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Fitness Sharing and Niching Methods Revisited
Bruno Sareni and Laurent Krähenbühl

Abstract—Interest in multimodal optimization function is ex-
panding rapidly since real-world optimization problems often
require the location of multiple optima in the search space. In
this context, fitness sharing has been used widely to maintain
population diversity and permit the investigation of many peaks
in the feasible domain. This paper reviews various strategies of
sharing and proposes new recombination schemes to improve its
efficiency. Some empirical results are presented for high and a
limited number of fitness function evaluations. Finally, the study
compares the sharing method with other niching techniques.

Index Terms— Evolutionary computation, fitness sharing, ge-
netic algorithms, multimodal optimization, niching methods.

I. INTRODUCTION

TRADITIONAL genetic algorithms (GA’s) with elitist
selection are suitable for locating the optimum of uni-

modal functions as they converge to a single solution of
the search space. Real optimization problems, however, often
lead to multimodal domains and so require the identification
of multiple optima, either global or local. For this purpose,
niching methods extend simple GA’s by promoting the forma-
tion of stable subpopulations in the neighborhood of optimal
solutions.

Niching methods have been developed to reduce the effect
of genetic drift resulting from the selection operator in the
standard GA. They maintain population diversity and permit
the GA to investigate many peaks in parallel. On the other
hand, they prevent the GA from being trapped in local optima
of the search space. Niching GA’s are based on the mechanics
of natural ecosystems. In nature, animals compete to survive
by hunting, feeding, grazing, breeding, etc., and different
species evolve to fill each role. A niche can be viewed as a
subspace in the environment that can support different types of
life. A species is defined as a group of individuals with similar
biological features capable of interbreeding among themselves
but that are unable to breed with individuals outside their
group. For each niche, the physical resources are finite and
must be shared among the population of that niche. By
analogy, niching methods tend to achieve a natural emergence
of niches and species in the environment (search space). A
niche is commonly referred to as an optimum of the domain,
the fitness representing the resources of that niche. Species can
be defined as similar individuals in terms of similarity metrics.

The sharing method is probably the best known and also
used among niching techniques. It was originally introduced by
Holland [1, p. 164] and improved by Goldberg and Richardson
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[2]. Section II presents the main principles of fitness shar-
ing and reviews the recent development of this technique.
Section III is devoted to other niching schemes and especially
crowding methods. Section IV investigates various forms of
sharing on test problems defined in Section III and compares
their efficiency with the other niching GA’s. Empirical results
are presented for high and a limited number of fitness function
evaluations.

II. FITNESS SHARING

A. Principle

Fitness sharing modifies the search landscape by reducing
the payoff in densely populated regions. It lowers each popula-
tion element’s fitness by an amount nearly equal to the number
of similar individuals in the population. Typically, the shared
fitness of an individual with fitness is simply

(1)

where is the niche count which measures the approximate
number of individuals with whom the fitness is shared. The
niche count is calculated by summing a sharing function over
all members of the population

sh (2)

where denotes the population size and represents the
distance between the individual and the individual . Thence,
the sharing function (sh) measures the similarity level between
two population elements. It returns one if the elements are
identical, zero if their distance is higher than a threshold of
dissimilarity, and an intermediate value at intermediate level of
dissimilarity. The most widely used sharing function is given
as follows:

sh
if
otherwise

(3)

where denotes the threshold of dissimilarity (also the
distance cutoff or the niche radius) and is a constant
parameter which regulates the shape of the sharing function.

is commonly set to one with the resulting sharing function
referred to as the triangular sharing function [3].

The distance between two individuals and is char-
acterized by a similarity metric based on either genotypic or
phenotypic similarity. Genotypic similarity is related to bit-
string representation and is generally the Hamming distance.
Phenotypic similarity is directly linked to real parameters of
the search space. It can be the Euclidian distance for instance.

1089–778X/97$10.00 © 1998 IEEE
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Sharing based on phenotypic similarity may give slightly better
results than sharing with genotypic similarity [4].

Sharing must be implemented with the less biased selection
methods. Stochastic remainder selection (SRS) and stochastic
universal selection (SUS) have been widely used to reduce
bias in the selection algorithm [5]. Tournament selection (TS)
with continuously updated sharing is another possibility [6]. In
the same way, sharing must use low recombination operators
to promote stability of subpopulations. In effect, crossovers
between individuals of different niches often lead to poor
individuals (lethals). Mating restriction schemes have been
successfully applied to reduce the formation of lethals [4],
[7], [8].

B Limitations

Sharing tends to encourage search in unexplored regions of
the space and favors the formation of stable subpopulations.
Nonetheless, sharing is not without limitations.

• Setting the dissimilarity threshold requires a priori
knowledge of how far apart the optima are. For real
optimization problems, however, no information about
the search space and the distance between the optima is
generally available. On the other hand, is the same
for all individuals. This supposes that all peaks must
be nearly equidistant in the domain. For these reasons,
sharing can fail to maintain all desired peaks if they
are not equidistant or if the estimated distance between
two peaks is incorrect. Various empirical formulas have
been proposed to set the dissimilarity threshold but this
problem remains the major flaw of the method [4], [9].

• The sharing scheme is very expensive as a result of
the computation of niche counts of complexity
per generation. Clustering analysis and dynamic niching
have been developed to reduce computational complex-
ity and increase sharing effectiveness [7], [8]. In many
domains, however, the computational time to obtain the
fitness of individuals dominates the computational cost of
comparisons. In that case, standard sharing can be imple-
mented with only a small increase in the computational
requirements.

C. Fitness Scaling

One way to improve sharing efficiency is to use fitness
scaling [3]. A scaled shared function increases differentiation
between optima and reduces deception1 [16], [19]. It makes
the optima more attractive than the surrounding regions of the
space. A common technique to scale the fitness function is
to use a power scaling. In that case (1) can be modified as
follows:

(4)

The remaining problem is the choice of an appropriate
parameter for a given objective function. If the power of

1 We talk about deception when the combination of good building blocks
leads to reduced fitness rather than increased fitness. Deceptive problems are
generally multimodal functions with attractive local optima (see [16]).

the scaling function is too high, the predominance of fitness
scaling can prevent the reduction of genetic drift by the
sharing method. The domination of “super-individuals” in the
population can cause the niching GA to converge prematurely.
On the other hand, if the power of the scaling function is too
low, differentiation between optima can be insufficient. This
can hinder a perfect detection of the optima by the sharing
method. The compromise in the choice of the scaling power is
directly related to the accurate balancing between exploration
and exploitation necessary to all global stochastic optimization
methods. To prevent premature convergence and increase the
efficiency of the sharing method, annealing the scaling power
during the search is recommended [19].

III. FURTHER NICHING METHODS

An important variety of other niching methods have been
reported in the literature including sequential niching [10],
immune systems [11], speciation with implicit fitness sharing
and co-evolution [20], ecological GA’s [9], [12], and crowding
schemes. This paper focuses on crowding techniques and
explores a recent promising niching method called clearing.

A. Crowding Methods

Crowding methods insert new elements in the population
by replacing similar elements.

• Standard Crowding: In DeJong’s crowding [13], only a
fraction of the global population specified by a percentage
G (generation gap) reproduces and dies each generation.
In this crowding scheme, an offspring replaces the most
similar individual (in terms of genotypic comparison)
taken from a randomly drawn subpopulation of size CF
(crowding factor) from the global population. Because of
a great number of replacement errors, the initial crowding
of DeJong has been shown to be limited in multimodal
function optimization [4], [9].

• Deterministic Crowding: Mahfoud improved standard
crowding by introducing competition between children
and parents of identical niches [9]. After crossover and
eventually mutation, each child replaces the nearest parent
if it has a higher fitness. Thus deterministic crowding
(DC) results in two sets of tournaments: (parent 1 against
child 1, and parent 2 against child 2) or (parent 1
against child 2, and parent 2 against child 1). The set
of tournament that yields the closest competitions is
held. Similarity is computed using preferably phenotypic
distance. With two distance comparisons per set of
tournaments and sets of tournaments per generation,
the resulting order of complexity of deterministic
crowding is .

• Restricted Tournament Selection: Restricted tournament
selection (RTS) adapts standard tournament selection (TS)
for multimodal optimization [14]. RTS initially selects
two elements from the population to undergo crossover
and mutation. After recombination, a random sample
of CF individuals is taken from the population as in
standard crowding. Each offspring competes with the
closest sample element. The winners are inserted in the
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population. This procedure is repeated times. The
order of complexity of RTS is . It can vary
from to according to the crowding factor
value CF.

B. Clearing

The clearing method is very similar to fitness sharing but is
based on the concept of limited resources of the environment
[15]. Instead of sharing the resources between all individuals of
a single subpopulation as in fitness sharing, clearing attributes
them only to the best members of the subpopulation. In
practice, the capacity of a niche specifies the maximum
number of elements that this niche can accept. Thus, clearing
preserves the fitness of the best individuals (dominant
individuals) of the niche and resets the fitness of the others that
belong to the same subpopulation (dominated individuals). As
in the sharing method, individuals belong to the same niche (or
subpopulation) if their distance in the search space is less than
a dissimilarity threshold (clearing radius). Clearing can be
coupled with elitism strategies to preserve the best elements of
the niches during the generations. The order of complexity of
the basic clearing procedure is where is the number
of niches maintained during the search.

IV. TEST PROBLEMS

A. Test Functions

We consider three multimodal functions of different diffi-
culty with nomenclature maintained from [9]

(5)

This function defined on [0, 1] consists of five unequally
spaced peaks of uniform height. Maxima are located at ap-
proximate values of 0.080, 0.247, 0.451, 0.681, and 0.934.
All peaks are of height 1.0

(6)

is also defined on [0, 1] and consists of five unequally
spaced peaks of nonuniform height. Maxima are located at
approximate values of 0.080, 0.247, 0.451, 0.681, and 0.934.
Maxima are of approximate height 1.000, 0.948, 0.770, 0.503
and 0.250 respectively.

is the massively multimodal deceptive function [15],
[16]. is defined by the sum of the fitness of five subfunc-
tions

(7)

where . Each subfunction is a bimodal
deceptive function of unitation as displayed in Fig. 3. has
32 global optima of height 5 and several million local maxima
lying between 3.203 and 4.641.

Fig. 1. Function .

Fig. 2. Function .

Fig. 3. The bimodal deceptive subfunction used in .

B. Performance Criteria

Maximum Peak Ratio: The maximum peak ratio is the sum
of the fitness of the local optima identified by the niching
technique divided by the sum of the fitness of the actual
optima in the search space [8]. An optimum is considered to be
detected if it is within a niche radius of the real optimum and
if its fitness value is at least 80% of the real optimum. When
an optimum is not identified, the local optimum value is set
to zero. Thence, the maximum value for the maximum peak
ratio is one corresponding to a perfect detection of all optima.

Effective Number of Peaks Maintained: We also consider
the effective number of optima maintained at the end of the
search according to the previous assumptions.
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TABLE I
SELECTION IN THE SHARING METHOD. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH

SELECTION SCHEME. TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

TABLE II
SELECTION IN THE SHARING METHOD. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH

SELECTION SCHEME. TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

Fig. 4. Chi-square-like deviation of the selection schemes investigated on
function . The population size is .

Chi-Square-Like Performance Criteria: The “chi-square-
like” performance statistic measures the deviation between the
population distribution and an ideal proportionally populated
distribution [4], [7], [8]. This criterion is computed using the
actual distribution of individuals and an ideal distribution
mean in all the niches ( peak niches plus the nonpeak
niche)

chi-square-like deviation (8)

where

and (9)

for the peak niches and

and (10)

Fig. 5. Chi-square-like deviation of the selection schemes investigated on
function . The population size is .

for the nonpeak niche. denotes the population size, and
corresponds to the fitness value of the peak . The variable
represents the observed number of individuals in a niche
represents the expected ideal number, and represents the
standard deviation of the number of individuals in the ideal
distribution.

The chi-square-like performance statistic characterizes the
ability of the niching technique to proportionally populate the
niches of the search space. The smaller the measure, the better
the method.

Number of Fitness Function Evaluations: In many applica-
tions such as electromagnetic design, the computational cost
of fitness functions can be very expensive. Therefore, we are
interested in evaluating the efficiency of niching methods at
limited numbers of function evaluations. Experimental results
were established for 900 fitness function evaluations (30
individuals, 30 generations denoted by test2 in the following).
Simulations were also carried out with a higher number of
fitness function evaluations 200 000 (100 individuals, 200
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Fig. 6. Chi-square-like deviation of the selection schemes investigated on
function . The population size is .

Fig. 7. Chi-square-like deviation of the selection schemes investigated on
function . The population size is .

generations denoted by test1 in the following) for comparison
with other experimental studies. These values were considered
reasonable, and no claim is made to their optimality.

V. EXPERIMENTAL STUDY

All experiments were performed with a genotype coded in a
30-bit number using Gray parameter encoding. Mutation rates
and crossover probabilities were chosen according to earlier
recommendations [8], [9].

The mutation was removed for functions and to pre-
vent the restoration of lost diversity. Recall that the main role
of mutation is to protect individuals from the loss of genetic
material by always maintaining diversity in the population.
If we want to assess the efficiency of the niching schemes,
it is necessary to isolate the different population diversity
mechanisms by resetting the mutation rate.

Since RTS and DC use implicitly a full crossover probabil-
ity, was set in all other niching methods. Moreover,
this allows to evaluate the niching GA’s performance in the
most disruptive case.

Fig. 8. Chi-square-like deviation of the crossover schemes investigated on
function . The population size is .

Fig. 9. Chi-square-like deviation of the crossover schemes investigated on
function . The population size is .

For illustration, ten runs were made with different popula-
tions generated at random for each scheme to take into account
the stochastic nature of GA’s. An average is calculated for the
performance criteria.

A. Sharing Experiments

Selection in the Sharing Method: We investigate the effect
of the selection scheme on the sharing efficiency. The different
schemes reviewed in the first section, namely SUS, SRS and
TS, with continuously updated sharing, are compared. The
crossover operator is the standard one point crossover with
probability , the mutation probability being set to zero.
The parameter is set to one and a value of 0.1 is taken
for the niche radius. Tables I and II summarize statistics on
performance criteria for the functions and respectively.

Typical chi-square-like deviations on functions and
are displayed in Figs. 4–7 for the selection schemes

investigated.
Results show the superiority of SUS regardless of the

population size and the number of fitness function evaluations.
TS and SRS fail to maintain all peaks at low number of



102 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 2, NO. 3, SEPTEMBER 1998

TABLE III
RECOMBINATION IN THE SHARING METHOD. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH

RECOMBINATION SCHEME. TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

TABLE IV
RECOMBINATION IN THE SHARING METHOD. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH

RECOMBINATION SCHEME. TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

Fig. 10. Chi-square-like deviation of the crossover schemes investigated on
function . The population size is .

fitness function evaluations. In particular, TS was unable
to form stable subpopulations yielding to a chi-square-like
deviation with high fluctuations during the generations. These
results are in accordance with Baker’s predictions since the
SUS is described as the less biased proportional selection
technique with minimum spread [5]. As could be expected,
it yields a minimum genetic drift and allows the population to
proportionally populate the niches with more accuracy.

Recombination in the Sharing Method: As already men-
tioned in Section II, recombination in the sharing method
should prevent the formation of lethals. The first solution to
achieve this is to use restrictive mating techniques. In this
paper, we propose to sort the population before applying
the crossover and mutation operators. A pseudocode of our
matching sort algorithm is described as follows.

Fig. 11. Chi-square-like deviation of the crossover schemes investigated on
function . The population size is .

1) Sort the population in decreasing fitness order. Set .
2) Loop until

find the th element (among individuals)
that is closest to the th element of the population.

exchange the th element with the th element.
increase .

After the selection of parents, the matching sort is applied
and individuals are crossed pairwise following the order of
the sort. Note that this scheme is rather costly since it realizes

distance comparisons per generation.
The second way to reduce the formation of lethals is to limit

the disruption rate of schemata. This can be achieved by using



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 2, NO. 3, SEPTEMBER 1998 103

TABLE V
NICHING METHODS COMPARED. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH NICHING GA.

TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

TABLE VI
NICHING METHODS COMPARED. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH NICHING GA.

TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

low recombination operators such as uniform parameterized
crossover [17], [18]. Standard uniform crossover swaps two
parents’ alleles with a probability of 0.5. Under uniform
parameterized crossover, an additional parameter defines
the probability of swapping. This operator combines a high
recombination potential and a good exploration power with a
low level of disruption [18].

We compare the efficiency of these recombination schemes
with standard uniform crossover and one-point crossover.
Experiments are made on functions and with SUS and
no mutation. The crossover probabilities are set to one in each
recombination schemes. The parameter is set to one, and a
value of 0.1 is taken for the niche radius. Tables III and IV
summarize statistics on performance criteria for the functions

and respectively.
Typical chi-square-like deviations on functions and

are displayed in Figs. 8–11 for the recombination schemes
investigated.

Results show a slight superiority of our matching sort algo-
rithm regardless of the number of fitness function evaluations.
Uniform parameterized crossover with a very low switching
probability works well for the test1 but is less efficient
when the number of fitness function evaluations is reduced
(test2). This reveals its difficulty in exploring the entire search
space by producing individuals in different niches when the
number of fitness functions is limited. In that case, standard
one-point crossover is better. Nonetheless, this recombination
operator is obviously more disruptive than uniform parame-
trized crossover with low probability of swapping (see test1).
Moreover, note that it gives poor results when the size of the
chromosome is reduced; recall that the disruption rate of the
schemata under one-point crossover is where is the size
of the chromosome. Standard uniform crossover was unable
to form stable subpopulations because of a massive disruption
rate of solutions detected.

Niching Methods Compared: We compare the efficiency of
fitness sharing coupled with the matching sort algorithm with
the other niching GA’s reported in Section III. RTS and DC
are implemented with standard uniform crossover. An optimal
crowding factor for RTS has been determined empirically for
the functions and . We use % , where is
the population size. This leads to for the test1 and

for the test2. Clearing is combined with SUS and an
elitist strategy as recommended by Petrowski [15]. In each
generation, the dominant individual of each subpopulation
competes with the corresponding one of the previous genera-
tion. The winners of the resulting tournaments are conserved
in the current population. Following this procedure, the best
individual of each niche is always preserved during the search.
The capacity of the niches is set to ten for test1 and two for
test2, respectively. All niching GA’s are performed with full
crossover probability and no mutation. The parameter

is set to one, and a value of 0.1 is taken for the niche radius.
Tables V and VI summarize statistics on performance criteria
for the functions and respectively.

Typical chi-square-like deviations on functions and
are displayed in Figs. 12–15 for the niching GA’s investigated.

The efficiency of the niching GA is related to its capacity
to find new niches by producing new individuals without
discarding the niches already identified. Clearing was the
best niching GA that realizes this compromise. It produces
a great quantity of new individuals by randomly recombining
elements of different niches and controls this production (and
obviously the genetic drift caused by selection) by resetting the
fitness of poor individuals in each different niche. Furthermore,
the elitist strategy prevents the rejection of the best individual
of each niche from the population. For these reasons, clearing
surpasses all other niching GA’s and combines a very low
chi-square-like deviation with a good detection of the peaks.
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Fig. 12. Chi-square-like deviation of the niching GA’s investigated on
function . The population size is .

Fig. 13. Chi-square-like deviation of the niching GA’s investigated on
function . The population size is .

Crowding schemes were unable to maintain low chi-square-
like deviations during generations. The first reason for this
is mentioned in [8]. Crowding schemes use a replacement
strategy which minimizes the changes in the population.
The distribution of the population in the different niches
strongly depends on the initial distribution. This explains
the higher chi-square-like deviations noted for RTS and DC
in comparison with those corresponding to the sharing and
clearing methods which directly use a proportional selection.
Second, replacement errors can occur for individuals located
at the edge of the niches. This explains poor results noted for
DC when it is applied to . DC detects the five peaks of this
function in the first generations. Nevertheless, in the following
generations, it appears that individuals located on the third
peak (of coordinate ) progressively migrate to the
next peak (the fourth peak of coordinate ) because
of replacement errors. At the two-hundredth generation, all
individuals are discarded from the third peak yielding a
poor chi-square distribution. RTS is less sensitive to these
errors with the size of the crowding factor CF used in the
experiments. Therefore, it surpasses DC in all cases. Sharing
works well on these easy problems.

Fig. 14. Chi-square-like deviation of the niching GA’s investigated on
function . The population size is .

Fig. 15. Chi-square-like deviation of the niching GA’s investigated on
function . The population size is .

Let us examine now the efficiency of these niching GA’s on
the massively multimodal function . Goldberg [6] solved
this problem with the sharing method by raising the shared
fitness to a power of 15 and using a huge population of
5000. Mahfoud [9] reported that more than 20 individuals
per niche are necessary for DC to find the global optima.
Such parameters are inconceivable for applications with high
computational time of the objective function such as finite
element applications. Recall that we are interested in assessing
the efficiency of the niching GA’s at a limited number of
function evaluations. Therefore, we prefer solving this problem
with the test1 (100 individuals, 200 generations). For each
GA, we use the Hamming distance as a similarity metric and
a crossover probability of 1.0. Considering the difficulty of
this function, the mutation rate is not removed but set to the
low value of 0.001 to increase exploration rate. The distance
between two individuals is normalized by the biggest distance
value in the search space according to [15] and [16]. The
niche radius is set to 0.2 in the clearing and the sharing
methods. Both of these methods are implemented with SUS.
We compare their efficiency with and without scaling. Two
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TABLE VII
NICHING METHODS COMPARED. THIS TABLE PRESENTS THE NUMBER OF PEAKS MAINTAINED DURING THE

SEARCH FOR THE FUNCTION . ALL TESTS ARE PERFORMED WITH 100 INDIVIDUALS AND 200 GENERATIONS

forms of scaling are investigated. The first one uses a fixed
power of value similarly to [6]. The second increases
the scaling during the generations (dynamic scaling). A value
of is taken for the first fiftieth generations and is linearly
increased to 15 in the following generations.

Table VII shows the effective number of peaks maintained
after 200 generations for each niching GA. One hundred runs
are made with different initial population generated at random
and an average over these runs is taken for the number of
peaks maintained at the two-hundredth generation.

For this problem, no niching GA was able to maintain
the 32 global maxima. Nonetheless, clearing was obviously
better than any other technique by finding and preserving
between 14 and 15 optima. In agreement with [16], we find
that sharing without a scaled function fails to detect any global
solution. Raising the fitness to a power of 15 magnifies the
differences between the global and local optima. This makes
it easier for the sharing method to find the global optima.
Nonetheless, using such a power for scaling the shared fitness
discards many individuals from the population and reduces
genotypic diversity. This explains the better results obtained
for sharing with a dynamic scaled function, which allows more
diversity in the population at the beginning of the search.
Unlike the sharing method combined with a scaled function,
the basic clearing procedure does not reject a great number
of promising solutions. It only discards individuals located
in the neighborhood of one dominant of a subpopulation and
preserves good configurations. Moreover, clearing does not
require a scaled function to find one global solution. On the
contrary, a dynamic scaled function seems to be somewhat
misleading for the clearing algorithm and in particular for
dominant individuals of different generation who compete
through our elitism scheme.

RTS surpasses DC for all studied cases. The efficiency of
RTS, however, strongly depends on the value of the crowding
factor. This can be a significant flaw because the optimal
value for this parameter is generally unknown for a given
objective function.

VI. CONCLUSIONS AND OUTLOOKS

This paper gives an overview of multiple niching GA’s
and points out some important issues of multimodal learning

such as selection, recombination, restrictive mating, and fitness
scaling. A simple analysis led us to class niching GA’s in
two different groups. The first one involves GA’s which are
characterized by an explicit neighborhood since they need an
explicit niche radius (clearing and sharing). This can be an
important drawback for problems for which distance between
optima cannot be estimated. The second consists of techniques
for which neighborhood is implicit (crowding schemes). In that
case, the algorithm requires no information about the search
space and can be easily applied to various problems without
restrictions.

Among all niching GA’s reviewed in this paper, clearing
can be considered as the best method provided that the
niche radius and the niche capacity are correctly estimated.
Sharing works well on easy problems with some precautions.
One should use stochastic universal selection and mating
restriction schemes or low recombination operators to maintain
stable subpopulations and avoid disruption of peaks detected.
Nonetheless, sharing fails on hard problems reflecting its
difficulty to differentiate the global from the local optima in
multimodal deceptive landscapes through the constant modi-
fication of the fitness during generations. Therefore, sharing
often requires a scaled fitness to increase peaks differentia-
tion with a risk of premature convergence. This scaling is
not necessary for crowding schemes since they are based
on tournament rules. Restricted tournament selection gives
slightly better results than deterministic crowding which has
difficulties to preserve the niches in some cases as a result
of replacement errors.

The application of new recombination operators in mul-
timodal landscapes such as the matching sort algorithm or
uniform parameterized crossover seems to be a promising
way to ensure the stability of the niches. Finally, we also
mention the necessity of investigating clustering techniques
and adaptive niche radius methods to cleverly set the similarity
threshold of niching GA’s with explicit neighborhood.
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