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Abstract - In this paper, a hybrid technique for global
eptimization based on the genetic algorithm and a deterministic
method is presented. A potential advantage of the hybrid method
compared to the genetic algorithm is that global optimization can
be performed more efficiently. An intrinsic problem of the hybrid
techniques is related to the moment of stopping the stochastic
routine to launch the deterministic one. This is investigated using
some natural criteria for the commutation between the two
methods. The results show that it is possible to gain in efficiency
and in accuracy but the criterion is usually problem dependent.
Finally, to show the solution of a real problem, the hybrid
algorithm is coupled to a 2D code based on the boundary element
methed to optimize a connector of 145 kV GIS,

1. mropUCTION

Among the optimization methods, two great families stand
out: the deterministic and the stochastic. The deterministic
techniques seek the minimum point based on the information
given by the negative of the gradient (or sub-gradient) of the
objective function. Naturally, the efficiency of them depends on
several factors, such as the starting point, the accuracy of the
descent direction evaluation and the method used to execute the
line search as well as the stopping criteria [1}. The obtained
solution point is generally a point of local minimum, which may
also be a global minimum if the function is unimodal. The two
main disadvantages are the need of gradient evaluations and the
lack of guarantee of the global minimum. The stochastic
methods do not need the calculation of the gradient and are able
to find the global solution. However, the number of evaluations
of the objective function, necessary to find the solution, is
normally higher than the number required by the deterministic
methods.

The commutation condition to stop the genetic algorithm
(GA) [2] to launch the deterministic one is the major problem
when dealing with such hybrid techniques. The main idea is to
launch the deterministic method after the region of global
minimum has been found. However, when this is achieved is not
known. The goal is to explore the good characteristics of both
methods. That is, global convergence with a relatively small
number of objective function evaluation and with accuracy in the
solution.

In recent years, papers on hybrid methods have been
published, but only a few suggestions on the commutation
problem have been given, for the simulated annealing algorithm
[31
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1I. GenNeTic ALGORITHM

Genetic  algorithms have been successfully applied to
optimization problems in many areas. The important work of
J. Holland [2] set up the basis of the GA and D. Goldberg’s
book [4] was very important to make it popular. Many papers
using GA to optimize problems in others areas, such that power
flow and machine learning, can easily be found in the literature.
Although GA was known since 1975, the first papers in the
literature applying GA in electromagnetics were only published
in 1994 [5,6].

The GA’s act on a set of possible solutions, usually refereed to
as a population of individuals, in such a way that the individuals
of a new generation carry out their missions better than their
ancestors. )

In a genetic code, some operators similar to those of natural
genetics are used. The main operators which affect the make up
of a “chromosome” (one possible solution of the problem
normally codified in binary code) are crossover, mutation and
inversion [2,4]. Also, in a similar way to natural evolution, the
ndividuals with best performance have a greater probability to
survive. This operation is known in a GA as reproduction.

During the process of reproduction, the probability of survival
is strictly linked to the performance of each individual. Those
that carry out their missions better than others have a greater
probability of transmitting their genetic material to the next
generation. The performance of an individual is evaluated by a
function that is called fitness function.

Crossover is the most important operation to generate new

_points in the feasible domain in the search for the global

minimum. This operation is made between pairs of parents,
which are randomly chosen. The exchange of genetic material is
carried out and the two individuals generated are then carriers of
part of genetic characteristics of their parents. New points in the
feasible space are generated. :

Mutation is the most important operation to introduce new
genetic characteristics in the population. It occurs- on an
individual at a time with a probability pm.

Naturally, if these operations are to be used with a view to
optimization, the possible solutions of the problem (sets of
design variables) should be coded as a finite-length string, such
as a chromosome. A string of binary characters would be an
example.

Codifying the Design Variables - Using binary representation,

the set of design variables are then represented by a string of
characters, on which natural operations are carried out [4].
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As an example, the parameter radius of a curve r, which is
bounded below and upper by rmin and rpax, may be
represented by a string of characters A with a length I=5.
Obviously, Ag= 11111 and Aj = 00000 match rmgx and rmin,
respectively. The corresponding value of r, in the binary code, is
mapped between As and Ai.

The string length is chosen according to the precision
required for the parameter representation. In the example above,
if the radius r is represented by A = 01010 and the limits ryin
and rmax are 1 and 110 cm, the value of r is 1 + (109/31)* 10
cm because A, Aj and Ag are respectively in base 10 equal to
10, 0 and 31. The resolution for this representation is the ratio
(131133( 'l]]lill)/( [&s - [\i), which gd\“ES 109/31.

When there are several design variables, they can be
represented by a single string of binary digits [4]: the first
variable takes the first lo positions, the second takes the next lo
positions, etc. The picture below illustrates a string with n
optimization variables each one of them represented in binary
code as lo = 7. The advantage is that each string represents a
possible solution to the problem, based on which all the
operations can be done. However, each variable may be left
independent and the operations carried out separately. Thus, the
first parameter of the first string can be crossed with the first
parameter of the last, at the same time as the second variable of
the first string can be crossed with the second parameter of the
third. This representation may have some advantages because
the possibility of testing new solutions is greatly increased. Our
GA code was implemented using this last option [7]. This
representation has the inconvenience of needing a vector to
represent a possible solution.

HI. Generic ALGormiv IMPLEMENTATION

The simplified organogram of a genetic algorithm, for the
optimization of a constrained non-linear problem, was changed
to permit the commutation between the GA and a deterministic
method [7]. Also, in this new implementation, the p,, and p,
probabilities are dynamically changed based on the rate
Vaver Vinae Where V. is the fitness function mean value and
V ax 18 the best fitness function value. When this rate is close to
one, there is not much genetic diversity in the population. So p,,
is augmented and p, is lowered and when this rate is close to
zero, this means that there is a lot of genetic variety in the
population. In this case, p,, is lowered and p, is augmented.
Although these last changes have been tested only in the solution
of some analytical functions, the GA code has given better
results, presented more stability and the convergence has been
accelerated. A detailed study about these changes has actually
been made. Finally, the inversion process was implemented in
our GA, without changes in the way that the variables were
coded. So, when py,, > 0, the “inversion™ process generates new
points in the feasible space.
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PROCEDURES
1 Choose: nbpop, nbgen, pc, pm, pinv, &, 60 and to.
Do: =0
Choose:x' =1, nbpop; (initial population)
2 Do:t=t+l; (generations counter)
3 Calulaefix)  i=1,nbpop; (fitness function calculation)
4 Select ff, (x') > f(x}) for i= 1,abpop; (selection of the individual
with the best performance)
Ift > to and the commutation criterion  (the best solution found with
is satisfied or if t > nbgen then stop GA GA is passed to the
and start ALML deterministic method)

5 Ift>1: Select (xY) < F(xY) for i = 1,nbop;
(Selection of individual with worse performance)
Replace f£,(ch) by £, 1).
(Individual of worst performance substituted by that
of best performance from the previous generation)

6  Reproduction {Selection of survivors)
7  Crossover (Operation between pairs of individuals chosen
randomly with a probability pc)
8§ Mutation (Random operation on an individual chosen with a
probability pm)
9  Inversion (Random operation on an individual chosen with a
probability pinv)

10 Retumto2.

IV. FiTNESS FUNCTION DEFNmion

Any code for electromagnetic field calculation can be coupled
to a genetic algorithm through an objective function. As long as
the GA is established naturally in terms of maximization with a
non-negative function in the feasible domain of the problem, it is
necessary to map the original objective function in another way
to adapt it to the G4. Non-linear optimization problems in
electromagnetism can be expressed as:

ALY

subjected to g;(x) <0

min ;
i=1m O
where f(x) is the objective function, gj(x) is the i-th constraint
function and x = (X;, Xa,... , X,) is the vector of design variables.

Using a transformation as in the penalty methods, the original
problem (Eq. (1)) can be rewritten as a problem of unconstrained
minimization.

min  h(x)=f(x)+r ¥[8 ®)], | @

i=]

In the equation (2), r is a penalty parameter, the term {g{x)}+
represents only the violated constraint functions and h(x) is a
pseudo-objective or a cost function.

The problem above can be transformed into an adequate form
to the genetic algorithm, i.e., into a form of maximization [1,5]:

max  ff(x)= 3

[A(x)+¢ ]
where ¢ is simply a constant that should be chosen in such a way
that in global minimum point AXx) + & = p, where p is a
constant slightly higher than zero (10%) and ffx) is the fitness
function. The analysis of some results using this function has
shown that the GA convergence is accelerated. This can be
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explained with regards to the reproduction process: when a
point, say x;, in the feasible space, is generated in such a way
that A(x;) + & is close to zero, it will have a great probability to
be reproduced many times, because fi(x;) is the measure of the
individual performance associated with this point.

V. CommvutaTioN CRITERIA

The major difficulty when dealing with hybrid methods for
global optimization problems is to find the moment to stop the
stochastic method to launch the deterministic one. The main
idea is to start the deterministic method when the region of
global minimum has been found. However, it is not known when
this is achieved. So, it is impossible to guarantee that the
solution is the global one. The results presented in next section
illustrates this fact.

The following criteria for the commutation between GA and a
deterministic method can be naturally defined:

A. Number of generations. It is the simplest case. The GA is
stopped when the specified number of generations is attained
and the best result is passed to the deterministic method. The
major drawback of this criterion is that not all cost fimctions
present the same behavior.

B. Difference between the cost function mean values at a set of
generations. The major inconvenience of this criterion is that
the evolution of the mean value curve presents great
variations from one generation to another.

C. Difference between the best values of the cost function at a
set of generations. This procedure is less sensitive to the type
of the problem and the condition can be established as:

ol ~ 2 <a+h,,,)

where t is the actual generation and t; is an integer number,
which is used to indicates how many generations before t
will be considered. Moreover, hy, is the best cost fimction
value at generation t and g, is a small positive number.

=4 C)

D. Difference between the best different values of the cost
Junction in the same generation. This procedure is also less
sensitive to the type of the problem. It can be written as:

t

= S H

=1

1

—=<¢ L<K, < <H
(5'+h,l;,) o hm hm] hm—to

&)

where hm_ is the j-th best value after h and t, is the number of
the md1v1duals with best performances taken in the same
generation for comparison.

VL Anarymicar ResuLts

The problem of commutation was analyzed using the GA
coupled with the augmented Lagrangian method (ALM) [1]. For
this study, the problem of minimizing the Rastrigin function,

defined in the interval (0,10), was taken as a test problem [7].
This problem presents 10" local minima (Eq. 6).

min f(x) = 10n+i[(x,- -

x(,,-)2 —10cos27(x; —xy;) |
i=1
x=(%;,%,...%,)]  0=x,<10  x, €(0,10)
©®
The global solution X is evidently X = (Xo1,Xassw--sXon)T With

the objective function having a zero value. The vector X, permits
us to choose global solutions that can be more or less difficult to
the GA to find.

The Table I gives the results only for the commutation
criteria A and C, although the criteria B and D have also been
tested. In these tests, the criterion B has not given good results
because the mean value curve presents great variations [5] and
the condition D has given similar results to the condition C. The
condition C’ in Table I is the same criterion as C, except that
when the condition |h,~h,"| <&, is satisfied. In this case, hy"
is replaced by another better value that is different from h,". The
global solution was chosen as x,e(3.22,5.22,6.22,7.22,8.22)"
according to n. If n=2, x,~(3.22,5.22) ™. It can be seen that not
all tested cases converged to the global solution.

TABLE]
Commuration Criteria, ’
Commutation Criteria A C(to=2)
Number of Variablesn 2 3 4 5 2 3 4 5
Convergence yes  yes yes yes|yes yes yes 1no
GA- Final Result 0.16 8.10-> 0.17 0.62}1.76 0.89'0.60 18.9
ALM- Final Result 00 00 00 0000 00 00 1492
GA-Function Evaluations 1200 1200 12001200] 160 340 480 140
ALM- Function Evaluations 15 12 21 16} 18 19 17 16

Commutation Criteria.

Commutation Criteria C(to=3) C’(to=2)
Number of Variables 2 3 4 512 3 4 5
Convergence yes yes vyes no |yes yes Yyes yes
GA- Final Result 176 008 06 11.92(1.76 0.89 0.60 0.72
ALM-Final Result 00 00 00 995|100 00 00 00
GA-Function evaluations 180 480 500 420|200 340 - 560 1150
ALM- Function evaluations 18 19 17 21 {18 19 17 20

VII. Suape Ormvzation oF A HV CONNECTOR

A part of a three phase 145 kV GIS was used as a real
problem to test the GA-ALM. The field computation code used
is based on the boundary element method [8]. Fig. 1 shows the
initial profile of a part of this connector to be optimized and
Table I gives the used variable bounds. It is described using
eight parameters [7].

The optimization problem was formulated as:

. =(E2, - E2 )2
mmfi(X) ( E; ) o

< xf <x i=18

X S

where x is the vector of design parameters, Eq is the specified
electric field and E,,,,, is the maximum value of this field on the
profile. Eq is chosen equal to 26 V/m.



Fig. 1. Initial profile and the used parameters [7].

The genetic parameters used for this example were:

¢ Maximum number of generations: 20

e Number of individuals in the population: 10

e Crossover probability: 0.90
s Mutation probability: 0.025
s Inversion probability: 0.025

TABLETI
Design Variable Bounds.
X1 % X X% X% X% X

X (mm) (mm) (nm) (mm) (mm) (mm)

bounds pferior 6 -50° 2 25° 25 4 15 4
superior 13 0° 6 45 35 10 30 12

The criterion C was used in this computation as shown in
Eq. (8). The parameters t,, € and &, were respectively replaced by
2, 1 and 0.001. Also, h(x) was replaced by f{(x) since (7) is a
minimization problem without constraints. The ¢ value was
made equal to 1, because the objective function value at the
minimum point usually is not known, in such a way as to satisfy
fo) +e=zp.

|2f (=)~ F T = F(x)5

[ ! <0.001 (8)

(1+ f(X)n)
In Eq. (8), f(x)., is the best objective function value result
obtained in the generation t.

The results obtained are shown in Table HI and Fig. 2 {7].
Table IIl gives the initial and the final values of the design
variables after the execution of ALM and the hybrid GA-ALM.
The results show that there is more than one minimum.

It is interesting to see that the four regions (A,B,C and D)
shown in Fig. 1 have the largest values of the electrical field.
Also, the maximum values of this field in the initial geometry
are respectively 36.74, 49.00, 29.84 and 36.02 V/m. In this
problem, 28 field evaluations were made by the GA, which
passed the best geometry found to ALM, that made 16 more
evaluations. Note that the optimum point was not found by GA.
The results show only that the commutation criterion was
satisfied after three generations and the best result obtained with
GA was passed to ALM. The E,, obtained with the
optimization, using the hybrid GA-ALM, is 36.44 V/m - (region
B) for GA and 35.34 - (region B) for ALM.
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TABLE Il
ield Values on the HV Connector for a Diff of Pot of 1 V.
~ Initial ALM GA-ALM
4900(B) 3540(A) 3644(B) 3534(B)
L 14 28 16

E ary (V/m) (Point - Fig. 1)
NBCAL (~13s/calcul)

X1 (mm) . 776 726 728
Xp° -30° 30°  -1363°  -1364°
X2 (mm) 4 4 525 525
x4° 35° 35° 3413°  34.14°
X (mm) 30 3014 3317 3317
X4, (mm) 6 1000 836 1000
X (mm) 28 1655 1733 1581
Xg (mm) 15 1072 980 1060
55

E (V/m) 25

NI 3

15 )

s
[
bl
+ =
o
v
+ -
[

-5
1 21 41 61 81 101 121 1 161
Nodsl Point on the Boundary

Fig, 2. E-field (initial geometry, geometry obtained with GA and passed to ALM and
the final result obtained with GA-ALM).

ConNcLusioN

A hybrid technique for global optimization problems was
presented in this paper. The major difficulty to stop the GA and
launch the ALM was studied using some natural commutation
conditions, Although the analytical results presented show that it
is possible to increase the numerical efficiency (see cases A, C
and C’), the global solution can not be guaranteed. The
condition A is the simplest one. However, cost fimctions can
present different behaviors, requiring additional tests to find the
number of generations necessary to achieve the global region.
The condition C is less sensitive to the problem type and can be
adjusted changing the value of t,. The optimized shape of the
HV connector above illustrates the application of the hybrid
method to the solution of a real problem.
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