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Strong convergence of a class of non-homogeneous
Markov Arrivals Processes to a Poisson process

James LEDOUX∗

22 December 2006

Abstract

In this paper, we are concerned with a time-inhomogeneous version of the Markovian Arrival
Process. Under the assumption that the environment process is asymptotically time-homogeneous,
we discuss a Poisson approximation of the counting process of arrivals when the arrivals are rare.
We provide a rate of convergence for the distance in variation. Poisson-type approximation for
the process resulting of a special marking procedure of the arrivals is outlined.

Keywords: Markov Additive Process, Compound Poisson approximation.

1 Introduction

The so-called Markovian Arrival Process (MAP) is a very popular model of arrivals process in
queueing theory (see e.g. [13]). Such a process is an instance of Markov additive process[14].
It may be described as a bivariate random process{(Nt, Xt)}t≥0 where:{Nt}t≥0 is the counting
process of arrivals and{Xt}t≥0 is a finite Markov process sometimes called the “environment
process”. With Lucantoni’s formalism, a MAP is parametrized by two matricesD0 andD1 where
the non-negative entryD1(i, j) ≥ 0 (resp.D0(i, j) ≥ 0, i 6= j) represents for the environment
process, the infinitesimal intensity of a jump from stateei to ej with one (resp. no) arrival. More-
over,D0+D1 is the intensity matrix of the (homogeneous) Markov process{Xt}t≥0. In this paper,
we consider a class of MAP for whichD0 andD1 are time-dependent, so that{(Nt, Xt)}t≥0 and
{Xt}t≥0 are non-homogeneous Markov processes. A formal definition is given in Subsection 2.1.
For such a class of non-homogeneous Markovian Arrival Process, we are concerned with the
following question: what is the asymptotic distribution of{Nt}t≥0 when the arrivals tend to be
rare given that the environment process tend to be stationary as time elapses. A simple way is to
replace the matricesD0(t), D1(t) by perturbed matricesD(ε)

0 (t), D
(ε)
1 (t) which are supposed to

be of the following form:

D
(ε)
1 (t) = εB1(t) andD(ε)

0 (t) = Q(t) + εB0(t) (1)
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so that{Q(t)}t≥0 and
{
D

(ε)
0 (t)+D

(ε)
1 (t)

}
t≥0

are the intensity matrices of finite non-homogeneous
Markov processes andQ(t) converges to a stationary irreducible intensity matrixQ. Then, we
investigate the asymptotic distribution of the counting process of arrivals whenε tends to0. In
Subsection 2.2, we state that the convergence in variation to a homogeneous Poisson process takes
place at the specific time scalet/ε. A rate of convergence is provided. The main assumption is
on the rate of the convergence ofQ(t) to Q. A brief discussion on such an issue is reported in
Appendix A. A simple extension to the case of marked arrivalsis considered in Section 3. The
main result is proved in Section 4. The present work may be thought of as the natural continuation
of that reported in [7]. Indeed, the present issue was discussed in [7] for specific reliability models
for which the perturbed model looks like the model in (1) (in fact, it was quadratic inε). Unlike
to the present paper, these specific MAPs were assumed to be time-homogeneous.

Basic notation

By convention, vectors are row vectors. The column vectors are denoted by means of the trans-
pose operator(.)⊤. 1 (resp.0) is an-dimensional vector with each entry equals to one (resp.0).
ei (i = 1, . . . , n) is theith vector of the canonical basis ofRn.
For any vectorx ∈ R

n, ‖x‖1 is its l1-norm, i.e
∑n

i=1 |x(i)|. The l1-norm of any matrixM
is defined by‖M‖1 := maxi

(∑n
j=1 |M(i, j)|

)
. Note that for any row-stochastic matrixM ,

‖M‖1 = 1.
Let (Ω,F) a measurable space. Ifµ is a finite signed measure on(Ω,F), the total variation
Var(µ) of µ is defined by

Var(µ) := sup

{∣∣∣∣
∫

Ω

f(ω)dµ(ω)

∣∣∣∣ : f is aF-measurable function with|f | ≤ 1

}
.

Thetotal variation distancedTV(µ1;µ2) between two finite signed measuresµ1, µ2 on (Ω,F) is

dTV(µ1;µ2) := Var(µ1 − µ2).

Let B be the Borelσ-algebra onR andB+ its restriction to[0,∞[. For ω ∈ Ω fixed, any
real-valued increasing function{At(ω)}t≥0 defines a positive measureA(ω, ds) on (R+,B+). If
At(ω) < +∞, thenA(ω, ds) is finite on[0, t]. If A1(ω), A2(ω) define two locally finite measures
on (R+,B+), then for anyt > 0, Var(A1 − A2)t denotes the variation ofA1(ω, ds) − A2(ω, ds)
on ([0, t],B+ ∩ [0, t]).

2 A Poisson approximation for a time-inhomogeneous MAP

2.1 A class of non-homogeneous Markovian Arrival Processes

In this part, we are concerned with the definition of a specifictime-inhomogeneous MAP. We
refer to [15, 10, 6] for basic properties of non-homogeneousMarkov processes. We consider a
càdlàg bivariate Markov process(N,X) := {(Nt, Xt)}t≥0 with (Nt, Xt) ∈ N × U andU is the
finite set{ei, i = 1, . . . , n}. The paths ofN := {Nt}t≥0 are assumed to be nondecreasing. The
internal filtration of(N,X) is denoted byF, i.e.F := {Ft}t≥0 with Ft := σ(Ns, Xs, s ≤ t). The
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transition probabilities matricesP (s, t) for (N,X) are defined by: forei, ej ∈ U , m, k ∈ N with
m ≤ k and0 ≤ s ≤ t

P (s, t; (m, ei), (k, ej)) := P{Nt = k,Xt = ej | Ns = m,Xs = ei}.

These transition probabilities matrices are supposed to beadditive in the first component, that is,
they satisfy form ≤ k and0 ≤ s ≤ t

P (s, t; (m, ei), (k, ej)) = P (s, t; (0, ei), (k −m, ej)). (2)

Thus,(N,X) is an instance of a Markov Additive Process [14] and has the following properties.
{Xt}t≥0 is aF-Markov process with transition probabilities

P ∗(s, t; (ei, ej)) = P (s, t; (0, ei), (N, ej))

for everyei, ej ∈ U ands ≤ t. N has conditionally independent increments givenσ(Xs, s ≥ 0),
i.e. the twoσ-algebraσ(Nt−Ns, t ≥ s) andFs are conditionally independent givenσ(Xs, s ≥ 0).
Note that Breuer [2] has generalized analytical properties of homogeneous MAP stated in [14] to
the class of non-homogeneous Markov additive processes which are Markovian jump processes
according to [6].

Our main assumption concerns the existence of the so-calledinfinitesimal intensitiesG (t; ·, ·)
for (N,X). Intuitively, this means that

P (t, t+ dt; z1, z2) =

{
G (t; z1, z2)dt+ o(dt) if z2 6= z1
1 + G (t; z1, z1)dt+ o(dt) if z2 = z1.

(3)

The additivity property (2) of the transition probabilities implies that the infinitesimal intensities
satisfy a similar condition: fork ≤ m andt ≥ 0

G (t; (m, ei), (k, ej)) = G (t; (0, ei), (k −m, ej)). (4)

Then, to define our specific Markov additive process, we will assume that, forei, ej ∈ U and
t ≥ 0,

G (t; (0, ei), (k, ej)) = 0 if k > 1

so thatN is the counting process of a simple point process. The precisestatement is in the spirit
of a martingale problem.

Definition 1 (N,X) :=
{
(Nt, Xt)

}
t≥0

with (Nt, Xt) ∈ N× U is said to be a non-homogeneous
Markovian Arrival Process (NHMAP) if there exist matricesDk(t) := (Dk(t; i, j))

n
i,j=1 k = 0, 1

such that :

1. for anyi, j, (1− δj,i)D0(t; i, j) ≥ 0, D1(t; i, j) ≥ 0 and
∑n

j=1

(
D0(t; i, j)+D1(t; i, j)

)
= 0;

2. for anyi, j, the functionst 7→ D0(t; i, j), t 7→ D1(t; i, j) are locally integrable;

3. for any(k, ei) ∈ N× U , the process

Mt

(
(k, ei)

)
:= 1{(Nt,Xt)=(k,ei)} −

∫ t

0

{
1{Ns−=k−1}Xs−D1(s) + 1{Ns−=k}Xs−D0(s)

}
e⊤i ds

is aF-martingale.
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Remark 2 The special structure of Markov process(N,X) gives, fori, j = 1, . . . , n andk ≥ 0,

D1(t; i, j) = G (t; (k, ei), (k + 1, ej)) D0(t; i, j) = G (t; (k, ei), (k, ej)) if i 6= j.

Therefore, the third condition in Definition 1 expresses therequirement for the process

Mt

(
(k, ei)

)
:= 1{(Nt,Xt)=(k,ei)} −

∫ t

0

G (s; (Ns−, Xs−), (k, i))ds (5)

to be aF-martingale for every(k, ei) ∈ N × U . As in [10, 15], this condition is shown to be
equivalent to the transition probabilities satisfy the Chapman-Kolmogorov equations.

Remark 3 Condition 2. in Definition 1 implies that|D0(t; i, j)| ≤ γ0(t), D1(t; i, j) ≤ γ1(t)
whereγ0(t) andγ1(t) are locally integrable. Then, Conditions 1-2 assert there exists an unique
solution to the Chapman-Kolmogorov equations and we can construct an unique càdlàg Markov
process having these infinitesimal intensities [5]. Note that, at timet fixed, the intensity matrix
G (t) of (N,X) has the standard structure of the intensity matrix of a time-homogeneous MAP
using the lexicographic ordering on the state spaceN× U (e.g. see [13]).

It follows from Definition 1 and (4) that{Xt}t≥0 is a finite non-homogeneous Markov process
with intensity matrices{Q∗(t)}t≥0 given, fort ≥ 0, by

Q∗(t) = D0(t) +D1(t).

We refer to [1, 11] for a treatment of the martingale approachto point processes. We only
introduce the needed material for our purpose. LetNt(z1, z2) be the number of transitions of
(N,X) from statez1 to statez2 on [0, t]. Since theF-adapted process{1{(Nt−,Xt−)=z1}}t≥0 is
continuous to the left and bounded, the processM (z1, z2) := (Mt(z1, z2))t≥0 defined by

Mt(z1, z2) :=

∫ t

0

1{(Ns−,Xs−)=z1}dMs(z2).

is aF-martingale for anyz1, z2 ∈ N×U . We obtain from (5) that theF-martingaleM (z1, z2) has
the formN(z1, z2)− A(z1, z2) where, fort ≥ 0,

At(z1, z2) :=

∫ t

0

1{(Ns−,Xs−)=z1}G (s; z1, z2)ds.

Using the specific form of the infinitesimal intensities of(N,X), the non-zeroA(z1, z2) are

At((k, ei), (k, ej)) =

∫ t

0

1{
(Ns−,Xs−)=(k,ei)

} D0(s; i, j)ds,

At((k, ei), (k + 1, ej)) =

∫ t

0

1{
(Ns−,Xs−)=(k,ei)

} D1(s; i, j)ds.

Next,N is the counting process of transitions of(N,X) between pairs of states in the setT :={(
(k, ei); (k + 1, ej)

)
, ei, ej ∈ U , k ∈ N

}
, i.e. Nt =

∑
(z1,z2)∈T

Nt(z1, z2). Therefore, the
F-compensatorof N is

At =
∑

(z1,z2)∈T

At(z1, z2) =

∫ t

0

Xs−D1(s)1
⊤ds. (6)
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Note thatN has aF-intensity process{λt}t≥0 given by

λt := Xt−D1(t)1
⊤. (7)

Let FN be the internal filtration of the counting processN . TheF
N -compensator̂A and the

F
N -intensity{λ̂}t≥0 of N are from (6), (7) and [1, Chap 2,Th 14]

Ât =

∫ t

0

E[λs | F
N
s−]ds =

∫ t

0

X̂s−D1(s)1
⊤ds with λ̂t = X̂s−D1(t)1

⊤ (8)

andX̂t := E[Xt | F
N
t ].

A Poisson process modulated by a non-homogeneous finite Markov process with intensity
matrices{Q(t)}t≥0 is a standard point process for various applications. This model is a special
instance of an NHMAP withD0(t) := Q(t)− diag(λ(i)) andD1(t) := diag(λ(i)). The positive
scalarλ(i) is the intensity of the Poisson process when the underlying Markov process is in the
stateei. We retrieve from (7) the well-known expression

∑
i λ(i)1{Xt−=ei} of theF-intensity for

such a conditional Poisson process.

2.2 Model of perturbation and the convergence result

We introduce perturbed functions matricesD
(ε)
k (t), k = 0, 1 on which the basic assumptions are

as follows.

(AS1) The matricesD(ε)
0 (t) andD(ε)

1 (t) defined below, satisfy Definition 1

D
(ε)
0 (t) = Q(t) + εB0(t) and D

(ε)
1 (t) = εB1(t)

where, for everyt, Q(t) is an× n-matrix of measurable functions with

(1− δij)Q(t; i, j) ≥ 0, Q(t)1⊤ = 0, sup
t

‖Q(t)‖1 < ∞

andB0(t), B1(t) are matrices of measurable functions such that

(B0(t) + B1(t))1
⊤ = 0, k = 0, 1 : sup

t
‖Bk(t)‖1 < ∞.

Under (AS1), the family{Q(t)}t≥0 properly defines a family of transition matrices from the
Chapman-Kolmogorov equations. The NHMAP(N (ε), X(ε)) is defined by the matrices{D(ε)

0 (t), D
(ε)
1 (t), t ≥

0} of (AS1). The Markov processX(ε) := {X
(ε)
t }t≥0 has intensity matrices{Q∗,ε(t)}t≥0 where

Q∗,ε(t) := D
(ε)
0 (t) +D

(ε)
1 (t) = Q(t) + εR(t) (9)

with R(t)1⊤ = 0 and the family of matrices{R(t)}t≥0 is uniformly bounded.
The second assumption is on the rate of convergence, ast tends to+∞, of Q(t) andB1(t) to

some irreducible intensity matrixQ and matrixB1 respectively.

(AS2) There exist matricesBk (k = 0, 1), an irreducible intensity matrixQ with stationary
distributionπ, realsα, β > 1 such that

lim
t→+∞

(2t)α‖Q(t)−Q‖1 = 0, lim
t→+∞

tβ‖B1(t)−B1‖1 = 0 and lim
t→+∞

‖B0(t)−B0‖1 = 0.
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Under (AS2), the matrixQ∗,ε(t) in (9) converges ast tends to+∞.
From now, we consider the counting processC(ε) :=

{
C

(ε)
t

}
t≥0

defined by

C
(ε)
t := N

(ε)
t/ε t ≥ 0. (10)

For anyT > 0, let PC(ε),[0,T ] andPP,[0,T ] be the probability distributions ofC(ε) and of a homo-
geneous Poisson processP := (Pt)t≥0 on the space of all counting measures on[0, T ]. In this
section, we state thatPC(ε),[0,T ] converges toPP,[0,T ] at rateε for the total variation distance. This
is based on the following estimate of the distance betweenPC(ε),[0,T ] andPP,[0,T ] [9, Th 2]

dTV

(
PC(ε),[0,T ];PP,[0,T ]

)
≤ 2EVar(Â(ε) − A)T (11)

whereÂ(ε), A are the compensators ofC(ε) andP with respect to their internal filtration.

Theorem 4 Assume(AS1-2). LetC(ε) be defined in (10) andP := (Pt)t≥0 be a homogeneous
Poisson process with intensityλ := πB11

⊤. For anyT > 0, there exists a constantκT such that

dTV

(
PC(ε),[0,T ] ; PP,[0,T ]

)
≤ κT ε.

Remark 5 The order of the convergence rate in Theorem 4 cannot be improved in general. This
follows from [4, Section 5. Ex 1], where the authors report a lower bound for the distance
in variation that has order1 in ε for a Poisson process modulated by a2-states homogeneous
Markov process.

Note thatκT is quadratic inT in general. The dependence is linear when we haveQ∗,ε(t) =
Q(t) for t ≥ 0. This happens when the NHMAP is a Poisson process modulated by aMarkov
process for instance.

3 Poisson-type approximation for aG-marking of our NHMAP

In this section, we briefly discuss the case of marked arrivals. That is, we consider a sequence
{(Tk, Zk)}k≥1 of random variables (assumed to be defined on the same filteredprobability space)
where:{Tk}k≥1 (T0 := 0) are the epochs of arrivals in a NHMAP andZk (k ≥ 1) is the mark
or value associated with the arrival timeTk. The archetype of such process is the standard (ho-
mogeneous) Batch Markovian Arrival Processes whereZk areN-valued (e.g. see [12]). A time-
inhomogeneous batch Markovian arrival process may be defined from a natural generalization of
Definition 1, a family of matrices{Dl(t)}l≥0 replacing the two matricesD0(t), D1(t). We omit
the details.

Here,Zk’s are assumed to be real-valued. We can associate to{(Tk, Zk)}k≥1 an integer ran-
dom measureµ(ω; ·, ·) on (R+ × R,B+ × B) defined by

µ(ω; dt, dx) =
∑

k≥1

1{Tk(ω)<∞} δTk(ω),Zk(ω)(dt, dx).

The internal filtration ofµ is denoted byFµ := (Fµ
t )t≥0 with Fµ

t := σ(µ([0, s] × B) : s ≤
t, B ∈ B). SinceE[Nt] = E[µ(ω; [0, t] × R)] < +∞, it is well-known that we can associate
with µ an unique random measureν such that: for anyB ∈ B (1) {ν([0, t] × B)}t≥0 is aF

µ-
predictable process and (2)

(
µ([0, t] × B) − ν([0, t] × B)

)
t≥0

is a F
µ-martingale. ν is called
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theFµ-compensatorof µ or {(Tk, Zk)}k≥1. Hereν(ω; ·, ·) is a locally finite positive measure on
(R+ × R,B+ × B).

A family G := {G(s, dx), s ≥ 0} of probability measures onR such thats 7→ G(s, E) is
B+ measurable for anyE ∈ B, is called astochastic kernelfrom R+ into R. We only consider a
G-markingµ of {Tk}k≥1 as defined in [11, p189].

Definition 6 LetG be a stochastic kernel fromR+ into R. {(Tk, Zk)}k≥1 or µ is said to be aG-
marking of the point process{Tk}k≥1 if Z1, Z2, . . . are conditionally independent given{Tk}k≥1

and
P{Zk ∈ dx | σ(Tm,m ≥ 1)} = G(Tk, dx) P-as on{Tk < +∞}.

If G(t, dx) = G(dx), G is said to be an independent marking of{Tk}k≥1. We emphasize that
a G-markingµ is characterized by the following specific form of the so-called “disintegration
property” of itsFµ-compensatorν [11, Cor 6.2.6]:

ν(dt, dx) = G(t, dx)A(dt) (12)

where the processA is theFN -compensator of the underlying point process{Tk}k≥1.
The probability measureG(s, dx) is assumed to be absolutely continuous wrt the Lebesgue

measure. If̃µ is theG-marking of a homogeneous Poisson process with intensityλ, then the
following simple inequality is easily obtained from (12): for T > 0,

EVar(ν − ν̃)T ≤ EVar(A− Ã)T (13)

whereA is defined in (6),Ã := (λt)t≥0 andVar(ν − ν̃)T is the variation ofν − ν̃ on [0, T ]×R .
Then, if we combine the result of [9, Th 2] with inequality (13), we obtain the following lemma.

Lemma 7 Fix T > 0. If Pµ,[0,T ] (resp.Pµ̃,[0,T ]) is the probability distribution of theG-markingµ
(resp. µ̃) of an NHMAP (resp. of a homogeneous Poisson process) in the space of all counting
measures on[0, T ]× R, then

dTV(Pµ,[0,T ];Pµ̃,[0,T ]) ≤ 2EVar(A− Ã)T .

Therefore, the convergence of theG-marking ofN to that of a Poisson process for the total
variation distance, may be deduced from the convergence in total variation of the underlying
point processes.

Remark 8 Inequality (13) also holds whenG(s, dx) is a probability distribution on a discrete
set.

Let us consider the perturbed arrival processN (ε) which depends on the parameterε as in
Subsection 2.2. Letµ(ε) be aG-marking of

{
N

(ε)
t/ε

}
t≥0

with a stochastic kernelG which does not
depend onε. Under the conditions of Theorem 4, we obtain from Theorem 4 and Lemma 7 that,
for everyT > 0, there exists a constantκT such that

dTV(Pµ(ε),[0,T ];Pµ̃,[0,T ]) ≤ κT ε (14)

whereµ̃ is theG-marking of the Poisson process with intensityπB11
⊤.

Let us associate withf(s, x) = x,

Ut := µ([0, t]× R)(f) =
∑

k≥1

Zk 1{Tk≤t} and Ũt := µ̃([0, t]× R)(f). (15)

7



If µ̃ is an independent marking of the Poisson process with intensity πB11
⊤ thenŨ is a Compound

Poisson process. SinceNt(ω) < +∞, Ut has bounded variation on any compact set ofR+. And
it follows from (14) that{U (ε)

t }t≥0 associated withµ(ε) as in (15), converges in total variation to
Ũ over any[0, T ].

4 Proofs

Let us recall that̂Xt := E[Xt | F
N
t ] = (P{Xt = ei | F

N
t })

n
i=1. The first step is to derive a filtering

equation for{X̂t}t≥0. Using the material in Subsection 2.1, the next lemma may be derived from
[1, R7].

Lemma 9 Let X := {Xt}t≥0 be the second component of an NHMAP(N,X). Let α be the
probability distribution ofX0. Then, for everyt ≥ 0,

X̂t = α +

∫ t

0

X̂sQ
∗(s)ds+

∫ t

0

vs−(dNs − λ̂sds)

where{λ̂}t≥0 is theFN -intensity ofN given in (8) and fors ≥ 0

vs− :=
X̂s−D1(s)

λ̂s

− X̂s−.

Let {P ∗(s, t), 0 ≤ s ≤ t} be the transition matrices of the non-homogeneous Markov chainX.
Then using a “variation of constants formula” [3, Chap 3], we obtain the following representation
of X̂t from Lemma 9

X̂t = αP ∗(0, t) +

∫ t

0

vs− P ∗(s, t)(dNs − λ̂sds). (16)

The proof of Theorem 4 is based on the two following lemmas. These lemmas are related
to the perturbed NHMAP model

{
(N

(ε)
t , X

(ε)
t )

}
t≥0

defined from (AS1). The assumption (AS1)
asserts, in particular, that{Q(t)}t≥0 defines a family of transition matrices{P (s, t), 0 ≤ s ≤ t}.
The first lemma gives a simple estimate of thel1-distance to1⊤π of the transition matrices of
X(ε) in terms of the corresponding distance for the transition matrices{P (s, t), 0 ≤ s ≤ t}. The

second lemma is on the control of the (expected)l1-distance of the filtered state vector̂X(ε)
t =

E[X
(ε)
t | FN(ε)

t ] to vectorπ. This distance naturally appears in evaluating the variations between
the compensators of

{
N

(ε)
t/ε

}
t≥0

and of the Poisson process with intensityπB11
⊤. Then, the

control of these variations allows the use of inequality (11) for proving Theorem 4.

Lemma 10 Assume(AS1-2). Let {P (s, t), 0 ≤ s ≤ t} and {P ∗,ε(s, t), 0 ≤ s ≤ t} be the
transition matrices defined from{Q(t)}t≥0 and{Q∗,ε(t)}t≥0 respectively. Then, for0 ≤ s ≤ t,

‖P ∗,ε(s, t)− 1
⊤π‖1 ≤ ‖P (s, t)− 1

⊤π‖1 + κε

∫ t

s

‖P (r, t)− 1
⊤π‖1dr

whereκ does not depend onε ands, t.
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Proof The triangle inequality allows us to write

‖P ∗,ε(s, t)− 1
⊤π‖1 ≤ ‖P ∗,ε(s, t)− P (s, t)‖1 + ‖P (s, t)− 1

⊤π‖1.

It remains to estimate the norm‖P ∗,ε(s, t)− P (s, t)‖1. Recall thatQ∗,ε(t) = Q(t) + εR(t) with
R(t)1⊤ = 0 (see (9)). First, set for0 ≤ s ≤ t

K(s, t) := P ∗,ε(s, t)− P (s, t).

Note thatK(s, s) = 0. We find from the forward Chapman-Kolmogorov equation that, for
0 ≤ s < t,

K(s, t) =

∫ t

s

(P ∗,ε(s, r)Q∗,ε(r)− P (s, r)Q(r))dr

=

∫ t

s

P ∗,ε(s, r)(Q∗,ε(r)−Q(r))dr +

∫ t

s

K(s, r)Q(r)dr

=

∫ t

s

P ∗,ε(s, r)εR(r)dr +

∫ t

s

K(s, r)Q(r)dr.

Then, using a “variation of constants formula”, we obtain for 0 ≤ s ≤ t

K(s, t) = ε

∫ t

s

P ∗,ε(s, r)R(r)P (r, t)dr.

SinceR(r)1⊤ = 0 for r ≥ 0, we can write for0 ≤ s ≤ t

K(s, t) = ε

∫ t

s

P ∗,ε(s, r)R(r)(P (r, t)− 1
⊤π)dr.

Since‖P ∗,ε(s, r)‖1 = 1 and‖R(r)‖1 is uniformly bounded from (AS1), we deduce from the
equality above that, there exists a constantκ which does not depend onε, s, t such that, for
0 ≤ s ≤ t,

‖P ∗,ε(s, t)− P (s, t)‖1 = ‖K(s, t)‖1 ≤ εκ

∫ t

s

‖P (r, t)− 1
⊤π‖1dr.

Lemma 11 Assume(AS1). Let X(ε) := {X
(ε)
t }t≥0 be the second component of the perturbed

NHMAP(N (ε), X(ε)) andX̂(ε)
t := E[X

(ε)
t | FN(ε)

t ]. The following inequality holds for anyt ≥ 0,

E‖X̂(ε)
t−π‖1 ≤ ‖P (0, t)−1

⊤π‖1+κ ε

∫ t

0

‖P (r, t)−1
⊤π‖1dr+κ ε2

∫ t

0

∫ t

s

‖P (r, t)−1
⊤π‖1drds

(17)
whereκ is a constant which does not depend onε, t and whereP (s, t)’s are the transition matrices
associated with the family of intensity matrices{Q(t)}t≥0.

Proof. Let α be the probability distribution ofX0 or X(ε)
0 . Applying Lemma 9 to the per-

turbed NHMAP(N (ε), X(ε)), we deduce that{X̂(ε)
t}t≥0 satisfies an equation of the form (16)

X̂(ε)
t = αP ∗,ε(0, t) +

∫ t

0

v
(ε)
s− P ∗,ε(s, t)(dN (ε)

s − λ̂(ε)
s ds) (18)

9



where{P ∗,ε(s, t), 0 ≤ s ≤ t} are the transition matrices ofX(ε) and

v
(ε)
s− =

X̂(ε)
s−D

(ε)
1 (s)

λ̂
(ε)
s

− X̂(ε)
s− λ̂(ε)

s = X̂(ε)
s−D

(ε)
1 (s)1⊤. (19)

Whent = 0, inequality (17) follows fromX̂(ε)
0 = α, ‖α‖1 = 1, P ∗,ε(0, 0) = P (0, 0) = I

and

‖α− π‖1 = ‖α(P ∗,ε(0, 0)− 1
⊤π)‖1 ≤ ‖α‖1‖P

∗,ε(0, 0)− 1
⊤π‖1 = ‖P (0, 0)− 1

⊤π‖1.

Becausev(ε)s−1
⊤ = 0 for s ≥ 0, andX̂(ε)

01
⊤ = α1⊤ = 1, we can write from (18) that for

t > 0

X̂(ε)
t − π = α(P ∗,ε(0, t)− 1

⊤π) +

∫ t

0

v
(ε)
s−(P

∗,ε(s, t)− 1
⊤π)(dN (ε)

s − λ̂(ε)
s ds).

Since‖v(ε)t−‖1 ≤ 2 as thel1-norm of the difference of two stochastic vectors and‖α‖1 = 1, it
follows that

‖X̂(ε)
t − π‖1 ≤ ‖P ∗,ε(0, t)− 1

⊤π‖1 + 2

∫ t

0

∥∥P ∗,ε(s, t)− 1
⊤π

∥∥
1
(dN (ε)

s + λ̂(ε)
s ds). (20)

Since{λ̂(ε)
t }t≥0 is theFN(ε)

-intensity of the counting processN (ε), we know that [1]

E

∫ t

0

∥∥P ∗,ε(s, t)− 1
⊤π

∥∥
1
dN (ε)

s = E

∫ t

0

∥∥P ∗,ε(s, t)− 1
⊤π

∥∥
1
λ̂(ε)
s ds.

Then, taking the expectation on both side of (20), we find for every t > 0

E‖X̂(ε)
t − π‖1 ≤ ‖P ∗,ε(0, t)− 1

⊤π‖1 + 4

∫ t

0

‖P ∗,ε(s, t)− 1
⊤π‖1λ̂

(ε)
s ds.

Hereafter,κ > 0 stands for a generic positive constant which does not dependon ε andt. Since

‖X̂(ε)
t−‖1 = 1, it easily follows from (AS1) that, fort ≥ 0,

λ̂
(ε)
t = X̂(ε)

t−D
(ε)
1 (t)1⊤ ≤ κ ε.

Then, we obtain fort > 0

E‖X̂(ε)
t − π‖1 ≤ ‖P ∗,ε(0, t)− 1

⊤π‖1 + κ ε

∫ t

0

‖P ∗,ε(s, t)− 1
⊤π‖1 ds.

Under (AS1), we haveQ∗,ε(t) = Q(t) + εR(t) with R(t)1⊤ = 0 and Lemma 10 applies

E‖X̂(ε)
t − π‖1 ≤ ‖P (0, t)− 1

⊤π‖1 + κε

∫ t

0

‖P (r, t)− 1
⊤π‖1dr

+κ ε

∫ t

0

(
‖P (s, t)− 1

⊤π‖1 + κε

∫ t

s

‖P (r, t)− 1
⊤π‖1dr

)
ds.

10



Inequality (17) easily follows.

Proof of Theorem 4. The compensatorA := {At}t≥0 of the Poisson process{Pt}t≥0 with
intensityπB11

⊤, is At = tπB11
⊤. Since the compensatorŝA(ε) of C(ε) andA are absolutely

continuous w.r.t. the Lebesgue measure, we find that

Var(Â(ε) − A)t =

∫ t/ε

0

|λ̂(ε)
s − ε πB11

⊤| ds (21)

where λ̂(ε)
s is defined in (19). Under (AS1), we obtain from (11), (21), (19) and the triangle

inequality that

dTV

(
PC(ε),[0,T ];PP,[0,T ]

)
≤ 2εE

∫ T/ε

0

∣∣(X̂(ε)
s−−π)B11

⊤
∣∣ds+2εE

∫ T/ε

0

∣∣X̂(ε)
s−(B1(s)−B1)1

⊤
∣∣ ds.

(22)
SinceB1 andX̂(ε) are bounded, we have for some constantκ which does not depend onε, s
∣∣(X̂(ε)

s− − π)B11
⊤
∣∣ ≤ κ ‖X̂(ε)

s− − π‖1 and
∣∣X̂(ε)

s−(B1(s)−B1)1
⊤
∣∣ ≤ κ‖B1(s)−B1‖1.

Under (AS2), we obtain that the second term in the right hand side member of (22) is bounded
from above byκε

∫ +∞

0
‖B1(s)−B1‖1ds. Thus, we obtain that, for some constantκ1 which does

not depend onε, T

dTV

(
PC(ε),[0,T ];PP,[0,T ]

)
≤ κ1 ε

(
E

∫ T/ε

0

‖X̂(ε)
s− − π‖1ds+ 1

)
.

Note that
∫ T/ε

0
‖X̂(ε)

s− − π‖1ds =
∫ T/ε

0
‖X̂(ε)

s − π‖1ds since the paths of̂X(ε) have at most a
finite number of discontinuities on any finite interval. FromFubini’s theorem and Lemma 11, the
expectation in the inequality above, may be bounded as follows: there exists a constantκ2 that
does not depend onε, T such that, forT > 0,
∫ T/ε

0

E‖X̂(ε)
t − π‖1dt ≤

∫ T/ε

0

‖P (0, t)− 1
⊤π‖1dt+ κ2 ε

∫ T/ε

0

∫ t

0

‖P (r, t)− 1
⊤π‖1drdt

+κ2 ε
2

∫ T/ε

0

∫ t

0

∫ t

s

‖P (r, t)− 1
⊤π‖1drdsdt.

Under (AS2), we deduce from (A.2), (A.3) and (A.4) that
∫ T/ε

0

E‖X̂(ε)
t − π‖1dt ≤ κ2,T .

for some constantκ2,T . The proof is complete.

A Rates of convergence for non-homogeneous Markov pro-
cesses

A finite non-homogeneous Markov process{Xt}t≥0 with transition matrices{P (s, t), 0 ≤ s ≤ t}
is said to be strongly ergodic if there exists a constant stochastic vectorπ such that

∀s ≥ 0, lim
t→+∞

‖P (s, t)− 1
⊤π‖1 = 0.

11



If the previous limit is uniform ins, then the Markov process is said to beuniformly strongly
ergodic. We have the following basic result.

Lemma 12 ([8]) Let {Xt}t≥0 be a finite non-homogeneous Markov process with intensity ma-
trices{Q(t)}t≥0 satisfyingsupt ‖Q(t)‖1 < +∞. LetQ be an irreducible intensity matrix with
stationary distributionπ. If Q(t) converges toQ in norm l1 as t → +∞, then{Xt}t≥0 is uni-
formly strongly ergodic.

Any homogeneous Markov process with irreducible intensitymatrix Q is (strongly) ergodic.
Then, the transition matrixP (t) = exp(Qt) has an exponential rate of convergence to1

⊤π as
t → +∞. But an exponential rate of convergence is not guaranteed in the non-homogeneous
case. Indeed, the rate at whichP (s, t) converges to1⊤π ast → +∞ is governed by the rate at
whichQ(t) converges toQ.

Lemma 13 ([8, Th 8]) Under the conditions of Lemma 12, ifQ(t) converges toQ in norm l1
with

lim
t→+∞

(2t)α‖Q(t)−Q‖1 = 0

for someα > 0, then
lim

t→+∞
tα sup

s≥0
‖P (s, s+ t)− 1

⊤π‖1 = 0.

If α is greater than1 in the previous lemma, then the following integral converges

sup
s≥0

∫ +∞

0

‖P (s, s+ t)− 1
⊤π‖1dt ≤

∫ +∞

0

sup
s≥0

‖P (s, s+ t)− 1
⊤π‖1dt ≤ κ < +∞ (A.1)

The introduction of our assumption (AS2) is motivated by Lemma 13.
The following properties are easily deduced from (A.1). They are used in the proof of Theo-

rem 4.

∀r ≥ 0,

∫ +∞

r

‖P (r, t)− 1
⊤π‖1dt ≤ κ (A.2)

∫ T/ε

0

∫ t

0

‖P (r, t)− 1
⊤π‖1drdt ≤

T

ε
κ (A.3)

∫ T/ε

0

∫ t

0

∫ t

s

‖P (r, t)− 1
⊤π‖1drdsdt ≤

(
T

ε

)2

κ. (A.4)
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