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Abstract

We present an application of the wire-tap channel
to biometrics. Our contribution is threefold. We
start with an information-theoretic approach and mod-
elization of the biometric identification problem of
the European Project (VIPBOB). Next, we general-
ize Wyner’s coset-coding scheme and prove that lin-
ear codes achieves the Shannon-capacity. Finally, we
present a solution to the original problem using LDPC
codes.

1. INTRODUCTION

A traditional commitment consists of sending or
publishing y = f(b) where f is a one-way function and
b is a binary vector that is supposed to remain hidden
until it is disclosed. Checking that f(b) = y forbids one
from disclosing a vector different from the one that was
committed to. The fuzzy commitment problem arises
when one wishes the protocol to accept not only the
original b, but also any vector b’ = b + e where e
is a vector of small Hamming weight. This problem
appears typically in biometrical contexts when b en-
codes, for example, a fingerprint. Successive biomet-
rical measures of the same finger will always tend to
differ slightly. To solve this problem Juels and Wat-
tenberg introduced the following fuzzy commitment
scheme. Choose a random secret vector s and encode
it as a codeword ¢ of some fixed, publicly known code
C. Then publish (in practice that may mean write on
a smartcard)

W=c+b together with H(c)

where H(c) is the image of ¢ by some cryptographic
hash function. When b+e is submitted to the protocol,
it adds it to W, yielding a noisy version c+e of ¢. The
vector ¢ + e is then submitted to a decoding algorithm
which yields c¢. Validity is checked by computing H(c)
and comparing it to the stored value.

This is essentially the main protocol involved in the
European Project (Virtual Identification Pin Based On

Biometrics): in this project the protection of the se-
cret vector s is essential. In the idealized setting of [4],
the “biometric” vector b is assumed to be uniformly
distributed among vectors of a given length. In that
case, the published vector W yields no information on
the secret codeword ¢ or the original secret s. How-
ever, in practice the distribution of b may be far from
uniform; then W is liable to leak undesirable partial
knowledge of ¢ to an unauthorized third party (here-
after “the eavesdropper”).

Our present contribution is threefold. We start with
an information-theoretic approach and model the situa-
tion by involving wire-tap channel models. This means
that we consider the eavesdropper to have access to a
very noisy version of the secret codeword, while the
correct protocol yields access to a less noisy version
of the secret codeword. We would like to insure no
leakage of secret information to the eavesdropper: this
problem can be remodelled as that of maximizing the
amount of information that can be reliably transmit-
ted through the less noisy “channel” with maximum
“equivocation”, i.e. insuring that the eavesdropper gets
essentially no information on the secret data.

Next, we generalize Wyner’s coset coding scheme to
the case when both the main channel and the wiretap
channel are noisy. We then prove that this scheme, i.e.
the use of linear codes, achieves the Shannon-capacity
of the system. However, this goes only half-way to pro-
viding a practical “zero-leakage” fuzzy committment
protocol, because to achieve capacity we need to involve
random codes with an unacceptable decoding complex-
ity.

Finally, we present a complete solution to the orig-
inal problem by making use of LDPC codes, with low
decoding complexity. The price to pay is a reduction
of the system’s original capacity to a subcapacity that
we evaluate.

2. FROM BIOMETRICS TO WIRE-TAP

As mentionned in the introduction, the security
problem that we address is: What information on s can



be gained from ¢ + b ? This can be viewed as a com-
munication problem, thus amenable to an information-
theoretic treatement. To that end we modelize the
situation as one involving two channels: one for the
legitimate user and one for the pirate. To stress the
parallelism with communication problems, we consider
the legitimate user as split in two entities: Alice when
it enrolls, Bob when it authentifies; following the tra-
dition, the passive attacker is called Eve.

Writing on the card is analogous to transmitting on
a channel, reading to receiving.

Bob incurs some noise due to biometric instability,
that we denote by e. When Eve intercepts the card,
she views the biometric vector as noise.

To summarize:

Two-Channels paradigm

1. Authorized user obtains :

W+b+e=.

2. Unauthorized user obtains :

w—[crb]

secret s

— = encode: ¢

 I(B,S) = H(S) = h(P) — h(p);
o I(E;S) =0.,ie H(S|E)= H(S)=h(P)—h(p).

Thus, complete knowledge for Bob and complete
uncertainty for Eve! The secrecy capacity ([2]) of the
scheme, defined as the maximal transmission rate at
which total equivocation for the enemy is maintained,
is n(h(P) — h(p)) for n transmitted binary symbols.

3. NEW COSET-CODING SCHEME

In the special case when p = 0, it was shown
by Wyner that the secrecy capacity can be achieved
through a linear coset coding scheme: to transmit
the secret s, a vector x is sent through the channel
where x is randomly chosen among all vectors such that
s = H'x and where H is a properly chosen nh(P) x n
parity-check matrix of a code C.

For random variables R and T', we denote the binary
entropy function by h(y) := —ylog, y — (1 —y) log, (1 —
y), by H(X) the entropy of a random variable X, by
H(R|T) the conditional entropy or equivocation of T'
about R; and by I(R;T) the mutual information be-
tween R and T it measures the (mutual) information
leakage.

In the present work we shall focus on binary sym-
metric channels for Bob and Eve. That is, we assume
that both Bob’s and Eve’s noises are independently dis-
tributed over the binary elements, with noise densities p
and P respectively, i.e. (E[w(e)] = np, E[w(b)] = nP).

If we perform an analysis per binary element, we
get that, without any coding, when A is sent by Alice,
B is received by Bob and E is received by Eve,

I(B;A)=1—h(p); I(E;A) =1-h(P).

With an appropriate coding scheme, it was shown
by Wyner [6] that a secret S can be conveyed such that

. c+e
main channel +
small noise

wire-tap c+b
big noise

3.1. Description

We now make use of two codes C; and Cs.

Send ¢! € C; (write on card ¢! + b), where:
Ci[n,n(1 — h(p))] is an np-error correcting code.

Bob gets ¢! + e, and through decoding obtains c?.
Eve gets c' +b.

The secret is the syndrome of ¢!, s = Hic!, where
H = [H;;H,] is the concatenation of 2 parity-check
matrices:

e H; parity-check matrix of C1, of size nh(p) X n;

e H, parity-check matrix of C;/Cs, of size
n(h(P) — h(p)) X n.



Theorem 1 The above scheme achieves the secrecy
capacity per binary element (h(P)—h(p)) for randomly
chosen codes C7 and Cs,.

The proof of this result is presented in the Ap-
pendix.

3.2. Protocol

to transmit s = (0 : s3)

1. Pick an “easy” vector ys with syndrome s,; For
example, with H in systematic form,

[H =1 : P), I the identity of order nh(P):

y2 = Ei€supp(s2)ei>
with {e‘} the natural basis.

2. Add a random c» € Cs to y»

3. Transmit x; := ya +¢o € Cy.

4. USING LDPC CODES

Problem: To implement the scheme, we need that
(' should be easy to decode (for Bob), e.g., by making
use of LDPC codes that we now discuss.

The incertainty for Eve can be rewritten H(S|E) =
K(p) — K(P),

where k(z) = 1 — h(z) is the capacity of the BSC
with crossover probability z. If the code is LDPC, ca-
pacity cannot be reached. Instead ([3]), if rows of H;
have weight w, an upper bound on capacity is given by
a subcapacity

w(p,w) == 1 — h(p) /h(pa),

where py, := (1 — (1 — 2p)¥)/2.

Thus we get:

H(S|E) < h(P) = h(p)/M(pw) < h(P) = h(p).
5. APPENDIX

5.1. Random Coding

Here we prove Theorem 1.

Let C denote a random linear [n,n(1 — h(P))]
code. Almost surely, C is a covering code of radius nP.
In other words, considering H, a nh(P) xn parity-check
matrix of C, every syndrome, i.e. vector of F*"P) can
be written as combination of at most (in fact exactly)
nP columns of H.

Let the secret s be chosen in some way in the syn-
drome space, i.e. according to some distribution. Let

the vector z be chosen uniformly among the vectors
of syndrome s (in a given coset of C).

Remark We have, for clarity, described the situa-
tion when the noise is binomially distributed (the bi-
nary symmetric channel case): but really, what we need
to suppose is only that there is a set T' of typical noise
vectors of cardinality |T| = 2"*(P)_ each vector b oc-
curing with probability 2-"(P)

We have the immediate

Lemma 1 For b,s fized, H wuniformly distributed:
Pr{H'b = s} = 27nh(P),

Set Xb,s =1if Hb = S,
Xb,s = 0 otherwise;
also Xg := XpberXps. Then

Lemma 2 E[Xps] =2""""), E[X,] = 1.

We now need a technical result, whose proof is omit-
ted here.

Lemma 3 For m integer,
E[X] < (2m)™.

Then, we invoke the “Markov Inequality of order
m”, stating that for a positive random variable Y and
real number X\: Pr{Y > A} < E[Y™]/\™.

We apply it to Y = X, A = 2™, which yields:

Pr{Xs > 2"} < (2m)™/2nom™,

Finally, we choose m > 2/a to get the following
theorem and corollary, which in essence state that syn-
drome distribution is uniform among typical noise vec-
tors.

Theorem 2 For any 0 < a < 1, for any s:
Pr{Xs > 2"} = 0.
Moreover,
Pr{3s: Xs >2"*} - 0.

Corollary 1 For a random code [n,n(1 — h(P))]
(in fact for almost all codes)
Vb € T,VsPr{H'b = s} < 2~ MFP)-a)

Remark. Defining the min-entropy ([5]) of a ran-
dom variable R as:

Ho := Max {i :Vr: Pr{R =7} <27},

we get (per binary element):

H(S|E) > Hoo(S|E) > h(P) — a.

The consequence of Theorem 2 is that with this
scheme, the distribution of H'b (the syndrome of b)
is uniform. Once again, this holds under very gen-
eral conditions on the noise (essentially that typicallity



can be defined, which encompasses all classical additive
channels).

Informally, this can be reinterpreted as saying that
the eavesdropper is submitted to a one-time pad in the
syndrome space: hence her uncertainty on the secret
s = [0 : so] is the same before and after reception,
namely H(s2) = n(h(P) — h(p)).

More formally, start by noticing that

H(s|x+b)—H(s|s+H'b) <0.

This is because, since s+ H?’b is a function of x+b,
knowledge of x + b can only yield more knowledge
(and less uncertainty) than s + H'b. Let us now prove
the reverse inequality: we have

H(s|x+b)—H(s|s+H'D)

= H(s,x+b)—H(x+b)

—H(s,s+ H'b) + H(s + H'D)
= H(s,x+b,s +H'b) — H(s,s + H'D)
—[H(x +b,s +H'b) — H(s + H'D)]
H(x+b|s,s+H'b)— H(x+b|s+ H'D)

> H(x|s,b)— H(x+b|s+H'D)
= H(x|s)—H(x+b|s+H'D)
> 0,

where the last inequality is due to x being uniformly
distributed among vectors with syndrome s, hence the
maximality of H(x | s).

We have therefore proved that

H(s|x+b)=H(s|s+ H'D),

meaning that there is no advantage for the eaves-
dropper in possessing x + b on top of its syndrome.
Since in the syndrome space s is submitted to a one-
time pad we obtain Theorem 1. Note that we did not
need to suppose anything on the distribution of s.

5.2. Practical Decoding

In the preceding section the parity check matrix
H; was chosen randomly, with uniform distribution
among all possible matrices of a given size. This gives
a random code C for which no effective decoding al-
gorithm is known and makes the coset coding scheme
pretty much impractical for the legitimate user Bob.
To make it practical let us now suppose that C; is a
code for which a decoding algorithm exists, for exam-
ple an LDPC code. The price to pay for this will be
that its redundancy h(p)n will have to be increased to
some value rn.

Recall from section 3.2 that the secret syndrome
s is chosen of the form s = (0 : s3). The syndrome
computed from the received vector s + H'b can

be decomposed as (Hib : ss + Ha'b) where b is
the noise vector. By the same argument as before,
we may suppose that the eavesdropper makes only
use of the computed syndrome since knowledge of
x + b does not give him any extra information.
However, since we have lost control of the nature of
the matrix Hy, we may not hope to argue as before
that H!b has a uniform distribution. To fix this
we focus on the distribution of Hs!b conditionnal
on H;!b. Using Markov Inequality, we have that
only an exponentially small proportion of the subsets
T; C T of noise vectors with given H; ‘b = i will
have cardinality exponentially smaller than the mean
value E[|T;|] = 2»HP)=r1) . Since n(H(P) — r1) is
exactly the length of the subsyndrome s2, Theorem 2
gives us that the distribution of H, *b conditionnal on
H, ’b is again uniform. Therefore the subvector s» is
again submitted to a one-time pad with perfect secrecy.

To summarize, the only loss incurred, when moving
from the existential approach to the actually imple-
mentable codes, is in the size of the secret, but not
in the security per binary element, which remains
maximal.

Thus, referring to Section 4, Eve’s global equivoca-
tion about the secret is

nH(S|E) = n(h(P) — 1),
with 71 > h(p)/h(pw)-

5.3. Generalizations

The previous analysis extends mutatis mutandis to

e Parameters p; and P; depending on the location:
nH(S|E) = Z;(MF;) — h(pi))-

e Correlated noise. If the noise is additive, with
average entropies per bit for Bob and Eve

h(6) and h(©), then
H(S|E) = h(©) — h(6).

Comments. To see why the last extension holds,
denote T'(0) the set of typical noise vectors around 0,
i.e. of probability 1 conditional to 0 being emitted.

The additivity property means that

T(c) =c+T(0).

The existence of good linear coverings by tiles 7'(0)
([1]) implies constructed maximum incertainty for Eve:

Setting for Bob and Eve respectively

|T5(0)| = 2"%; |Tg(0)| = 2™°, we have:

H(S|E) = h(©) — H(6).
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