemma 2 A left or right ideal in GR(4m)[X, θ] generated by a monic central element f ∈
Z4[Xm] of degree n is a two sided principal ideal. The skew polynomials of degree less than n
are canonical representatives of the elements of GR(4m)[X, θ]/(f). Any right divisor g of f of
degree r generates a left principal ideal (g)/(f) in GR(4m)[X, θ]/(f). The set of left multiples
of g by skew polynomials of degree k = n− r are canonical representatives in GR(4m)[X, θ]/(f)
of the elements of (g)/(f). In particular the ideal (g)/(f) has the structure of a submodule of
GR(4m)n and the coefficient vectors of the elements of (g)/(f) form an [n, k] code.

Proof. Consider the left ideal (f) ⊆ GR(4m)[X, θ]. Since f is monic, the degree of any non
zero h = t f ∈ (f) is at least the degree of f . Since f is a central element, we also have h = f t
and a left division of h by f is of the form h = f q̃ + r̃. Since r̃ = h− f q̃ = h − q̃ f ∈ (f) is of
degree less than f we have r̃ = 0, showing that h = f q̃. The reverse inclusion is obtained in a
similar way, showing that the left and right ideals generated by f coincide. Therefore the left
or right ideal (f) is a two sided ideal.

In GR(4m)[X, θ]/(f) an element h can be identified with its unique remainder by left (or
right) division by f . Therefore the skew polynomials of degree less than n, corresponding to the
possible remainders, are canonical representatives of the elements of GR(4m)[X, θ]/(f).

For a right divisor g of f of degree r, the ideal (f) is contained in the left ideal (g). By the
correspondence of left ideals we have that (g)/(f) is a left ideal in GR(4m)[X, θ]/(f). With the
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above choice of skew polynomials of degree less than n as canonical representants of the elements
of GR(4m)[X, θ]/(f), the elements of (g)/(f) are left multiples of g by skew polynomials of degree
k = n− r. The claim now follows.

As we will see later, not all ideals in the quotient ring GR(4m)[X, θ]/(f) are principal ideals.

Definition 1 A θ-principal code over GR(4m) is the set of coefficient vectors of the code
corresponding to an ideal (g)/(f) where f ∈ Z4[Xm] is a monic central polynomial and g a
monic right divisor of f .
A θ-cyclic code over GR(4m) is a θ-principal code over GR(4m) where f is of the form Xn−1.
A θ-constacyclic code over GR(4m) is a θ-principal code over GR(4m) where f is of the form
Xn − c for c ∈ Z4.

A θ-constacyclic code C over GR(4m) is a left ideal I ⊂ GR(4m)[X, θ]/(Xn−c). In particular
let (a0, a1, . . . , an−1) ∈ C, then p = a0 + a1X + . . . + an−1X

n ∈ I. Now X p also belongs to I:

X p = X (a0 + a1X + . . . + an−1X
n)

= θ(a0)X + θ(a1)X2 + . . . + θ(an−2)Xn−1 + θ(an−1)Xn

= c θ(an−1) + θ(a0)X + θ(a1)X2 + . . . + θ(an−2)Xn−1.

Therefore (c θ(an−1), θ(a0), θ(a1), . . . , θ(an−2)) ∈ C. For θ-cyclic code we have c = 1 and we
obtain the classical property of cyclic codes when θ is the identity, which justifies the above
terminology.

If g = Xr + gr−1X
r−1 + . . . + g1X + g0 ∈ GR(4m)[X, θ] divides a polynomial f ∈ Z4[Xm] of

degree n, then the generating matrix of the θ-code of type [n, n− r] generated by g is given by

G =


g0 . . . gr−1 1 0 . . . 0
0 θ(g0) . . . θ(gr−1) 1 . . . 0

0
. . . . . . . . . . . . . . .

...
0
0 . . . 0 θn−r−1(g0) . . . θn−r−1(gr−1) 1


Note that instead of monic polynomials we could also consider polynomials with invertible

leading coefficient. However the set of codes obtained by the above construction would be the
same.

Example. The following two factorizations of X4−1 ∈ GR(42)[X, θ] into irreducible monic
polynomials (X + 1) (X + 1) (X + 2ξ + 1) (X + 2ξ + 3) and (X2 + 2ξ + 1) (X2 + 2ξ + 3) give four
θ-cyclic codes defined by the corresponding right factors.

Example. In GR(42)[X, θ] the ideal (X2 − 1) is principal. Since X − ξ is a right divisor of
X2− 1, the ideal (X2− 1) is contained in the left ideal (X− ξ). By the correspondence of ideals
the left multiple of X − ξ form a left ideal.

3 The length of a θ-principal code

This section is a generalization of [6], Section2. We will show that any monic skew polynomial
g ∈ GR(4m)[X, θ] divides a central polynomial f ∈ Z4[Xm] generating a two sided ideal and
therefore is the generating polynomial of some θ-principal code. The degree N of the central
polynomial f ∈ Z4[Xm] of smallest degree that g divides is the minimum numbers of rows that
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the previous generating matrix has to contain in order for the resulting code to be a θ-principal
code over GR(4m), i.e. for the corresponding code to have the structure of a principal ideal in
the quotient of GR(4m)[X, θ] by a principal ideal generated by a unitary central polynomial.
Therefore N is a bound for the length a θ-principal code over GR(4m) generated by g.

Definition 2 (cf [16]) An element P ∈ GR(4m)[X, θ] is bounded if the left ideal (P ) contains
a two sided ideal (P ∗). In this case P ∗ is a bound for P .

We adapt the proof of Theorem 15 in [16]. From [23] Chapter 6 we get that GR(4m) = Z4[ξ],
showing that GR(4m) is a free Z4 module of dimension m.

Lemma 3 If P ∈ GR(4m)[X, θ] is of degree n, then there exists a bound P ∗ for P of degree at
most m2 n.

Proof. The elements in GR(4m)[X, θ] of degree less than n form a GR(4m) module of
dimension n and therefore a free Z4 module of dimension m n. Considering the remainders of
the division

Xm i = Qi P + Ri, i = 0, 1 . . . , mn,

with deg(Ri) < n, there exists a non trivial linear combination
∑m n

i=0 δiRi = 0 where δ ∈ Z4.
This shows that

m n∑
i=0

δiX
m i =

(
m n∑
i=0

δiQi

)
P.

The above polynomial
∑m n

i=0 δiX
m i is a bound for P .

This degree bound can be improved in the special case of GR(42).

Lemma 4 If P ∈ GR(42)[X, θ] is of degree n, then there exists a bound P ∗ for P of degree at
most 2n.

Proof. Write P =
∑n

i=0 PiX
i. Define P̂ =

∑n
i=0(−1)i+1θi+1PiX

i. By checking that the
coefficients of the odd powers of X in Q := PP̂ vanish, we can apply Lemma 1 to show that Q
is a bound for P.

As the bound of a polynomial g ∈ GR(42)[X, θ] of degree r is at most of degree 2r, such a
polynomial will always generate a θ-principal code of length ≤ 2r. Since the explicit knowledge
of the bound g∗ is not needed in the generating matrix of the θ-principal code (g)/(g∗), it is easy
to compute all codes of length n for generator polynomials of degree r = n− k at most n/2.

We will use the following mapping from GR(42) to Z4:

1. To each line of the generator matrix of the code over GR(4m), we add a line whose entries
are multiplied by ξ.

2. The entry a + ξb is replaced by the two entries 3a and a + b.

Example. In GR(42)[X, θ] the polynomial X2 + ξ X + ξ + 1 is a right divisor of the central
polynomial X4 + 1. We obtain a θ-constacyclic code whose generator matrix is(

ξ + 1 ξ 1 0
0 3ξ 3ξ + 3 1

)
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the first step of the above transformation gives
ξ + 1 ξ 1 0

3 3ξ + 3 ξ 0
0 3ξ 3ξ + 3 1
0 ξ + 1 1 ξ


and the second step gives 

3 2 0 1 3 1 0 0
1 3 1 2 0 1 0 0
0 0 0 3 1 2 3 1
0 0 3 2 3 1 0 1


which is the generator matrix of the code over Z4.

The following are the best codes over Z4 obtained this way, compared to the best known
codes. In order to obtain a binary codes from a code over Z4 we are using the Gray map (cf. [7]),
which is a weight- and distance-preserving map from Zn

4 (with Lee weight metric) to Z2n
2 (with

Hamming weight metric). For each n and k we compute all [n, k] θ-principal codes over GR(42)
and find the best minimal Lee weight d of these codes over Z4. In the table, both n and k have
been multiplied by 4, A(n, d) is the size of the largest binary code of length n and the Hamming
distance d obtained from the table in [10].

n \ k 4 8 12 16 20 24 28
d |C| d |C| d |C| d |C| d |C| d |C| d |C|

8 4 24

best : A3
7 = 24

16 8 24 6 28

best : A7
15 = 25 A5

15 = 28

24 12 24 8 28 6 212 4 216

best : A11
23 = 243 A7

23 = 212 A5
23 = 214 A3

23 = 2159
32 8 216 5 220 4 224

best : A7
31 = 217 A5

33
2 ≥ 222 A3

31 = 226

40 8 220 6 224 4 228

best : A9
41
2 ≥ 220 A5

63
224 ≥ 228 A3

39 = 5 · 231

48 10 224 8 228

best : A9
47 = 22117 A7

63
216 ≥ 231

4 Parity check matrix and Euclidean duals of θ-constacyclic
codes

In this section we extend the results of [6] on self-dual skew cyclic codes. A code over GR(4m)
is Euclidean self-dual if it is equal to its dual w.r.t. the form

x.y =
∑

i

xiyi

We shall prove that the Euclidean dual of a θ-constacyclic code (g)/(Xn−c) ⊂ GR(4m)[X, θ]/(Xn−
c) for c ∈ {1, 3} and such that m|n is again a θ-constacyclic code (g⊥)/(Xn−c) ⊂ GR(4m)[X, θ]/(Xn−
c).
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The following lemma explains why the two factors in the decomposition of the generator of
a central monic polynomial in two monic polynomials always commute:

Lemma 5 Suppose that f ∈ Z4[Xm] is a monic polynomial which decomposes into a product of
monic polynomials as h g over GR(4m)[X, θ], then h g = g h in GR(4m)[X, θ].

Proof. Since h g is a central element we have (h g) h = h (h g). Therefore h (g h− h g) = 0.
Since the leading coefficient of h is invertible, h is not a zero divisor, showing that h g = g h in
GR(4m)[X, θ].

Using this commutativity result, we can proceed as in the cyclic case to obtain a parity check
polynomial:

Lemma 6 Suppose that f ∈ Z4[Xm] is a monic polynomial which decomposes into a product
of monic polynomials as h g over GR(4m)[X, θ] and denote by C the θ-principal code corre-
sponding to the left ideal generated by g in GR(4m)[X, θ]/(h g). Then a ∈ C ⇔ a(X) h = 0 in
GR(4m)[X, θ]/(h g).

Proof. If a ∈ C, then a(X) = u g. By the above commutativity result we get a(X) h =
(u g) h = u (h g) = 0 in GR(4m)[X, θ]/(h g).
Conversely, if a(X) h = 0 in GR(4m)[X, θ]/(f), then a(X) h = u f = u (h g) = (u g) h in
GR(4m)[X, θ]. Like in the above proof we use the fact that h is not a zero divisor to obtain
a(X) = u g, showing that a ∈ C.

The parity check matrix is now obtained from the condition a ∈ C ⇔ a(X) h = 0 in
GR(4m)[X, θ]/(h g) :

Lemma 7 Suppose that m divides n. Let c ∈ {1, 2, 3} and Xn − c ∈ Z4[Xm] decomposes as h g
over GR(4m)[X, θ]. Let C be the θ-constacyclic code corresponding to the left ideal generated by
g in GR(4m)[X, θ]/(Xn− c). If g = g0 + g1X + . . .+ grX

r and h = h0 +h1X + . . .+hn−rX
n−r,

then the following matrix
hn−r . . . θn−r−1(h1) θn−r(h0) 0 . . . 0

0 θ(hn−r) . . . . . . θn−r+1(h0) . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . .
. . . 0

0 . . . 0 θr−1(hn−r) . . . θn−2(h1) θn−1(h0)


is a parity check matrix for C.
Proof. The Lemma 6 shows that for a(X) ∈ C the product a(X) h = 0 in GR(4m)[X, θ]/(Xn−
c). Now deg(a(X) h) < 2n−r and from this we deduce that the coefficients of Xn−r, Xn−r+1, . . . , Xn−1

in this product must be zero. As, for l ∈ {n− r, . . . , n− 1}, the coefficient of X l in a(X)h(X) is

n−r∑
j=0

al−jθ
l−j(hj)

we get the result.

Corollary 1 Suppose that m divides n, c ∈ {1, 3} and Xn−c ∈ Z4[Xm] decomposes as h g over
GR(4m)[X, θ]. Denote by g =

∑r
i=0 giX

i and h =
∑n−r

i=0 hiX
i. The dual of the θ-constacyclic

code (g)/(Xn − c) is the θ-constacyclic code (g⊥)/(Xn − c), where

g⊥ = hn−r + θ(hn−r−1)X + . . . + θn−r(h0)Xn−r.
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Proof. According to the previous result we need to show that the above matrix H is the matrix
of a θ-constacyclic code, which amounts to show that θn−r(h0)Xn−r + . . . + θ(hn−r−1)X + hn−r

is also a right divisor of Xn − c. The ring GR(4m)[X, θ] can be localized to the right at the
multiplicative set S generated by X consisting of all integer powers of Xn1 where n1 > 0. This
follows from [22] Theorem 2 (see also [8] p. 162) since S verifies the following two necessary and
sufficient conditions

1. Condition 1 (right Ore condition): for all Xn1 ∈ S and f1 ∈ GR(4m)[X, θ], there exists
Xn2 ∈ S and f2 ∈ GR(4m)[X, θ] such that f1 Xn1 = Xn2 f2. To prove this we note that
the multiplication rule Xn1a = θn1(a)Xn1 allows to shift powers of X from left to right
by changing the coefficients.

2. Condition 2: if for Xn1 ∈ S and f1 ∈ GR(4m)[X, θ] we have Xn1 f1 = 0, then there exists
Xn2 ∈ S such that f1 Xn2 = 0. But since Xn1 is never a zero divisor, f1 must be zero.

This shows that the right localization GR(4m)[X, θ]S−1 exists. We have aX−1 = X−1θ(a) where
X−1 is the inverse of X in this ring. We now consider the ring R ⊂ GR(4m)[X, θ]S−1 consisting
of the elements

∑n
i=0 X−iai, where the coefficients are on the right and where the multiplication

rule is given by aX−1 = X−1θ(a). The ring R is isomorphic to the skew polynomial ring
GR(4m)[X−1, θ−1]. The map

ϕ:GR(4m)[X, θ] → R ⊂ GR(4m)[X, θ]S−1

n∑
i=0

aiX
i 7→

n∑
i=0

X−iai

is an anti-isomorphism of rings. For P1 =
∑s

i=0 aiX
i and P2 =

∑t
i=0 biX

i we have ϕ(P1 +P2) =
ϕ(P1) + ϕ(P2) and

ϕ(P1P2) = ϕ

s+t∑
k=0

(
∑

i+j=k

aiθ
i(bj))Xk

 =
∑

k

X−k

∑
i,j

aiθ
i(bj)


=

∑
k

∑
i,j

X−jX−i θi(bj)ai =
∑

k

∑
i,j

X−jbjX
−iai

= ϕ(P2)ϕ(P1)

If Xn − c = g h, then for k = n− r we have

Xk ϕ(h) ϕ(g) Xr = Xkϕ(gh)Xr = Xk ϕ(Xn − c) Xr

= Xk (X−n − c) Xr = 1− cXn

= −c
(
Xn − 1

c

)
.

If 1
c = c (i.e. c ∈ {1, 3}), then Xk ϕ(h) = hk + θ(hk−1)X + . . . + θk(h0)Xk = g⊥ divides Xn − c

in GR(4m)[X, θ].

5 Euclidean Self-dual θ-Constacyclic Codes over GR(42)

Our goal in this section is to compute all Euclidean self-dual θ-constacyclic codes of length
n ≤ 40 over GR(42)[X, θ] where θ is the generalized Frobenius automorphism a+2b 7→ a2 +2b2.
The approach is a generalization of [6]. We need to find all skew polynomials g such that
Xn−c = h g with c ∈ {1, 3} and such that the θ-constacyclic code C = (g)/(Xn−c) is self-dual.
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Corollary 1 allows to express the coefficients of the generating polynomial g⊥ of C⊥ in terms of
the coefficients of h. For C to be self-dual, g⊥ and g must differ by a constant multiple. This
allows to express the coefficients of h in terms of the coefficients of g. Equating the coefficients
of Xn − c − (h g) = 0 to zero, produces a (commutative) polynomial system of equations over
GR(42) for the coefficients of all skew polynomials g for which C = C⊥. All possible generators g
of Euclidean self-dual θ-constacyclic codes of given length can then be determined by computing
a Groebner base for this polynomial system in Magma.

We use the 2-Adic representation of the elements of GR(42) ([23], Section 6.2). The elements
of GR(42) are uniquely written as a + 2 b ∈ GR(42) where a and b belong to {0, 1, ξ, ξ

2} and
ξ = X̃ is a root of X2 + X + 1 in F2[X]/(X2 + X + 1). More precisely, ξ = ϕ(ξ) where
ϕ : Z4 → Z2; 0, 2 7→ 0; 1, 3 7→ 1 (see section 1).
Let g =

∑r−1
i=0 gi X

i + Xr with g0 6= 0, the generator polynomial of a self-dual θ-constacyclic
code with length n = 2r. Let h = Xr +

∑r−1
i=0 hiX

i such that h g = Xn − c.
Then

h = Xr +
r−1∑
i=1

(
θr−i(g−1

0 ) θr−i(gr−i)Xi
)

+ θr(g−1
0 )

So the polynomials g of self-dual codes of length 2r are characterized by the relation(
r−1∑
i=0

giX
i + Xr

) (
θr(g2

0) +
r∑

i=1

θr−i(g2
0 gr−i)Xi

)
= X2r − c

In Magma, we write the coefficients gi as ai + νbi where ν is an indeterminate representing ”2”.
So we define the polynomial ring F4[a0, . . . , ar, b0, . . . , br][ν] and consider the relations

a4
i = ai, b

4
i = bi, ν

2 = 0 (1)

Then

g−1
0 = a2

0 − ν a0b0

We use the addition rules of 2-Adic numbers ([23], Section 6.2) and compute the coefficients
of h g−(Xn−c). They are of the form P (ai, bj)+νQ(ai, bj) and must cancel. So each coefficient
leads to two polynomial relations

P (ai, bj) = Q(ai, bj) = 0 (2)

We compute a Groebner basis for all the algebraic relations (1) and (2). We get the coefficients
gi = ξ

k + ν ξ
l that we transform in the representation : gi = ξk + 2 ξl where ξ2 = 3ξ + 3.

For each generator polynomial g we construct the corresponding code and make the mapping
from GR(42) to Z4 explained in section 3.

We made computations for n ≤ 20 and c ∈ {1, 3} and get self-dual θ-constacyclic codes only
for n ∈ {4, 12, 20} and c = 3. The result appears in the next section.

6 Self-dual Z4-codes

For any missing definition on Z4−codes (resp. lattices) we refer to [23] (resp. [12]).
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A lattice of dimension n is a discrete additive subgroup of Rn of maximal Z−rank. The
dual L∗ of a lattice L is given by

L∗ := {x ∈ Rn : ∀y ∈ L x.y ∈ Z},

where x.y stands for the standard inner product of x, y ∈ Rn The norm µ of a lattice is the
quantity

µ := min{x.x : x 6= 0 & x ∈ L}.

A lattice L is unimodular iff L = L∗. It is then Type II if

∀x ∈ L, x.x ≡ 0 (mod 2),

and Type I otherwise. A lattice is ` modular for some prime ` if L∗ is similar to L/
√

`. It was
proved in [21, Th. 1] that the norm of a unimodular n−dimensional lattice is at most

µ ≤ 2(bn/24c+ 1),

for n 6= 23. A unimodular lattice meeting that bound is called extremal. Similarly, it was
proved in [21, Th. 2] that the norm of a 3−modular n−dimensional lattice is at most

µ ≤ 2(bn/12c+ 1),

for n even. A 3−modular lattice meeting that bound is called extremal. For more details and
motivation see [12, 21].

A linear code of length n over Z4 is a submodule of Zn
4 . The dual C⊥ is understood with

respect to the standard inner product. A code is self-dual if it is equal to its dual.
The Euclidean weight of a vector x = (x1, x2, . . . , xn) is wE(x) :=

∑n
i=1 min{x2

i , (4−xi)2}.
The Lee weight of a vector x = (x1, x2, . . . , xn) is wL(x) :=

∑n
i=1 min{|xi|, |(4− xi)|}.

The composition of a vector x ∈ Rn say ni(x) i = 0, 1, 2 is the number of entries= i in x. For
instance wL(x) = n1(x) + 2n2(x). The symmetrized weight enumerator (swe) of a code C
is then defined as

sweC(a, b, c) =
∑
x∈C

an0(x)bn1(x)cn2(x).

The Euclidean weight enumerator (ewe) of a code C is then defined as

eweC(a, b) =
∑
x∈C

a4n−wE(x)bwE(x).

A self-dual code is Type II if all vectors in the code have Euclidean weights which are
0 (mod 8) and Type I otherwise. The minimum Euclidean (resp. Lee) weight of the code
is denoted by dE (resp.dL). We shall recall the standard A4 construction of a lattice from a
self-dual code over Z4.

Define the reduction modulo 4, by ρ : Zn → Zn
4 , by

ρ(x1, . . . , xn) = (x1 (mod 4), . . . , xn (mod 4)).

Given a code C over Z4 we construct a lattice by

Λ(C) =
1
2
{x ∈ Zn | ρ(x) ∈ C}. (3)

11



It is shown in [4] that if C is a Type I code then Λ(C) is a Type I unimodular lattice, and that
if C is a Type II code then Λ(C) is a Type II unimodular lattice and that the minimum norm
of the lattice is min{4, dE

4 }. For a notion of Type II codes over GR(42) we refer to [2].
In order to use this result to construct self-dual codes over Z4, recall that the Galois ring

R := GR(42) of order 16 and characteristic 4 is the unique degree 2 Galois extension of Z4. We
may regard that ring as Z4[α] where α satisfies the quadratic X2 +X +1 = 0. Let F4 denote the
unique finite field of order 4. Similarly, we may regard this field as F2[ω] where ω satisfies the
same polynomial but read off in F2. We shall assume that α is mapped to ω by reduction mod
2. In fact the quotient R/2R is isomorphic to F4. There is a natural notion of conjugation on
R induced by the complex conjugation. Let z = t + αt′ be a generic z ∈ R with t, t′ ∈ Z4. We
shall denote by z the conjugate of z and define it as z = t− t′ − αt′. Define the trace of z ∈ R
down to Z4 by T (z) := z + z. From such codes over GR(42) we construct self-dual codes over
Z4 by projecting on the Trace orthogonal basis of [14].

For n in {4, 12, 20}, we give the codes of length n found via the Groebner basis compu-
tation. After projection over Z4, we classify them in classes of self-dual codes over Z4 with
same symmetric weight enumerator (swe) and Euclidean weight enumerator (ewe). The weight
enumerators that are not displayed can be obtained from the companion research report. For
each class, we give the minimum Euclidean weight dE , the minimum Hamming distance d, the
minimum Lee weight dL, a generator polynomial g, and the number of codes of the class. For
codes whose Euclidean distance is 8 and which are of type II, we compute the root systems
generated by the short vectors of their lattices.

For n = 4, we find 8 codes which are classified in two classes of 4 codes (table 1). The second
code is a Type I code called E8 in [13].

dE d dL Generator polynomial g swe & ewe
4 4 4 X2 + (3 ξ + 1) X + ξ swe = a8 + 16 a4b4 + 14 a4c4 + 48 a3b4c+

96 a2b4c2 + 48 ab4c3 + 16 b8 + 16 b4c4 + c8

ewe = a32 + 16 a28b4 + 64 a24b8 + 96 a20b12+
62 a16b16 + 16 a12b20 + b32

8 4 6 X2 + (3 ξ + 3) X + 3 ξ swe = a8 + 14 a4 c4 + 112 a3 b4

c + 112 a b4 c3 + 16 b8 + c8

ewe = a32 + 128 a24 b8 + 126 a16 b16 + b32

Table 1: Euclidean Self-dual θ-Constacyclic Codes (g)/(X4 + 1)

For n = 12, we get 28 classes of self-dual codes of length 24 over Z4 with the same symmetric
weight enumerator and Euclidean weight enumerator. We classify them according to their
Euclidean distance dE ∈ {4, 8, 12, 16}.
There are only 4 codes (with same ewe and swe) with Euclidean distance dE = 4. Their distances
are d = 4 and dL = 4. One of the generator polynomials of this unique class is

g = X6 + (3 ξ + 1) X3 + ξ

The codes with Euclidean distance dE = 8 are classified according their type. There are 8
classes of Type I codes and 12 classes of Type II codes.
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The 156 Type I lattices (a.k.a. odd unimodular lattices) in dimension 24 are uniquely char-
acterized by their roots systems formed by their norm 2 vectors [12, Chap. 17]. These are
indicated below (table 2) as among A24

1 , A8
2, A

8
3, D

6
4. So 8 distinct swe’s only yield 4 distinct

lattices. It is an open and challenging problem to recover all 156 Type I lattices by Construction
A4 as it has been done for the 24 Niemeier lattices in [3].

Root d dL Generator polynomial Number
system g of codes

A24
1 4 6 X6 + 2 ξX5 + 2 X4 + (3 ξ + 1) X3 + 2 ξX2 + 2 X + ξ 4

A8
2 8 8 X6 + 3 X5 + (ξ + 3) X4 + (2 ξ + 1) X3+ 8

(3 ξ + 2) X2 + X + 1

4 8 X6 + X5 + (3 ξ + 2) X4 + 2 ξX3+ 8
(ξ + 2) X2 + (ξ + 1) X + 3 ξ + 3

A8
3 8 8 X6 + (2 ξ + 1) X5 + (3 ξ + 1) X4 + (2 ξ + 1) X3+ 8

(ξ + 2) X2 + (2 ξ + 1) X + 1

4 6 X6 + (ξ + 3) X5 + (3 ξ + 3) X4 + ξX2 + (ξ + 2) X + 1 8

4 8 X6 + (ξ + 1) X5 + 3 ξX4 + 2 X3 + (ξ + 1) X2 + ξ X + 1 8

4 8 X6 + (ξ + 3) X5 + ξX4 + (3 ξ + 3) X2 + (ξ + 2) X + 1 4

D6
4 4 8 X6 + 2 X5 + 2 X4 + (3 ξ + 1) X3 + 2 ξX2 + 2 ξX + ξ 4

Table 2: Type I Euclidean Self-dual θ-Constacyclic Codes (g)/(X12 + 1) with dE = 8

There are exactly 23 unimodular even lattices of norm 2 in dimension 24. They were classified
by Niemeier and later by Venkov [12, chap. 18], and are uniquely characterized by the roots
systems spanned by their norm 2 vectors. We compute the systems of roots of the lattices
obtained by the type II codes by Construction A and find A24

1 , A8
3, D6

4, D4
6, D2

12 and E3
8 (table

3).
The codes of length 24 over Z4 and Euclidean distance dE = 12 (table 4) are of Type I and

give by Construction A the so-called Odd Leech lattice, the unique unimodular lattice of norm
3 in dimension 24 [12, Chap. 17]. They are distinct from the four codes in [15] as their swe’s
are different (inspection of the monomial terms in a12c12 and a15b8c).

The Type II code of length 24 and Euclidean distance dE = 16 (table 5) give rise to the
Leech lattice by Construction A. Since their Lee weight is only 8 (and not 12) they are not one
of the thirteen Lee-optimal codes classified by Rains [20].

Lastly, for n = 20, we did not compute the swe and ewe of all codes. The one generated by
the polynomial

g = X10 + 2 X9 + (2ξ + 1) X8 + (ξ + 3)X6 + (2ξ + 1) X5 + (3ξ + 2) X4 + (2ξ + 3)X2 + 2 X + 1

has mimimum Hamming distance d = 8, minimum Euclidean distance dE = 16 and minimum
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Root d dL Generator polynomial Number
system g of codes

A24
1 4 8 X6 + X5 + (ξ + 3) X4 + (ξ + 3) X2 + ξ X + 3 ξ 8

8 8 X6 + X5 + (ξ + 3) X4 + 3X3 + (ξ + 2) X2 + X + 3 16
A8

3 4 6 X6 + (3ξ + 3) X5 + (ξ + 1) X4 + ξX2 + ξX + 3 8

4 8 X6 + (3 ξ + 3) X5 + (3 ξ + 2) X4+ 4
2 X3 + (3 ξ + 1) X2 + ξ X + 3

4 8 X6 + (2 ξ + 2) X5 + (3 ξ + 3) X3 + (2 ξ + 2) X + 3 ξ 4
D6

4 4 8 X6 + (3 ξ + 1) X5 + (3 ξ + 1) X4+ 8
(3 ξ + 2) X2 + (ξ + 2) X + 3

4 8 X6 + (3 ξ + 1) X5 + ξX4+ 4
2 X3 + (ξ + 1) X2 + (ξ + 2) X + 3

D4
6 8 8 X6 + (2 ξ + 3) X5 + (3 ξ + 1) X4+ 8

X3 + (3 ξ + 2) X2 + (2 ξ + 1) X + 3

4 8 X6 + (3 ξ + 1) X5 + (ξ + 2) X4+ 4
(ξ + 3) X2 + (ξ + 2) X + 3

D2
12 8 8 X6 + X5 + (ξ + 3) X4 + X3 + (ξ + 2) X2 + X + 3 8

4 6 X6 + 2 ξX5 + 2 X4 + (3 ξ + 3) X3 + 2 ξX2 + 2 X + 3 ξ 4
E3

8 4 6 X6 + (3ξ + 3)X3 + 3ξ 4

Table 3: Type II Euclidean Self-dual θ-Constacyclic Codes (g)/(X12 + 1) with dE = 8

d dL Generator polynomial swe Number
g of codes

4 8 X6 + (ξ + 1) X5 + (ξ + 1) X4+ a24 + · · ·+ 768 a15b8c+ 16
2 X3 + 3 ξX2 + ξ X + 1 · · ·+ 2648 a12c12 + · · ·

4 8 X6 + (ξ + 1) X5 + (3 ξ + 2) X4+ a24 + · · ·+ 768 a15b8c+ 4
(ξ + 3) X2 + ξX + 1 · · ·+ 2612 a12c12 + · · ·

4 8 X6 + (2 ξ + 2) X5+ a24 + · · ·+ 576 a15b8c+ 4
(3 ξ + 1) X3 + (2 ξ + 2) X + ξ · · ·+ 2828 a12c12 + · · ·

8 10 X6 + 3 X5 + (ξ + 3) X4+ a24 + · · ·+ 768 a15b8c+ 16
(2 ξ + 3) X3 + (3 ξ + 2) X2 + X + 1 · · ·+ 2576 a12c12 + · · ·

Table 4: Euclidean Self-dual θ-Constacyclic Codes (g)/(X12 + 1) with dE = 12
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d dL Generator polynomial Number
g of codes

4 8 X6 + (3 ξ + 3) X5 + (ξ + 3) X4 + 2 X3 + (ξ + 2) X2 + ξX + 3 8
4 8 X6 + (3 ξ + 3) X5 + 3 ξX4 + (3 ξ + 3) X2 + ξX + 3 4
4 8 X6 + 2 X5 + 2 X4 + (3 ξ + 3) X3 + 2 ξX2 + 2 ξ X + 3 ξ 4

Table 5: Euclidean Self-dual θ-Constacyclic Codes (g)/(X12 + 1) with dE = 16

Lee distance dL = 14. It is therefore better for the Lee and Euclidean distance than the best
possible Type IV code in length 40 [9].

7 Hermitian Self-dual θ-Constacyclic Codes over GR(42)

We compute Hermitian self-dual θ-constacyclic codes over GR(42), which means self-dual Her-
mitian codes generated by polynomials divisors of f = Xn− c with c ∈ {1, 3}. We use the same
techniques as for self-dual Euclidean codes with the scalar product

x.H y =
n∑

i=1

xi θ(yi)

Following lemma 21 of [6], we get

Lemma 8 Suppose that m divides n. Let g and h =
∑k

i=0 hi X
i be elements of GR(4m)[X, θ]

such that h g = g h = Xn − c where c ∈ {1, 3}. The Hermitian dual of the θ-constacyclic code
(g)/(Xn − c) is the θ-constacyclic code (gH)/(Xn − c) where

gH =
k∑

i=0

θm−1+i(hk−i) Xi

Proof. Let c be a code word and let g⊥ the generator polynomial of the Euclidean dual of the
code (g)/(Xn − c); then for i in {0, . . . k},

< c(X), X ig⊥(X) >=< c(X), X i gH(X) >H

where < a(X), b(X) >H= a.H b and < a(X), b(X) >= a. b. Furthermore gH(X) is a right divisor
of Xn− c. Indeed, gH = φm−1(g⊥) where φ is the morphism from GR(42)[X, θ] to GR(42)[X, θ]
defined by φ(

∑
aiX

i) =
∑

θ(ai)Xi. As g⊥ is a right divisor of Xn − c, gH = φm−1(g⊥) is also
a right divisor of φm−1(Xn − c) = Xn − c.

In GR(42)[X, θ], the polynomial h of a Hermitian self-dual code (g)/(X2r − c) defined by
hg = X2r − c becomes

h = Xr +
r−1∑
i=1

(
θr−i+1(g−1

0 ) θr−i+1(gr−i)Xi
)

+ θr+1(g−1
0 )

so the generators g of Hermitian self-dual codes of length 2r are characterized by the relation(
r−1∑
i=0

giX
i + Xr

) (
Xr +

r−1∑
i=1

(
θr−i+1(g−1

0 ) θr−i+1(gr−i)Xi
)

+ θr+1(g−1
0 )

)
= X2r − c
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We made the computations for r ≤ 10 and found Hermitian self-dual codes for each r. When r
is even, the polynomial f is X2r − 1, otherwise f is X2r + 1.
According to [14], from an Hermitian self-dual code of length n, one can construct a 3-modular
Z-lattice of dimension 2n whose norm is bounded by 2bn

6 c+2. Following [14], the Gramm matrix
M of the lattice is obtained from the generator matrix of the code as

M =
1
2

 U tU + V tV − 1
2U tV − 1

2V tU −1
2U tU − 1

2V tV − 1
2U tV + V tU

−1
2U tU − 1

2V tV + U tV − 1
2V tU U tU + V tV − 1

2U tV − 1
2V tU


where U =

(
G0

0 4IN

)
, V =

(
G1

0 0

)
and G0 + ξ G1 is the generator matrix of the code.

We compare our results with the table of best lattices, given in [18].
In the first row, we give the length n = 2r; in the second row, the generator polynomial of a
Hermitian self-dual code C of length n, (g)/(X2r− c) where c = (−1)rmod2; in the third column,
the norm of the lattice constructed from the code C and in the last column, the best known
norm (BKN) for 3-modular Z-lattices of dimension 2n.

Length Generator polynomial Norm BKN
2r g

4 X2 + 2 ξ + 1 2 2
6 X3 + 2 X2 + 2 X + 2 ξ + 1 4 4
8 X4 + 2 X3 + 2 X + 2 ξ + 1 4 4
10 X5 + 2 X3 + 2 X2 + 2 ξ + 1 4 4
12 X6 + 2 X4 + 2 X2 + 2 ξ + 1 4 6
14 X7 + (3 ξ + 1) X6 + (ξ + 2) X5 + (ξ + 1) X4+ 6 6

(3 ξ + 2) X3 + (3 ξ + 3) X2 + ξ X + 2ξ + 1
16 X8 + 2 X5 + 2 X3 + 2 ξ + 1 4 6
18 X9 + 2 X7 + (3 ξ + 1) X6 + 2 X5 + 2 X4 + ξ X3 + 2 X2 + 2 ξ + 1 6 8
20 X10 + (2 ξ + 1) X8 + (3 ξ + 2) X6 + 2 X5 + ξ X4 + X2 + 2 ξ + 1 6 8

Table 6: Hermitian Self-dual θ-Constacyclic Codes (g)/(X2r − c) with c = (−1)r mod 2

We notice that the 36 lattices of norm 6 we obtain in length n = 14 are all isometric to one
of the two known extremal lattices of dimension 28, Beis 14 in the notation of [18]. This lattice
was previously constructed by combining Construction A modulo 2 over the Eisenstein integers
with Kneser neighboring [1]. We give here another construction of this lattice, without taking
neighbors. Similar trade off between alphabet size and neighboring can be observed in [11].

8 Cubic Construction

Following [14], from self-dual codes over Z4 of length l and Hermitian self-dual codes of length
l over GR(4, 2), one can construct 3l self-dual codes overs Z4.
We construct self-dual codes over Z4 with length 24 and get codes of Euclidean weight 8, 12 or
16. We focus on the Type II codes of Euclidean weight 8 and get the following systems of roots,
which improves the results obtained in the previous section : A12

2 , A8
3, A4

6, A3
8, A24, D6

4, D4
6, D3

8,
D2

12 and D24.
More precisely, for each of the 7 self-dual codes C1 of length 8 over Z4 ([13]) and each of the
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16 Hermitian self-dual codes C2 with length 8 over GR(42) previously computed, we construct
self-dual codes over Z4 of length 24. If their minimum Euclidean weight is 8 and if the codes are
of type II, we compute their root system. In first column of the table, is given the root system;
in the second column, the generator matrix of C1 (G1, G2, G3 or G4); in the third column, the
generator polynomial of C2; in the last column the number of codes which have the same sym-
metric weight enumerator and Euclidean weight enumerator that the code constructed from C1

and C2. There is only one class of codes for each of the root systems A12
2 , A4

6, A3
8, A24, D4

6 and
D2

12. There are two classes of codes with root system A8
3, D4

6 or D3
8.

Root system Self-dual code Hermitian self-dual code Number of
C1 over Z4 C2 over GR(42) equivalent codes

A12
2 G1 X4 + 2 X3 + 2 X + 2 ξ + 1 6

A8
3 G2 X4 + 2 X2 + 2 ξ + 1 2

G1 X4 + 2 ξ + 1 2
A4

6 G1 X4 + 2 X2 + 2 ξ + 1 2
A3

8 G3 X4 + 2 X3 + 2 X + 2 ξ + 1 6
A24 G3 X4 + 2 X2 + 2 ξ + 1 2
D6

4 G3 X4 + 2 ξ + 1 6
G2 X4 + 2 X3 + 2 X2 + 2 X + 2 ξ + 1 6

D4
6 G2 X4 + 2 ξ + 1 2

D3
8 G4 X4 + 2 X3 + 2 X + 2 ξ + 1 6

G4 X4 + 2 X3 + 2 X2 + 2 X + 2 ξ + 1 6
D2

12 G3 X4 + 2 ξ + 1 2
D24 G4 X4 + 2 ξ + 1 2

G4 X4 + 2 X2 + 2 ξ + 1 2

Table 7: Self-dual Codes over Z4 with length 24 obtained from cubic construction

G1 =


1 0 0 0 1 1 1 2
0 1 0 0 3 1 2 3
0 0 1 0 1 2 3 3
0 0 0 1 2 3 1 3

, G2 =


1 1 0 0 1 0 2 1
0 2 0 0 0 2 2 2
0 0 1 0 1 1 2 3
0 0 0 1 1 2 3 1
0 0 0 0 2 0 0 2

,

G3 =


1 1 1 0 0 0 1 2
0 2 0 0 0 0 2 0
0 0 2 0 0 0 2 0
0 0 0 1 1 1 2 1
0 0 0 0 2 0 0 2
0 0 0 0 0 2 0 2

 and G4 =



1 1 1 1 1 1 1 1
0 2 0 0 0 0 0 2
0 0 2 0 0 0 0 2
0 0 0 2 0 0 0 2
0 0 0 0 2 0 0 2
0 0 0 0 0 2 0 2
0 0 0 0 0 0 2 2


.

9 Open Problems

There are several possible generalizations to this approach:

1. In the situations of the previous section we considered the factor rings GR(4m)[X, θ]/(f)
where f is a monic central polynomials. Any monic right factor of f generates a principal
ideal (g)/(f) ⊂ GR(4m)[X, θ]/(f) and therefore corresponds to a linear code. Those codes
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have similar properties than the classical cyclic codes, in particular any code word is a
multiple of g and there will always be (4m)i code words. We may also consider ideals that
are generated by non unitary polynomials whose leading coefficients are not invertible and
more generally non principal ideals. We provide an example in each case:

Example. The code associated with (2X2 + (2w + 2)X + 2w) ⊂ GR(42)[X, θ]/(X2 + 1)
contains 16 code words and has lee distance 8. Its mapping to a code over Z4 and then to
a code over F2 produces a code of length 16 with 24 code words and distance 8 over F2.
This has to be compared with the (exact) value A(15, 7) = 25.

Example. The code associated with (2X + 2w,X2 + 2w + 1) ⊂ GR(42)[X, θ]/(X2 + 1)
contains 210 code words and has lee distance 4. Its mapping to a code over Z4 and then
to a code over F2 produces a code of length 16 with 210 code words and distance 4 over
F2. This has to be compared with the (exact) value A(15, 3) = 211.

Clearly we obtain much more code this way. This systematic approach should produce
very good codes of large length. The result below an the correspondence of ideals seems to
suggest that we only need to consider ideals (f, 2 f1) where f and f1 are monic polynomials
which contain the ideal I.

2. We may consider other two sided ideals instead of a central polynomial f . According to [19]
Section XX Proposition XX.3 and Exercise XX.11.c the two sided ideals of GR(4m)[X, θ]
are of the form I = (f, 2 f1) where f and f1 are monic polynomials. Any left ideal in
GR(4m)[X, θ]/(I) is a linear code over GR(4m). Therefore a first generalization would be
to analyze the left ideals in those factor rings.
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