
HAL Id: hal-00359801
https://hal.science/hal-00359801

Submitted on 26 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a software reliability model by Koch and Spreij
James Ledoux

To cite this version:
James Ledoux. On a software reliability model by Koch and Spreij. Statistics and Probability Letters,
2008, 78 (7), pp.904-914. �10.1016/j.spl.2007.10.002�. �hal-00359801�

https://hal.science/hal-00359801
https://hal.archives-ouvertes.fr


On a software reliability model by Koch and Spreij

James Ledoux∗

11 October 2007

Abstract

In a very concise paper, Koch and Spreij have proposed a software reliability model
which generalized Jelinski-Moranda’s one. The basic assumption is that the failure inten-
sity is proportional to the residual number of failures, but the initial number of failures is
not known. In fact, this paper contained original ideas which were rediscovered by others
some time later usually in a Bayesian modelling framework. Their paper will be revisited
here. Specifically the results supporting the discussion on various specific models by Koch
and Spreij (1983) are stated and proved.
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1 Introduction

Koch and Spreij (1983) have proposed general software reliability models. Let us introduce
their basic model in which the assumptions were as follows:

1. each detected fault is immediately corrected;

2. each correction introduces no new fault;

3. the failure intensity is proportional to the residual number of faults.

These assumptions are common to a large amount of software reliability models (Pham, 2000;
Singpurwalla and Wilson, 1999). Let us consider a complete filtered probability space (Ω,P,F)
where F := {Ft}t≥0 is a continuous to the right filtration or history such that the counting
process {Nt}t≥0 is adapted. This counting process has the Doob-Meyer representation

Nt =

∫ t

0

λs ds+Mt, N0 = 0 (1.1)

where {Mt}t≥0 is assumed to be an F-martingale. This is valid if E[Nt] < +∞ for every t.
From Assumption 3, the random process {λt}t≥0 is a stochastic intensity of {Nt}t≥0 which has
the form

λt = ν Rt = ν (R0 −Nt) (1.2)
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where Rt is the number of faults still contained in the software at time t and ν is a (random)
factor of proportionality. Note that R0 is the initial number of faults contained in the software.
ν may be interpreted as a fault-manifestation rate.

Koch and Spreij have discussed how martingale theory provides an unique framework to
analyze software reliability models trough the basic model above and some extensions, one
of them being discussed in Section 3. Their paper has been largely ignored in the literature
on software reliability though many basic ideas in later developments on Generalized Order
Statistics (GOS) models, on connections between GOS and Non-Homogeneous Poisson Process
(NHPP) models, on Bayesian inference for software reliability models were already included (e.g.
Langberg and Singpurwalla, 1985; Miller, 1986; Kuo and Yang, 1996; Wang, 2005). The point
was to determine the joint distribution of the number of residual faults and the manifestation
fault rate conditionally to the history of the failure process. This was done in solving a filtering
problem. In other words, they obtained the posterior distribution of the parameters of the
model as a function of their initial distributions. Then, a large number of now well established
models can be obtained using various initial distributions. Why this paper has been ignored ?
Maybe, one of the main reason is that it is a very concise paper which only gives a flavour of
results. Specifically, the reader is reported to (Koch and Spreij, 1982) for proofs and most of
technical results. The aims of this paper are: first, give a derivation of the main result; second,
point out the main interests of the present framework for software reliability modelling.

2 One class of faults

It follows from Assumptions 1 and 2 that the jump process {Rt}t≥0 has the semi-martingale
decomposition

Rt = −

∫ t

0

λs ds−Mt (2.1)

and R0 has some probability distribution. Thus, the dynamics of the couple of jump pro-
cesses {Nt}t≥0 and {Rt}t≥0 are given by (1.1) and (2.1) respectively. Now, the Doob-Meyer
decomposition of {Nt}t≥0 with respect to its internal history {FN

t }t≥0 is for t > 0

Nt =

∫ t

0

λ̂s ds+ M̂t where λ̂t = E[λt | F
N
t ] = E[νRt | F

N
t ]. (2.2)

In this section, the conditional expectation E[Zt | FN
t ] is denoted by Ẑt for any inte-

grable F-adapted random process {Zt}t≥0. Moreover, {Mt}t≥0, {M̂t}t≥0 will denote a generic
F-martingale and FN -martingale respectively.

2.1 Posterior distribution

Let us assume that the probability distribution of (ν,R0) has a density f0 with respect to the
measure µ on R+ × N, product of the Lebesgue measure on R+ and the counting measure on
N. The next lemma states that the probability distribution of (ν,Rt) conditional to FN

t has a
density ft with respect to µ that is a solution of a stochastic differential equation. In connection
with the fact that FN

t corresponds to the observed data, this conditional distribution is called
the posterior distribution of (ν,Rt) and ft the corresponding posterior density.
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Lemma 1 The quantity λ̂+
s denotes 1/λ̂s if λ̂s > 0 and 0 otherwise. Then the posterior density

of (ν,Rt) for t > 0 satisfies

ft(v, r) =f0(v, r) +

∫ t

0

[(r + 1)vfs(v, r + 1)− rvfs(v, r)] ds

+

∫ t

0

λ̂+
s−

[
(r + 1)vfs−(v, r + 1)− λ̂s−fs−(v, r)

]
(dNs − λ̂s−ds)

(2.3)

Proof. First, note that

1Rt=r = 1R0=r +
∑

0<s≤t

(1Rs=r − 1Rs−=r). (2.4)

Next, we have with ∆Rs := Rs −Rs− and ∆Ns := Ns −Ns−

1Rs=r − 1Rs−=r = −(1Rs=r − 1Rs−=r)∆Rs = (1Rs=r − 1Rs−=r)∆Ns

from Assumption 1. Then

∑

0<s≤t

(1Rs=r − 1Rs−=r) =

∫ t

0

(1Rs=r − 1Rs−=r)dNs =

∫ t

0

(1Rs−=r+1 − 1Rs−=r)dNs

=

∫ t

0

(1Rs−=r+1 − 1Rs−=r)λs ds

+

∫ t

0

(1Rs−=r+1 − 1Rs−=r)(dNs − λs ds).

The last integral in the right hand side of the equation above defines an F-martingale since
(1Rs−=r+1 − 1Rs−=r) is F-predictable and bounded. Thus, we obtain an F-semimartingale rep-
resentation of the process {1Rt=r}t≥0

1Rt=r = 1R0=r +

∫ t

0

(1Rs−=r+1 − 1Rs−=r)λs ds+Mt.

Since λs = νRs, the final form is

1Rt=r = 1R0=r +

∫ t

0

(
(r + 1)1Rs−=r+1 − r1Rs−=r)ν ds+Mt.

Multiplying the previous equality by 1ν∈B, for any Borel set B, we obtain

1ν∈B,Rt=r = 1ν∈B,R0=r +

∫ t

0

(
(r + 1)1ν∈B,Rs−=r+1 − r1ν∈B,Rs−=r)ν ds+ 1ν∈BMt.

Since 1ν∈B is F-measurable, {1ν∈BMt}t≥0 is still an F-martingale and we have the following
F-semimartingale representation for {pt(B, r) := 1ν∈B,Rt=r}t≥0

pt(B, r) = p0(B, r) +

∫ t

0

(
(r + 1)ps−(B, r + 1)− rps−(B, r))ν ds+Mt. (2.5)
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Recall that for any integrable process {Zt}t≥0 such that
∫ t

0
E
[
|Zs|

]
ds < +∞, we have that

̂∫ t

0

Zs ds−

∫ t

0

Ẑs ds

defines an FN -martingale. Then, taking the conditional expectation of (2.5), we obtain

p̂t(B, r) = p̂0(B, r) +

∫ t

0

{
(r + 1)ν̂ps−(B, r + 1)− rν̂ps−(B, r)

}
ds+ M̂t. (2.6)

Note that ∆p̂s(B, r) := p̂s(B, r)− p̂s−(B, r) = ∆M̂s. We know that the FN -martingale {M̂t}t≥0

has the following representation (Bremaud, 1981)

M̂t =

∫ t

0

Gs(B, r)(dNs − ν̂Rs−ds) (2.7)

where {Gt}t≥0 is the so-called innovation gain. In order to obtain an explicit form of (2.6), it
remains to determine the innovation gain. The basic idea is to derive two FN -semimartingale
representations of the process {Ntp̂t(B, r)}t≥0 and then to identify the locally finite variations
part of these decompositions since {Ntp̂t(B, r)}t≥0 is a special semimartingale.

We derive a first FN -semimartingale representation of {Ntp̂t(B, r)}t≥0. An integration by
parts and using (2.2) and (2.7), we obtain:

Ntp̂t(B, r) =

∫ t

0

Ns−dp̂s(B, r) +

∫ t

0

p̂s−(B, r)dNs +
∑

s≤t

∆Ns ∆p̂s(B, r)

=

∫ t

0

Ns−dp̂s(B, r) +

∫ t

0

p̂s−(B, r)λ̂s−ds+ M̂t +

∫ t

0

Gs(B, r)dNs

=

∫ t

0

Ns−dp̂s(B, r) +

∫ t

0

{p̂s−(B, r) +Gs(B, r)}λ̂s−ds+ M̂t.

We deduce the following final expression from (2.6)

Ntp̂t(B, r) =

∫ t

0

Ns−

{
(r + 1)ν̂ps−(B, r + 1)− rν̂ps−(B, r)

}
ds

+

∫ t

0

{p̂s−(B, r) +Gs(B, r)}λ̂s−ds+ M̂t.

(2.8)

4



A second representation of {Ntp̂t(B, r)}t≥0 results from a “projection” on FN
t of the following

F-representation of {Ntpt(B, r)}t≥0. An integration by parts gives from (1.1) and (2.5)

Ntpt(B, r) =

∫ t

0

Ns−dps(B, r) +

∫ t

0

ps−(B, r)dNs +
∑

s≤t

∆Ns ∆ps(B, r)

=

∫ t

0

Ns−

(
(r + 1)ps−(B, r + 1)− rps−(B, r))ν ds+Mt

+

∫ t

0

ps−(B, r)νRs−ds+Mt

+

∫ t

0

(ps−(B, r + 1)− ps−(B, r))νRs− ds+Mt

=

∫ t

0

Ns−

(
(r + 1)ps−(B, r + 1)− rps−(B, r))ν ds

+

∫ t

0

ps−(B, r + 1)νRs− ds+Mt.

Next, take the conditional expectation with respect to FN
t of both sides

Ntp̂t(B, r) =

∫ t

0

Ns−

(
(r + 1)ν̂ps−(B, r + 1)− rν̂ps−(B, r)) ds

+

∫ t

0

(r + 1)ν̂ps−(B, r + 1) ds+ M̂t.

(2.9)

We identify the bounded variation parts of formulas (2.8) and (2.9) (that is the Lebesgue
integrals): ∫ t

0

{p̂s−(B, r) +Gs(B, r)}λ̂s−ds =

∫ t

0

(r + 1)ν̂ps−(B, r + 1) ds.

Therefore, for given B ∈ B(R+) and r ∈ N, we obtain that the gain is defined by

Gs(B, r) = λ̂+
s−

[
(r + 1)ν̂ps−(B, r + 1)− λ̂s−p̂s−(B, r)

]
. (2.10)

It results from (2.6) with the expression of the gain above, that the density ft satisfies equation
(2.3).

Let us denote the observed failure times by t1 < t2 < · · · . Equation (2.3) reads as follows:
between two jumps of the counting process {Nt}t≥0 the posterior density satisfies the ordinary
differential equation on ]tn−1, tn[

d

dt
ft(v, r) =

[
λ̂t − rv

]
ft(v, r) (2.11a)

with initial condition ftn−1
(v, r) and at jump instants Tn = tn

ftn(v, r)− ftn−(v, r) = λ̂+
tn−

[
(r + 1)vftn−(v, r + 1)− λ̂tn−

ftn−(v, r)
]

or ftn(v, r) = λ̂+
tn−

(r + 1)vftn−(v, r + 1). (2.11b)

where λ̂t = E[νRt | F
N
t ] =

∫
vrft(v, r)dµ. Then, we can show the following theorem stated by

Koch and Spreij (1983).
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Theorem 2 The notation are as in Lemma 1 and the observed failure times are denoted by
t1 < t2 < · · · . The posterior distribution of (ν,Rt) has the density

ft(v, r) = c(Nt, t)× f0(v,Nt + r)
(r +Nt)!

r!
vNt exp

[
− v(rt+

Nt∑

i=1

ti)
]

(2.12a)

where c(Nt, t) is given by

1/c(Nt, t) = Ef0

[
νNt

R0!

(R0 −Nt)!
exp

[
− ν

(
(R0 −Nt)t+

Nt∑

i=1

ti
)]
1R0≥Nt

]
. (2.12b)

For any t > 0, the quantity c(Nt, t) is just a normalizing term for the right hand side member
of the equation (2.12a) to be a probability density on R+ × N with respect to µ.

Proof. Let us check that the function defined in (2.12a) satisfies equation (2.11a) between
two jumps of the counting process. First, we note from (2.12a) that

λ̂t

=

∫
vrft(v, r)dµ

=

∫
vrc(Nt, t)× f0(v,Nt + r)

(r +Nt)!

r!
vNt exp

[
− v(rt+

Nt∑

i=1

ti)
]
dµ

= c(Nt, t)

× Ef0

[
(R0 −Nt) ν

Nt+1 R0!

(R0 −Nt)!
exp

[
− ν

(
(R0 −Nt)t+

Nt∑

i=1

ti
)]
1R0≥Nt

]

=
c(Nt, t)

c(Nt + 1, t)
.

(2.13)

Second, using Lebesgue’s theorem, we obtain from (2.12b)

dc(Nt, t)

dt
= c(Nt, t)

2

× Ef0

[
(R0 −Nt)ν

Nt+1 R0!

(R0 −Nt)!
exp

[
− ν

(
(R0 −Nt)t+

Nt∑

i=1

ti
)]
1R0≥Nt

]

= c(Nt, t) λ̂t.

Now, it is easily checked that (2.12a) is solution to (2.11a) between two jumps of {Nt}t≥0.
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It remains to verify that ft defined in (2.12a) also satisfies equation (2.11b) at jump instants.
A direct inspection shows from (2.12a) and (2.13) that:

ftn(v, r) = c(n, tn) f0(v, n+ r)
(r + n)!

r!
vn exp

[
− v(rt+

n∑

i=1

ti)
]

ftn−(v, r + 1) = c(n− 1, tn−) f0(v, n+ r)
(r + n)!

(r + 1)!
vn−1 exp

[
− v(rtn +

n∑

i=1

ti)
]

λ̂tn− =
c(n− 1, tn−)

c(n, tn−)
=

c(n− 1, tn−)

c(n, tn)
.

The proof is easily completed.

2.2 Some specific distributions of (ν,R0)

If ν and R0 are deterministic, i.e. f0 is a Dirac distribution concentrated on a couple of constants
(v0, N), the posterior distribution is also a Dirac distribution on (v0, N −Nt) from (2.12a). In

such a case, the intensity with respect to FN
t is obviously λ̂t = v0(N − Nt) and we obtain the

celebrated model by Jelinski and Moranda (1972). Now, let us assume that ν is deterministic
but R0 has a Poisson distribution with parameter m, i.e.

f0(v, r) = δv0(v) exp(−m)
mr

r!
.

We obtain by direct inspection

1

c(Nt, t)
= (mv0)

Nt exp
[
−m(1− exp(−v0rt))− v0

Nt∑

j=1

tj
]
.

We deduce from (2.12a) that Rt has posterior distribution Pois(m exp[−v0t]). Therefore, λ̂t =
v0E[Rt | F

N
t ] = v0m exp(−v0t) is deterministic and {Nt}t≥0 a Poisson process. We retrieve a

model by Goel and Okumoto (1979). This fact was rediscovered by Langberg and Singpurwalla
(1985).

3 A finite number of classes of faults

In this section, we consider a second model by Koch and Spreij (1983) in which a family of
K < ∞ different classes of faults are contained in a software. Each class has the properties of
Section 1 with corresponding parameters N

(j)
t , R

(j)
t and ν(j). In particular, {N

(j)
t }t≥0 has the

decomposition

N
(j)
t =

∫ t

0

λ(j)
s ds+M

(j)
t N

(j)
0 = 0 (3.1)

where λ
(j)
s := νR

(j)
s . In addition, the martingales {M

(j)
t }t≥0 are assumed to be independent.

Let us introduce the multivariate random variables N t := (N
(j)
t )Kj=1, M t := (M

(j)
t )Kj=1 and

Rt := (R
(j)
t )Kj=1. As in Section 2, the probability distribution of (ν,R0) is assumed to have a
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density f0 with respect to the measure µ on RK
+ × NK , product of the Lebesgue measure on

RK
+ and the counting measure on NK . Let ej be the jth vector of the canonical basis of RK .

The results of this section are not stated by Koch and Spreij (1983) (except Theorem 8). Koch
and Spreij (1982) quoted the existence of Theorem 4.

3.1 Posterior distributions

3.1.1 The multivariate counting process is observed

In a first step, the multivariate N t := (N
(j)
t )Kj=1 is considered to be observed, and we are

interested in the posterior distribution of (ν,Rt) with respect to the internal history FN

t of
{N t}t≥0. The next lemma is a multivariate version of Lemma 1 using the decompositions (3.1)
in place of (1.1). The proof is omitted.

Lemma 3 The notation are as in Lemma 1. The posterior density of (ν,Rt) for t > 0 is a
solution of the following equation

ft(v, r)

= f0(v, r) +
K∑

j=1

∫ t

0

[(rj + 1)vjfs(v, r + ej)− rjvjfs(v, r)] ds

+
K∑

j=1

∫ t

0

(λ̂
(j)
s−)

+
[
(rj + 1)vjfs−(v, r + ej)− λ̂

(j)
s−fs−(v, r)

]
(dN (j)

s − λ̂(j)
s ds)

(3.2)

where λ̂
(j)
t = E[λ

(j)
t | FN

t ].

Now, the unique solution of (3.2) is given in the following theorem.

Theorem 4 The notation are as in Theorem 2. The posterior distribution of (ν,Rt) has the
density

ft(v, r) =c(N t, t)× f0

(
v, r +

Nt∑

j=1

elj

)

F
(
r +

∑Nt

j=1 elj

)

F (r)

[ Nt∏

j=1

vlj

]
exp

(
− t

K∑

j=1

vjrj +
Nt∑

j=1

tjvlj)

) (3.3)

where

• the lj’s are such that N
(lj)
tj

−N
(lj)
tj− = 1;

• F (r) = r1! · · · rK ! for any r = (r1, . . . , rK) ∈ NK;

• c(N t, t) is a normalizing term for the right hand side member of equation (3.3) to be a
probability density on RK

+ × NK at any time t > 0.
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3.1.2 Only the aggregated counting process is observed

In a second step, the aggregated number of observed failures

Nt :=
K∑

j=1

N
(j)
t (3.4)

is assumed to be observed. Doob-Meyer’s decompositions with respect to F and FN are from
(3.1)

Nt =

∫ t

0

λs ds+mt where λs :=
K∑

j=1

λ(j)
s =

K∑

j=1

ν(j)R(j)
s (3.5a)

and

Nt =

∫ t

0

̂̂
λs ds+ ̂̂mt where

̂̂
λs :=

K∑

j=1

̂̂
λ
(j)

s =
K∑

j=1

E[ν(j)R(j)
s | FN

t ] (3.5b)

where {mt}t≥0, { ̂̂mt}t≥0 are an F-martingale and an FN -martingale respectively. Then, the
distribution of (ν,Rt) conditionally to FN

t may be derived as for Lemmas 1 and 3.

Lemma 5 The notation are as in Theorem 4. The density gt of the conditional distribution of
(ν,Rt) with respect to FN

t is a solution of the following equation

gt(v, r)

= g0(v, r) +
K∑

j=1

∫ t

0

[(rj + 1)vjgs(v, r + ej)− rjvjgs(v, r)] ds

+

∫ t

0

(
̂̂
λs−)

+

K∑

j=1

[
(rj + 1)vjgs−(v, r + ej)−

̂̂
λ
(j)

s−gs−(v, r)
]
(dN (j)

s −
̂̂
λsds)

(3.6)

where
̂̂
λt defined in (3.5b).

Theorem 6 The conditional distribution of (ν,Rt) given FN
t has the following density with

respect to µ

gt(v, r) = c(t)
∑

l1,...,lNt

ft(v, r)

c(l1, . . . , lNt
, t)

(3.7)

where ft(v, r) is given by (3.3) and c(l1, . . . , lNt
, t) denotes its associated normalizing constant.

The quantity c(t) is a global normalizing constant.

3.2 A finite number of classes with at most one fault per class

If we assume that each class of fault contains at most one fault, that is R(j) ∈ {0, 1}, the lj’s in
(3.3) are all different and rj = 0 for a class of undetected fault. We deduce the following result
from Theorem 4.
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Corollary 7 The notation are as in Theorem 4. The posterior distribution of (ν,Rt) has the
density

ft(v, r) = c(t)× f0

(
v, r +

Nt∑

j=1

elj

)[ Nt∏

j=1

(rlj + 1)vlj

]
exp

(
− t

K∑

j=1

vjrj +
Nt∑

j=1

tljvlj)

)

where c(t) is a normalizing term for the right hand side member of the equation above to be a
probability density on RK

+ × NK with respect to µ at any time t > 0.

The posterior distributions of (ν,Rt) given in Corollary 7 and Theorem 6 allows us to justify
the following properties stated by Koch and Spreij (1983).

Theorem 8 The notation are as in Theorem 6 and Corollary 7. Assume that the (ν(j), R
(j)
0 )’s

are independent under f0. Then,

1. (ν(j), R
(j)
t )’s are also independent under ft with t > 0 ;

2. if the (ν(j), R
(j)
0 )’s are identically distributed under f0, then the (ν(j), R

(j)
t )’s associated

with classes of undetected faults are also identically distributed under ft and gt.

Moreover, Nt is a sufficient statistics for estimating any function of the pairs (ν(j), R
(j)
t )

corresponding to a class of undetected faults conditionally to FN

t . In particular, we have

λ̂t =
̂̂
λt = (K −Nt)

̂̂
λ
(j)

t . (3.8)

where j is an index corresponding to any class of undetected faults.

Proof. The probabilistic properties on the posterior distributions are easily deduced from
the expressions of ft and at in function of f0 given in Corollary 7 and Theorem 6. The property
on exhaustiveness of the aggregated counting variable results from the fact that (ν(j), R

(j)
t )’s

associated with classes of undetected faults have the same posterior distribution under ft and
gt. In particular, ν(j)R

(j)
t ’s have the same conditional expectations so that (3.8) is valid.

If K is assumed to be known and under the assumptions of the second statement of Theo-
rem 6, the multivariate counting process {N t}t≥0 has a likelihood given by (Bremaud, 1981)

L
(K)
t = exp

(
−

∫ t

0

K∑

j=1

(λ̂
(j)
t − 1)ds+

∫ t

0

K∑

j=1

log(λ̂
(j)
s−)dN

(j)
s

)
.
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This reads as follows

L
(K)
t = exp

(
−

∫ t

0

(λ̂t − 1)ds+ (K − 1)t+
Nt∑

j=1

log λ̂
(lj)
tj−

)

= exp

(
−

∫ t

0

(λ̂t − 1)ds+
Nt∑

j=1

log
(
(K − j + 1)λ̂

(lj)
tj−

)

+(K − 1)t−
Nt∑

j=1

log(K − j + 1)

)

= exp

(
−

∫ t

0

(
̂̂
λt − 1)ds+

∫ t

0

log
̂̂
λs− dNs

)

× exp

(
(K − 1)t−

∫ t

0

log(K −Ns−) dNs

)
.

The first exponential above is the likelihood Lt at time t associated with the aggregated process
{Nt}t≥0. Therefore, maximize L

(K)
t with respect to some deterministic parameters is equivalent

to maximize Lt. This agrees with the results of the previous theorem.
Let us consider the case in which each class has a single fault, i.e. R

(j)
0 = 1 for every j.

If each ν(j) is equal to some positive constant φj, we obtain the Exponential Order Statistics
models developed by Miller (1986). If we consider the ν(j)’s as random variables, we obtain an
DS/EOS proposed by Miller (1986). Moreover, if the ν(j) are identically distributed under f0,
then we obtain the GOS model, that is the counting process {Nt}t≥0 has the FN -intensity

̂̂
λt = (K −Nt)× φ(t) (3.9)

where φ(t) = E[ν(j) | FN
t ] is the hazard rate of the common prior distribution of the time to

detection of any of the K faults. For instance, if ν(j) has a gamma prior distribution Γ(α, β),
then the posterior distributions are

• ν(j) | FN
t ∼ Γ(α, β + t) for a class j of undetected faults at time t and

E[ν(j) | FN
t ] =

α

β + t

• λt | F
N
t ∼ Γ(α(K −Nt), β + t) and

̂̂
λt = (K −Nt)×

α

β + t
.

We obtain a model introduced by Littlewood (1981). In particular, this justifies the claim in
Littlewood (1981) that ν(j) has distribution Γ(α, β + t) conditionally to FN

t for any undetected
fault. More generally, under the assumptions for statement 2 of Theorem 8 to be true, the in-

tensity
̂̂
λt is characterized by the posteriori distribution of ν(j) corresponding to any undetected

fault. In particular, this is the basic fact for the analysis developed by Wang (2005).
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Remark 9 The case of an infinite number K of classes of faults could be also discussed. In
particular, if we consider an eventually infinite number K of classes containing only a single
fault with independent and identically distributed ν

(j)
0 ’s, and K is assumed to be random with

Poisson distribution, we obtain that the conditional distribution of the residual number of faults
to FN

t is Poisson with time dependent parameter. Then, we can show that GOS models can be
transformed into NHPP models as shown by Kuo and Yang (1996).

4 Martingale approach in software reliability

We briefly discuss the benefits in using the martingale approach in software reliability from
Ledoux (2003); Gaudoin and Ledoux (2007). It is clear that the failure process of a software may
basically be modelled by the random point process of the times (of detection) of failure {Tn}n≥0,
or equivalently by the failure counting process {Nt}t≥0. In such a framework, the standard way
to construct a software reliability model consists in choosing a probability distribution for
{Tn}n≥0 or {Nt}t≥0. The history F with respect to which {Nt}t≥0 is adapted, is a central
concept of stochastic modelling. Indeed, it contains basic assumptions under which the model
is constructed.

In the first case, let us consider the internal history FN . Then, the central modelling
assumption is that only the past of the failure process affects the future of the failure process.
Next, we have the basic decomposition (2.2) where {λ̂t}t≥0 is the F

N -intensity of the model. It

is well known that {λ̂t}t≥0 has an explicit form (Jacod, 1975):

λ̂t =
∑

n≥0

hXn+1|FN
Tn
(t− Tn)1{Tn<t≤Tn+1} (4.1)

where FN
Tn

= σ(Tn, . . . , T1) and hXn+1|FN
Tn
(·) is the hazard rate function of the inter-failure

distribution Xn+1 := Tn+1 − Tn conditionally to Tn, . . . , T1. It is easily seen from a display
of a typical path of λ̂t that process {λ̂t}t≥0 is a concatenation of the hazard rate functions of
conditional distributions of inter-failure times. A very large collection of software reliability
models have been directly developed using specific forms the sequence of hazard rates. This
kind of models is known as models of self-excited point processes in engineering (Snyder and
Miller, 1991) which have been used by Gaudoin (1990) to unify a large number of existing
software reliability models. This last point was rediscovered by Chen and Singpurwalla (1997)
and is fully developed in chapter 3 of (Singpurwalla and Wilson, 1999). Note that in general,

λ̂t only depends on the past of the point process through t, Nt, TNt
(Ledoux, 2003; Singpurwalla

and Wilson, 1999; Pham, 2000).
The benefit of the martingale approach in this first case is to provide a mathematically

founded framework to develop software reliability models. In particular, the definition of in-
tensity has not to be based on existence of the limit (Snyder and Miller, 1991)

lim
∆t↓0

1

∆t
P
{
N(t+∆t)− −Nt− = 1 | FN

t−

}
, (4.2a)

as well as the “conditional orderliness” condition to hold:

lim
∆t↓0

1

∆t
P
{
N(t+∆t)− −Nt− ≥ 1 | FN

t−

}
= lim

∆t↓0

1

∆t
P
{
N(t+∆t)− −Nt− = 1 | FN

t−

}
(4.2b)
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Existence of such limits introduces unnecessary technical subtleties, and conditions, asserting
that (4.2a) and (4.2b) hold, must be stated (Chen and Singpurwalla, 1997; Singpurwalla and
Wilson, 1999).

The second case concerns what we call “conditionally self-exciting point processes”, where
some background information H0 is added to the initial state of the model. In a more for-
mal term, the considered history F is defined by Ft := FN

t ∨ H0 and, in general, H0 is some
set of parameters involved in the conditional probability distributions. In some sense, this is
the basic framework when we deal with bayesian inference for the parameters of classic self-
excited models. In fact, formula (4.1) also defines the intensity with respect to F (Jacod,
1975), using the hazard rate of the conditional distribution of Xn+1 given Tn, . . . , T1,H0. The
present paper shows that using stochastic calculus (and specifically filtering), we can get math-
ematically founded formulas for quantities of interest like “P{H0 | σ(Nt, TNt

, . . . , T1)}” which
represents of the probability distribution of the random elements in H0 conditionally to the
past Nt, TNt

, . . . , T1 of the failure process. Let us mention that such a conditional distribution
allows to derive the intensity with respect to FN from (4.1) and from formulas of the type:

fXn+1|Tn,...,T1
(x) =

∫
fXn+1|Tn,...,T1,H0

(x) dP{H0 | Tn, . . . , T1}

P{Xn+1 ≥ t | Tn, . . . , T1}

=

∫
P{Xn+1 ≥ t | Tn, . . . , T1,H0} dP{H0 | Tn, . . . , T1}

(see Singpurwalla, 1989, for related discussions).
Finally, there are situations that do not fit to the (conditional) self-exciting modelling. Let

us mention two following basic instances:

1. failure processes affected by random environmental factors : think about regression models
where covariables are incorporated in the specification of the intensity (e.g. see Gandy
and Jensen, 2004; Singpurwalla and Wilson, 1999, Chap. 7);

2. failure processes driven by an auxiliary stochastic model : Özekici and Soyer (2003) con-
sider a model of the operational profile of the software as auxiliary process (see also
Singpurwalla et al., 2003); in architecture-based software reliability modelling, the aux-
iliary process is a random model of the architecture (see Ledoux, 2008, and references
therein).

Statistical analysis of such models can be based on the martingale approach with special em-
phasis on stochastic filtering to deal with posterior distributions and inference with observed
partially processes (e.g. see Andersen et al., 1993; Gandy and Jensen, 2005; Ledoux, 2008).

5 Conclusion

The models discussed by Koch and Spreij (1983) give an unified view of some standard soft-
ware reliability models. Thus, these classes of models may be understood as Bayesian version
of the Jelinski-Moranda’s one. This fact was rediscovered under various forms in papers pub-
lished later. In particular, the explicit form of the posterior distribution introduced the way of
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Bayesian estimation of reliability via Markov Chain Monte Carlo methods as done by Kuo and
Yang (1996). It should be pointed out that new models could be derived from this framework
using various distributions of initial numbers of faults and manifestation fault rates. We hope
that the present paper will contribute to promote the position of (Koch and Spreij, 1983) in
the literature on software reliability modelling.
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