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Abstract

This article reviews bandlet approaches to geometric image representations. Or-

thogonal bandlets using an adaptive segmentation and a local geometric flow are well

suited to capture the anisotropic regularity of edge structures. They are constructed

with a “bandletization” whcih is a local orthogonal transformation applied to wavelet

coefficients. The approximation in these bandlet bases exhibits an asymptotically op-

timal decay for images that are regular outside a set of regular edges. These bandlets

can be used to perform image compression and noise removal. More flexible orthogonal

bandlets with less vanishing moments are constructed with orthogonal grouplets that

group wavelet coefficients alon a multiscale association field. Applying a translation

invariant grouplet transform over a translation invariant wavelet frame leads to state

of the art results for image denoising and super-resolution.

1 Geometry of Images and Textures

Taking advantage of geometrical structures in natural images is crucial to improve the
state of the art in image processing. But geometry is also the bottleneck in other scientific
areas and similar ideas emerge in various fields such as turbulence in fluid dynamics or
visual coding in the cortex. At a first glance, geometry might seems restricted to a well
defined set of curves along which the image is singular. Figure 1 (a) shows an example of
such a simple geometric image where the relevant information is only carried along a set of
edges. Natural images are however much more complex than cartoon images such as the
one depicted on figure 1 (b). They carry a textural content that is neither pure noise nor
regular edge curves, see figure 1 (c). Natural phenomenons such as seismic, wood growth
or fluids dynamic is often responsible for the emergence of this textural content. They lead
to turbulent dynamics that creates most of the complexity of these geometric textures, see
figure 1 (d-f).

Geometric structures exist in a lot of signal modalities and cary most of the perceptual
information. The motion of objects in a movie is described using an optical flow that follows
the 3D geometry of the signal, see figure 2 (a-b). Natural sounds also exhibit geometric
patterns in the time-frequency plane where evolving harmonics follows geometric paths,
see for instance a bird sing spectrogram, figure 2 (c). All these geometric cues are essential
for human perception and should be exploited by modern signal processing methods.

From a mathematical point of view, classical tools from differential geometry can char-
acterize the geometry of contours when the edge curves are well defined. However, for
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Figure 1: Examples of images with varying geometric complexity. (a): simple geometric
image. (b): cartoon image. (c): natural image. (d): seismic image. (e): wood texture.
(f): vorticity field of a fluid.

(a) (b) (c)

Figure 2: (a): Sample image of a movie. (b) Corresponding optical flow. (c): Spectrogram
of a bird’s sing.

natural images with a varying blurring and turbulent textures, the local description of geo-
metric regularity is ill-posed and cannot lead to robust and efficient algorithms. Thanks to
the wavelet transform, harmonic analysis brings a first answer to the representation of the
regular parts of images and texture patterns. This is the reason why orthogonal wavelets
bases are at the heart of JPEG2000, the latest image compression standard. Wavelets are
however sub-optimal to compress the geometrically regular part of images as explained in
section 2.

Bridging the gap between geometric representations and harmonic analysis is a major
issue in image processing. A compact representation of geometric structures would have
applications for traditional image processing tasks such as inverse problems or compression,
but would also ease learning algorithms in computer vision. Compressing with minimum
loss the geometry of images is at the heart of industrial problems. Satellite imaging requires
compression of urban geometric patterns with increasing resolution and medical imaging
requires a fine rendering of vessels and other tubular structures. High-definition numeric
video requires the upsampling of movies where the 3D geometry is crucial to solve the
aliasing problem.
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Section 2 studies the wavelet representation and explains its inefficiencies on geometric
images. Both the finite elements and the curvelets schemes, exposed in sections 3.1 and
3.2 enjoy a better approximation rate than orthogonal wavelets on geometrical images.
The orthogonal bandlet approximation scheme is explained in section 4. Bandlet bases
are obtained through a hierarchical cascade of orthogonal elementary operators. The ge-
ometry parameterizes these operators to adapt the representation to the local anisotropy
of geometric images. This hierarchical cascade leads to fast algorithms that compute the
decomposition of an image in an adapted bandlet basis. The optimality of the adapted
bandlet representation is proved for the approximation, compression, and estimation of
geometrically regular images.

An orthogonal bandelet basis has a constrained geometry that is a source of inefficiency
to capture the turbulent geometry of natural textures. This issue is solved with a multiscale
association field that drives an adapted grouplet transform, presented in section 5. This
transform can be implemented in a translation-invariant manner and over coefficients of a
multiscale wavelet transform. This leads to a tight frame of adapted grouping-bandlets.
This tight frame gives state of the art results in denoising and super-resolution applications
and can be used in computer graphics applications such as texture synthesis and image
inpainting.

2 Image Representation in a Wavelet Basis

Decomposing a function in an orthogonal basis allows to define a sparse representation
using a simple wavelet thresholding. In particular, orthogonal wavelet bases define optimal
approximations for classes of piecewise regular functions. In this section we review the
main properties and limitations of wavelets to approximate geometrical singularities.

The best approximation fM of a function f with M coefficients in an orthogonal basis
B = {gµ}µ is computed using the largest M coefficients above some threshold T :

fM
def.

=
∑

|〈f, gµ〉|>T

〈f, gµ〉 gµ with M
def.

= Card {µ \ |〈f, gµ〉| > T } , (1)

where 〈·, ·〉 is the inner product. The approximation error is then:

||f − fM ||2 =
∑

|〈f, gµ〉|≤T

|〈f, gµ〉|2.

A signal model defines a set Θ such that f ∈ Θ. Optimizing the representation is then
equivalent to maximizing the decay of the error ||f−fM ||2 when M increases, for all f ∈ Θ.
Asymptotically, one looks for bases B such that ||f − fM ||2 = O(M−β) for the largest
possible β.

If some basis B reaches an optimal error decay on Θ, one can prove that a compression
algorithm (resp. a denoising algorithm) that quantizes (resp. thresholds) the coefficients
in this basis is optimal on Θ. The approximation problem is thus at the heart of both
compression and restoration problems.

2.1 1D Wavelets Bases

A wavelet basis B of L2([0, 1]) is obtained by dilating and translating a function ψ [?, ?, ?, ?]

B
def.

=
{
ψj,n

∖
j ≤ 0, n = 0 . . . 2−j − 1

}
with ψj,n(x)

def.

= 2−j/2 ψ(2−jx− n),
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with slight modifications for functions ψj,n whose support intersect the boundary of [0, 1].
Wavelet are oscilating function with vanishing moments. A wavelet has p vanishing mo-
ments if it is orthogonal to polynomials up to degree p− 1:

∀ k ≤ p− 1,

∫ 1

0
ψ(x)xkdx = 0.

Daubechies [?] shown that one can build such a wavelet that has a compact support and
that generates an orthogonal basis The support of ψj,n is thus proportional to 2j and is
localized around 2jn ∈ [0, 1].
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Figure 3: Function f , wavelet transform and approximation fM obtained by keeping the
10% largest wavelet coefficients.

The construction of multiresolution spaces shows the simplicity of the wavelet transform
[?, ?]. The existence of a fast algorithm comes from the fact that this transform can be
factored in a product of elementary orthogonal operators. These operators are computed
numerically with discrete convolutions with quadrature mirror filters that are dilated by
inserting zeros. The cascade of these orthogonal filtering steps implements the fast wavelet
transform that requires O(N) operations for a signal of length N [?].

Figure 3 shows a piecewise regular function together with its wavelet coefficients 〈f, ψjn〉.
One can see that there are few large coefficients localized in the neighborhood of singular-
ities. Indeed, if f is Cα in an interval that contains the support of a function ψj,n then the
wavelet coefficient is small for small scale 2j : |〈f, ψj,n〉| = O(2j(α+1/2)). If f is piecewise
Cα and has a finite number of singularities, one can show that the approximation fM in
(1) obtained with the largest M wavelet coefficients satisfies

||f − fM ||2 = O(M−2α). (2)

This asymptotic decay is optimal and is equal with the one obtained if f has no singular-
ity. The existence of a finite number of singularities thus does not affect the asymptotic
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precision of a wavelet approximation. Figure 3 shows fM computed with the 10% largest
wavelet coefficients.

2.2 2D Wavelet Bases

Wavelet bases of L2([0, 1]2) are obtained by translating and dilating 3 elementary wavelets
{ψH , ψV , ψD} which oscillate in the horizontal, vertical and diagonal directions. These
wavelets are separable products of mono-dimensional wavelet functions. Figure 4 shows an
example of 2D wavelets of compact support.
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Figure 4: Example of a 3-tuple of wavelets in 2D.

A wavelet orthogonal basis of L2([0, 1]2) can be written as

B =
{
ψk

jn(x) = 2−j ψk(2−jx− n) = 2−j ψk(2−jx1 − n1, 2
−jx2 − n2)

}k=H,V,D

j<0,2jn∈[0,1]2
.

Figure 5 (b,c) shows the wavelet coefficients along the three directions. These coefficients
have been thresholded in order to keep only the 10% and 2% largest coefficients in (b) and
(c). One can see on the zoom on fM that with only 10% of the coefficients, one gets an
accurate reconstruction and that the quality gets lower when the number of coefficients
diminishes. The JPEG2000 image compression standard decomposes an image in a wavelet
basis and performs a quantization and an entropic coding of the coefficients in order to
optimize the binary code.

Figure 6 shows an application of wavelet bases to the denoising of images. Image 6
(b) is corrupted with a gaussian white noise W of variance σ. Image 6 (c) is a linear
estimate obtained using a convolution with an optimized filter. Such a linear estimation
suppresses a part of the noise but also smoothes the image singularities which creates
a blurry image. Image 6 (d) shows the wavelet coefficients of the noisy image. These
coefficients are thresholded at a level T = 3σ in order to keep only the largest coefficients.
The restored image 6 (f) is obtained using the inverse wavelet transform of thresholded
coefficients. As one can see, the noise has disappeared in homogeneous regions and edges
are better reconstructed because their wavelet coefficients are kept by the thresholding.

The asymptotic accuracy of estimation and compression algorithms in an orthogonal
wavelet basis depends upon the approximation power of this basis. If f ∈ L2([0, 1]2) is a
Cα image, then its approximation fM in (1) with M wavelet coefficient satisfies:

||f − fM ||2 = O(M−α). (3)

This result is however no more valid if f is discontinuous along an edge. If f is piecewise
regular meaning that it is Cα (α > 1) outside a set of curves with finite length (contours),
then the error decay satisfies only:

||f − fM ||2 = O(M−1). (4)
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(b) (c)(a)

Figure 5: Approximation of an image in a wavelet basis with a varying number of coeffi-
cients. (a): Original image and zoom below. (b): 10% largest coefficients and zoom of the
reconstruction. (c): 2% largest coefficients and zoom.

Unlike the mono-dimensional case, the existence of singularities controls the asymptotic
decay of the error, which becomes much slower. The result (4) is a special case of a general
result for functions with bounded variations [?]. Figure 7 shows the wavelet coefficients
of a piecewise regular image. Large coefficients are localized along the contours (black
and white coefficients), so the number of these coefficients is proportional to the length of
contours. These coefficients are responsible for the slower decay of the approximation.

The goal of a geometric representation is to take advantage of the geometric regularity
of the image “singularities” to enhance the approximation result (4). In particular, one
would like to obtain an approximation that satisfies ||f − fM ||2 = O(M−α) as if there was
no singularity in the image. This is indeed the result (2) obtained for piecewise regular one
dimensional functions.

3 Geometric Representations of Images

A simple model of geometrically regular images is defined as a function f that is uniformly
Cα outside a set of curves which are themselves Cα with α > 1 These curves correspond
to the contours of objects that create occlusions. To model diffraction phenomena, the
singularities of f can be blurred by an unknown convolution kernel. The triangles images
of figure 9 are examples of geometrically regular images.

3.1 Finite Elements

A thresholding in a wavelet basis is equivalent to an approximation with finite element
having a square support, such that the size of the elements is refined near the singularities,
as shown on figure 9 (c). To enhance the performance of this kind of approximation, it is
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Figure 6: Denoising with a thresholding in a wavelet basis.

necessary to adapt the geometry of the finite elements, using for instance an anisotropic
adaptive triangulation.

Given a triangulation of [0, 1]2 with M triangles, one can define an approximation f̃M

of f which is the best piecewise linear approximation on this triangulation. The goal of
an adaptive triangulation is to optimize the shape of the triangles in order to minimize
the approximation error ||f − f̃M ||. Near a discontinuity, the triangle should be thin and
stretched along the singularity curve, as displayed on figure 10. The lengths of the triangles
should be of order M−1 and their widths should be of order M−2. If f is C2 outside a set
of C2 contours, then one has for such an adapted triangulation

||f − f̃M ||2 = O(M−2). (5)

This construction can be generalized by replacing triangles by higher order geometric prim-
itives whose boundaries are polynomial curves of degree α, as shown on the right side of
figure 10. The adapted approximation using polynomials defined on M such higher order
primitives leads to an approximation error ||f − f̃M ||2 = O(M−α) for a function f that is
Cα outside a set of Cα contours.

Adaptive triangulations have proven very useful in numerical analysis where shocks
or boundary layers require anisotropic refinement, see for instance the work of Aguilar
and Goodman [?]. However, it exists currently no algorithm that can guaranty such an
approximation result as (5) for functions as complex as images [?]. Indeed, the connectivity
and shape of the triangulation should adapt itself to the local regularity of the image. When
an image is smoothed by an unknown kernel of width s, the triangulation should depend
on s in order to get the result of equation (5), as shown on figure 11. To reach an error
decay of O(M−2), in the neighborhood of a contour smoothed by a kernel of width s, the
triangle should have a length of order s1/4M−1/2 and a width of order s3/4M−1/2. The
scale s is most of the time unknown and one thus need an automatic algorithm to devise
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Figure 7: A geometrically regular image together with its wavelet coefficients. For wavelet
coefficients, gray corresponds to a coefficient near zero, white to a large positive value and
black to a large negative value.

(a) (b) (c)

Figure 8: (a) A geometrically regular image. (b) Approximation with a triangulation. (c)
Approximation with a wavelet basis (only the support of the basis functions used for the
approximation are displayed).

the size of the triangles.
This analysis shows that it is possible to reach approximation error bounds that decay

faster that wavelets approximation by adapting the representation to the geometry of the
image. However the finite element approach does not yet comes with algorithms that can
handle complex images.

3.2 Curvelets

The curvelets basis of Candès and Donoho [?] brings a mathematical and algorithmic
solution to the problem of approximating geometric images whose contours are C2. Unlike
wavelets, curvelets are functions whose support are elongated like the anisotropic triangles
of figure 9 (b). A curvelet is a function ψθ,j,u(x) whose support is centered around u, with
length proportional to 2j , a width proportional to 22j and an orientation θ. Figure 12
shows some examples of curvelets.

CandŔs et Donoho have build a Riesz basis of L2([0, 1]2) using curvelets. If f is C2

with C2 contours, they have shown that a thresholding of the curvelets coefficients defines
an approximation fM that satisfies

||f − fM ||2 = O(M−2(logM)3).

Up to a log(M) factor, one recovers the result (5) obtained using an optimal triangulation,
but this time with an algorithmic approach. The beauty of this result comes from its
simplicity. Unlike an optimal triangulation that has to adapt the aspect of its elements,
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Figure 9: Approximation with finite elements on a triangulation for a function without and
with additional blurring.
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Figure 10: Finite elements for the approximation around a singularity curve.
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Figure 11: Aspect ratio of triangles for the approximation of a blurred contour.

the curvelets basis is a priori fixed and the thresholding of the curvelets coefficients is
enough to adapt the approximation to the geometry of the image. This simplicity however
has a downside. The cuvelets approximation is only optimal for piecewise Cα functions
with α = 2, but it is no more optimal for α > 2 or for less regular functions such as bounded
variation functions. For now, it does not exist orthogonal basis of curvelets, which makes
them less efficient than wavelet to compress natural images.

3.3 Adaptative Representations

Many adaptive geometric representations have been proposed recently with good results in
image processing. Instead of decomposing an image in a fixed a priori basis, an adaptive
algorithm modifies the representation using a geometry computed from the image. The
wedgelets of Donoho [?] segments the support of the image in dyadic adapted squares. On
each square, the image is approximated with a constant value on each side of a straight
edge. The direction of this estimated edge is optimized using the local content of the
image. This approach is generalized by Shukla et al. [?] that replace constant values by
polynomials and the straight edges by polynomial curves. This kind of approach is efficient
as long as the geometry of the image is not too complex and edges are not blurred.

To enhance wavelets representations, Wakin et al. [?] and Dragotti et Vetterli [?] have
proposed to approximate the wavelet coefficients using adaptive vector quantization tech-
niques. Following the work of Matei and Cohen [?] on adaptive lifting schemes, new lifting
algorithms have also been proposed to predict wavelet coefficients from their neighbors.
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Figure 12: Examples of curvelets.

These works are mostly algorithmic and do not provide mathematical bounds. They use
the fact that wavelet coefficients inherit some regularity from the image geometric regular-
ity. Similar ideas are at the core of the bandlets construction.

4 Orthogonal Bandlets

A sparse representation takes advantage of some kind of regularity of the function to
approximate. Wavelet bases exploit the isotropic regularity on square domains of varying
sizes. Geometric regularity along edges in images is an anisotropic regularity. Although
the image may be discontinuous across a contour, the image can be differentiable in a
direction parallel to the tangent of the edge curve. The bandlet transform exploits such an
anisotropic regularity by constructing orthogonal vectors that are elongated in the direction
where the function has a maximum of regularity.

The first bandlet bases constructed by Erwan Le Pennec [?, ?] have bring optimal
approximation results for geometrically regular functions. Later works have enriched this
construction thanks to the use of a multiscale geometry defined over the coefficients of a
wavelet basis [?, ?]. These multiscale bandlet bases are described in section 4.3.

4.1 Regularity of Wavelet Coefficients

The wavelet transform can be factored in a product of elementary orthogonal operators,
obtained by dilating “quadrature mirror filters”. Orthogonal bandlet bases are obtained
from a wavelet basis by using an additional cascade of orthogonal operators parameterized
by the local geometry of the image.

The wavelet representation is both sparse and structured. For a geometrically regular
image, figure 13 shows that for each scale the large coefficients are localized near the
singularity curves. If K is the size of the support of the wavelets functions ψk, the large
coefficients are localized in tubes of width K, as shown on figure 13. Those coefficients
are compressed using an orthogonal “bandletization” operator that exploits the underlying
geometric regularity.

Wavelet coefficients of f can be written as uniform samples from the function f regu-
larized with a wavelet kernel ψk

j whose support has a width of 2j :

〈f, ψk
jn〉 = fj(2

jn) where fj(x)
def.

= f ∗ ψk
j (x) and ψk

j (x) =
1

2j
ψk

(−x
2j

)
.

The convolution guarantees that fj is at least as regular as ψk
j . The function fj also inherits

the regularity of f in the direction parallel to the edge. Figure 13 shows an example of a
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Figure 13: Wavelet coefficients at a given scale 2j are uniformly sampled from a regularized
function f ∗ ψk

j (x) shown on the right.

set of coefficients near an edge. In order to derive an adapted approximation of the wavelet
coefficients, we now study the regularity of fj by bounding its derivatives.

In the following we study the regularity of fj on some small square S ⊂ [0, 1]2 of width
λ. If f is a Cα function outside a Cα edge curve parameterized horizontally by x2 = γ(x1),
then one can control the derivatives of fj along a vector field (1, γ̃′(x1)) close to (1, γ′(x1)).
The same construction applies for vertically parameterized geometries. Figure 14 (a) shows
an example of such an approximate flow γ̃′. This flow defines a warping operator w

(x̃1, x̃2) = w(x1, x2)
def.

= (x1, x2 − γ̃(x1)), where γ̃(x1) =

∫ x1

0
γ̃′(t)dt. (6)

As shown on figure 14 (b,c), this warping modifies the sampling location and aligns the
geometrical flow with the horizontal direction. The regularity of fj along the flow can

be formulated using the derivatives of the warped function fjW(x̃)
def.

= fj(w
−1(x̃)) in the

horizontal direction. Indeed, if the approximated flow γ̃′ is close from the original flow γ′

∀ (x1, x2) ∈ S, |γ′(x1) − γ̃′(x1)| ≤ (1 + ||γ||Cα)λα−1, (7)

then the resulting warped wavelet coefficients fjW(x̃)
def.

= fj(w
−1(x̃)) satisfy

∀ i1, i2 ≤ α, ∀ x̃,
∣∣∣∣∣
∂i1+i2fjW

∂x̃i1
1 ∂x̃

i2
2

(x̃)

∣∣∣∣∣ ≤ C 2j (1 + ||γ||αCα) 2−j(i1/α−i2). (8)

where C is a constant that depends only on f . The bound of equation (8) states the
anisotropic regularity of a set of wavelet coefficients.

4.2 Polynomial Approximation of Wavelets Coefficients

In order to capture the regularity stated by equation (8), one can use a piecewise polynomial
approximation f̃Mj

of fj defined on Mj small bands of length λ and width µ that follow
locally the approximated flow γ̃′. Figure 15 (c) shows an example of layout of bands that
follows the geometry of the image. Note that at a distance farther than K from any edge
curve, one does not need to define bands since the wavelet coefficients are close to zero and
for small scale 2j one can approximate these coefficients 〈f, ψk

jn〉 by f̃Mj
(2jn) = 0.

A local taylor approximation of fj in each band of length λ and width µ proves that
the error of a polynomial approximation in each band can be made as low as

|fj(x) − f̃Mj
(x)| ≤ C

∣∣∣∣
∣∣∣∣
∂αfjW

∂x̃α
1

∣∣∣∣
∣∣∣∣
∞

λα + C

∣∣∣∣
∣∣∣∣
∂αfjW

∂x̃α
2

∣∣∣∣
∣∣∣∣
∞

µα, (9)
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(b)(a) (c)

Figure 14: (a) Wavelets coefficients and geometric flow γ̃′. (b) Sampling position and
geometric flow. (c) Warped sampling position and warped constant flow (horizontal).

(a) (b)
(c) (d)

Figure 15: (a) Geometric images. (b) Wavelets coefficients. (c) Layout of bands of length
λ and width µ. (d) Layout of bands inside a dyadic subdivision (bandlet approximation).

where C is a constant that depends only on f .
In order to optimally capture the anisotropy of fj , one needs to scale the length λ and

the width µ of these bands according to
∣∣∣∣
∣∣∣∣
∂αfjW

∂x̃α
1

∣∣∣∣
∣∣∣∣
∞

λα =

∣∣∣∣
∣∣∣∣
∂αfjW

∂x̃α
2

∣∣∣∣
∣∣∣∣
∞

µα =⇒ 2−j λα = 2−jα µα. (10)

This optimal aspect ratio of the band is exactly the one derived in section 3.1 for the finite
element approximation of contours, but this time for a geometric image smoothed by a
kernel ψj of width 2j . As detailed in [?], the approximation error of such a polynomial
approximation satisfies ||fj − fMj

|| = O(M−α
j ). To approximate the original image f , its

wavelets coefficients 〈f, ψk
jn〉 are approximated using fMj

for each scale 2j . The resulting

approximated function f̃M can be shown to satisfies ||f − f̃M || = O(logα(M)M−α), where
M is the total number of bands used to define the polynomial approximations for each
relevant scale 2j .

4.3 Orthogonal Bandlets Approximation

The polynomial approximation scheme presented in the previous section is able to recover,
up to a log(M) factor, the optimal approximation rate one would have for an uniformly
regular image. It is very similar to the finite elements scheme presented in section 3.1,
except that the approximation is now defined over the wavelet domain. This scheme does
not provide an algorithm to compute the approximation, which is needed for applications.
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The bandlet approximation scheme [?] solves this issue by computing the polynomial
approximation by a thresholding in an orthogonal Alpert basis [?]. The Alpert transform
can be thought as a polynomial wavelet transform adapted to an irregular sampling such
as the one depicted on figure 14 (c). It is obtained by orthogonalizing multiresolution
space of polynomials defined on the irregular sampling grid. The resulting vectors are not
samples of a regular function but have vanishing moments on the sampling grid, which is the
relevant property to approximate the warped wavelet coefficients. A vector corresponding
to a sampling of a function with an anisotropic regularity is well approximated with a
few vectors from the Alpert basis. This bandletization of wavelet coefficients using an
Alpert transform defines a set of bandlet coefficients. These coefficients can be written
as inner products 〈f, bkj,ℓ,n〉 of the original image f with bandlet functions that are linear
combinations of wavelet functions

bkj,ℓ,n(x) =
∑

p

aℓ,n[p]ψk
j,p(x) .

The aℓ,n[p] are the coefficient of the Alpert transform, which depends on the local geometric
flow γ̃′ since this flow defines the warped sampling locations depicted on figure 14 (c).
The bandlet function is defined at some location n and scale 2j . The Alpert transform
introduces a new scale factor 2ℓ > 2j which defines the elongation of the bandlet function.
The bandlet bj,ℓ,n(x) inherits the regularity of the wavelets ψk

j,p(x).

Approximated Segmented Flow. The family of orthogonal bandlets depends on the
local adapted flow γ̃′ defined over small squares S ⊂ [0, 1]2 for each scale 2j and orientation
k. This parallel flow is characterized by an integral curve γ̃, already defined in equation
(6), that one can see in dashed plot on the left of figure 14. As stated by equation (7),
this integral curve does not need to be strictly parallel to the contour. This is due to the
bidimensional regularization introduced by the smoothing of fj = f ∗ ψk

j with the wavelet
ψk

j . Locally, it is thus enough to use a polynomial approximation γ̃′ of γ′ that will ensure
that condition (7) is satisfied.

Regular square 

Square with a
contour.

Small square with
a contour.

Square with a
corner.

(a) (b)

b

Figure 16: (a): Wavelet coefficients of the image. (b): Example of segmentation of on scale
of the wavelet transform in dyadic squares of varying sizes. An adapted flow γ̃′ is computed
over each square.

In order to approximate the geometry by a polynomial flow, one needs to segment the
set of wavelet coefficients in squares S. For each scale 2j and orientation k of the wavelet
transform, this segmentation is obtained using a recursive subdivision in dyadic squares of
various sizes, as shown on figure 16. Such a subdivision defines a quadtree that specifies if
a square S should be further subdivided in four sub-squares of size twice smaller. If there
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is no specific direction of regularity inside a square, which is the case either in uniformly
regular regions or at the vicinity of edge junctions, then there is no geometric directional
regularity to exploit. It is thus not necessary to modify the wavelet basis. In this case, no
flow is defined, and it corresponds to the “regular” and “corner” squares of figure 16. One
only needs to compute the adapted flow γ̃′ in “edge” squares in order to obtain a bandlet
basis that exploits the anisotropic regularity of the image. In the following we denote by
Γk

j the segmentation together with the adapted flows γ̃′ chosen in each square S of the
segmentation.

A different geometry Γk
j can thus be chosen for each scale 2j and orientation k in order to

adapt to the evolution of the geometric structures through scales. The set of all geometries
Γ = {Γk

j }k
j consists of all the quadtree segmentation and the adapted flow inside all the

squares of the segmentation. Each potential geometry Γ corresponds to a bandlet basis
B(Γ) and the set of bandlet bases D = {B(Γ)}Γ defines the bandlet dictionary. In order to
approximate a function up to some predefined precision T on the bandlet coefficients, this
dictionary can be kept of size polynomial in T−1. We now explain how to compute a basis
B(Γ⋆) adapted to some function f with a fast algorithm.

Best Bandlet Approximation. A bandlet basis B(Γ) depends on the geometry Γ of
the local flows defined by a dyadic segmentation of the wavelet coefficients and the choice
of a polynomial flow inside each square (or no flow in regular and corner squares). The goal
being to optimize the approximation of f , the best geometry Γ⋆ is the one that produces
the approximation fM of f with the lowest error for a fixed number M of parameters
needed to describe fM .

Let Mg be the number of parameters needed to specify the geometry Γ of the flow.
This includes the parameters of the quadtree for each scale 2j and orientation k and the
parameters of the polynomial flow γ̃′ for each square. This geometry defines a bandlet basis
B(Γ) = {bν}ν of L2([0, 1]2), where ν = (k, j, ℓ, n) indexes each bandlet function. Let Mb be
the number of bandlet satisfying |〈f, bkℓ,j,n〉| > T for some threshold T . The approximation

fM =
∑

|〈f, bν〉|>T

〈f, bν〉 bν

is defined by M = Mb +Mg parameters. Among all geometries and thus all bandlet bases,
one needs to find a bandlet basis that minimizes the error ||f − fM ||2 for a fixed number
M = Mb +Mg of parameters. This problem of “best orthogonal basis search” can be solved
by minimizing the Lagrangian:

L(B(Γ), f, T ) = ||f − fM ||2 +M T 2 =
∑

|〈f, bν〉|≤T

|〈f, bν〉|2 +M T 2. (11)

An approximation theorem [?, ?] shows that if f is uniformly Cα outside a set of curves
that are themselves Cα then the best bandlet basis B(Γ⋆) that minimizes the Lagrangian
(11) defines an approximation fM that satisfies

||f − fM ||2 = O(M−α). (12)

This result is still valid if f is regularized by a smoothing kernel that models the effects of
diffraction during image acquisition. One can notice that the bandlet approximation does
not require to know the value of α as long as α < p, where p is the number of vanishing
moments of the wavelet and Alpert bases. This adaptivity is the key to the efficiency of
bandlet for natural images.
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A best basis search algorithm allows to compute the best bandlet basis B(Γ⋆) adapted
to an image f in O(N T (p−1)2) operations where N is the number of pixels in the image
[?, ?]. This algorithm relies on the embedded structure of the dyadic segmentation and on
the fast Alpert transform algorithm.

4.4 Applications of Orthogonal Bandlets

Compression of images and surfaces. Image compression in a bandlet basis B(Γ) =
{bν}ν is a straightforward application of bandlet approximation. Similarly to the com-
pression in wavelet bases, it requires to quantize uniformly the bandlet coefficients with a
quantization step T

fR
def.

=
∑

ν

QT (〈f, bν〉) bν , (13)

where R is the number of bits needed to specify fR and QT is a uniform quantizer defined
by

QT (x) = q T, if (q − 1/2)T ≤ x ≤ (q + 1/2)T. (14)

The distortion of this coding scheme is Db(R) = ||f−fR||2 and for a given bit budget R one
thus needs to find the best bandlet basis B(Γ⋆) that give the lowest distortion. Similarly to
the bandlet optimization for function approximation, this can be achieved by minimizing
the lagragian L of equation (11). Using the approximation result (12) one can show [?, ?]
that if f is Cα outside a set of Cα curves, then the distortion in the adapted bandlet basis
B(Γ⋆) satisfies

Db(R) = ||f − fR||2 = O(R−α | log(R)|α) .

In a wavelet basis, the approximation (4) leads to a coding error that decays asymptotically
much slower: Dw(R) = O(R−1 | log(R)|), see [?].

Figure 17 compares the compressed image fR obtained with an average of R = 0.2 bit
per pixel for a coding in a wavelet and a bandlet basis [?]. The distortion is lower in a
bandlet basis than in a wavelet basis, which can be seen on the better reconstruction of the
geometrical structures of the image. For the compression of 3D surfaces used in computer
graphics, surfaces are locally parameterized on a 2D plane [?], and classical schemes from
image processing can be used to compress them. Bandlet bases [?] adapt themselves to
the geometry of the surface to compress, which typically exhibits both sharp features
and smoothed edges. Figure 18 compares the reconstruction of surfaces in wavelets and
in bandlets and shows the corresponding enhancement of the PSNR as a function of the
number of bits R. Note that the error for surfaces is measured with the Hausdorff distance,
which is the relevant distortion for computer graphics applications.

Image denoising. The enhancement of the approximation performances using bandlet
bases has also applications in image denoising [?]. In denoising applications, one seeks to
recover f from an observation Y = f +W where W is a gaussian white noise of variance
σ. A thresholding algorithm in a bandlet basis B(Γ) = {bν}ν defines an estimator of f

f̃
def.

=
∑

ν

ST (〈Y, bν〉)bν

where the threshold is set to T = λσ and where the thresholding is defined as

ST (x) =

{
x if |x| < T,
0 otherwise.
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Original Wavelets at 0.2bppOriginal (zoom) Bandlets at 0.2bpp

Figure 17: Comparison of the compression using wavelets and bandlets at 0.2 bits/pixel.

Donoho and Johnstone [?] proved that λ =
√

2 loge(N), where N is the number of pixels,
is asymptotically optimal when N increases.

This estimator can be computed in a best bandlet basis B(Γ⋆) computed using the
minimization of a Lagragian similar to (11) but with a multiplier T that is tuned to reach
the optimal risk decay. If the function f is Cα outside a set of Cα edges, then one can
prove [?] that this estimator in the best basis B(Γ⋆) has an average risk that satisfies

E(||f − f̃ ||2) = O(| log(σ)|
1

2α+1 σ
2α

2α+1 ). (15)

This decay of the risk is asymptotically optimal up to a log(σ) factor for the class of
geometrically regular functions. This best bandlet basis estimator corresponds to a model
selection process where the model is defined by an adapted geometry.

Image restoration. Inverse problem are others applications where geometry plays an
important role. The inversion of the tomography operator R is an important problem in
medical imaging. The measuring process can be modeled as

Y = Rf +W

where R is the Radon transform and W is an additional gaussian white noise of variance
σ2. The radon transform is defined as

(Rf)(t, θ) =

∫
f(x) δ(x1 cos θ + x2 sin θ − t) dx.

so that the value (Rf)(t, θ) sums the contributions of the original function f along lines
parameterized by its slope θ and abscissa t. The inverse operator R−1 is unbounded and
makes the inverse problem of recovering f ill-posed. A direct inversion of the Radon
operator R−1Y = f + R−1W considerably amplifies the noise R−1W . A thresholding
algorithm in a best bandlet basis B(Γ⋆) = {bν}ν defines an estimator of f

f̃
def.

=
∑

ν

STν
(〈R−1Y, bν〉)bν .
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Original model Original (zoom) Wavelets at 0.2bit/vert. Bandlets at 0.2bit/vert.PSNR for Hausdorff distance
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Figure 18: Comparison on two examples of the Hausdorff distortion for surfaces compres-
sion using wavelets and bandlets.

For the tomography inversion, the thresholds Tν depends upon the scales 2j in order to
match the amplification of noise R−1W . For an index ν = (j, k, n, ℓ), the threshold is set
to Tν

def.

= σ2−j/2. If f is Cα outside a set of Cα curves, one can prove that the average
risk E(||f − f̃ ||2) of this estimator has the asymptotic decay (15) which is optimal up to a
| log(σ)| factor [?].

5 Grouping Bandlets

The geometry Γ of orthogonal bandlets is described by a locally parallel flow γ̃′ over
each square of a dyadic segmentation. Such a geometry is suitable for the approximation
of geometrically regular images, but lacks flexibility to represent the complex geometry
of turbulent textures. Junctions are not explicitly modeled and require a fine recursive
segmentation to be isolated from the remaining contours. Furthermore, the segmentation
in small square areas forbid to take advantage of the long range regularity of fine elongated
structures such as the hair texture or the wood patterns in figure 19.

Figure 19: Example of textures with complex geometric pattern with long range regularity.

Grouplets [?] are constructed using a geometry inspired from the Gestalt theory [?].
This theory states a set of grouping laws that are supposed to be applied recursively during
the human perception of a natural scene. Similarly, a grouplet transform uses a multiscale
association field in order to group together coefficients in the direction specified by the flow.
These recursive groupings allow to take into account junctions and long range regularities.

Similarly to the orthogonal bandlets introduced in section 4.3, this grouplet trans-
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form can be used to define grouping bandlets. The grouplet scheme is applied over a set
of wavelet coefficients and performs a bandletization operation similar to the directional
Alpert transform, but this time along an association field and not a locally parallel geo-
metric flow. This process defines grouping bandlet functions that are combinations of the
wavelet functions located along the association field using a multiscale transformation sim-
ilar to the Haar transform. This scheme can be orthogonal if the critical sub-sampling is
performed during the wavelet and the grouplet transforms or it can be translation-invariant
if the transforms are not sub-sampled.

5.1 Orthogonal Grouplets

Haar transform. At the first scale 2ℓ = 1, the Haar transform of a signal a[n] groups
each odd coefficient a[2n+ 1] with the even neighboring coefficient a[2n] and associates to
this pair a mean and a difference:

M =
a[2n] + a[2n+ 1]

2
, D =

a[2n] − a[2n+ 1]√
2

.

An “in place” transform stores the mean by replacing the even coefficients s[2n] = M and
the difference by replacing the odd coefficients s[2n+ 1] = D. This orthogonal elementary
operator is applied in a hierarchical manner on the mean coefficients by doubling the scale
2ℓ at each iteration. At a scale 2ℓ, the mean already computed in positions a[2ℓ2n] and
a[2ℓ(2n+ 1)] are grouped together in order to compute new means and details:

M =
a[2ℓ2n] + a[2ℓ(2n+ 1)]

2
, D = (a[2ℓ2n] − a[2ℓ(2n+ 1)])

√
2(ℓ−1),

and these values are stored in place: s[2ℓ2n] = M and s[2ℓ(2n + 1)] = D. At this stage,
M is equal to the mean of the signal values over the inveral [2ℓ+1n, 2ℓ+1n + 2ℓ+1[ and
D is proportional to the difference of the means on [2ℓ+1n, 2ℓ+1n + 2ℓ[ and on [2ℓ+1n +
2ℓ, 2ℓ+1n+ 2ℓ+1[.

Bandletization with a multiscale grouping. A bandletization by grouping applies
this Haar transform over pairs of points that are neighbors according to some association
field. Although this field could link arbitrary computed means, this field should group
together points that have similar neighborhoods in order to exploit the geometry of the
signal.

For a multidimensional signal (image or video), the sampling grid G0 is divided in two
pre-defined sub-grids that we call the “even sub-grid” G1,e and the “odd sub-grid” G1,o, in
analogy to the one dimensional case. A weight s[n] is initially set to 1 for points n ∈ G0.
This weight represents the number of coefficients aggregated by the means computed during
the computation. Each point mo ∈ G1,o of the odd grid is associated to a point me ∈ G1,e

of the even grid. This association is optimized so that the value of a[n] for n in the vicinity
of me are as close as possible to the value s[p] for p in the vicinity of mo. The vector
A1[mo] = me −mo is the association field that dictate the grouping between each point of
the odd grid and some point in the even grid. In practice, the associated point me can be
computed with a best fit of radius P :

me = argmin
m∈G1,e

∑

|n|<P

∣∣∣a[m− n] − a[mo − n]
∣∣∣
2
. (16)
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This kind of “block matching” association is used in video processing to compute the
movement of structures in movies. This is the so-called optical flow, see figure 2 (a,b), but
one could use other schemes to optimize the association field.

Like in a Haar transform, a weighted mean and a weighted difference are computed
between the values of the signal that are grouped together:

M =
s[me] a[me] + s[mo] a[mo]

s[me] + s[mo]
(17)

D = (a[me] − a[mo])

√
s[me]s[mo]√
s[me] + s[mo]

(18)

The “in place” transform stores the differences on the odd grid and the means on the even
grid, with a weight that sums the weight of the to associated points:

a[mo] = D, a[me] = M with s[me] = s[me] + s[mo]. (19)

One can check [?] that the matrix that transforms (a[me], a[m0]) is orthogonal and the
difference coefficient a[m0] = D is the inner product of the original signal with an unit-
norm vector having one vanishing moment and a support equal to s[m0]. As for the Haar
transform, this process is repeated iteratively by doubling the scale at each step.

At some grouplet scale 2ℓ, a mean signal a[m] has been computed during the previous
iterations on an even grid Gℓ,e. This grid is sub-divided in an “even sub-grid ” Gℓ+1,e and
an “odd sub-grid” Gℓ+1,o. Each point mo ∈ Gℓ+1,o of the odd grid is associated to a point
me ∈ Gℓ+1,e of the even grid, which is optimized so that the values a[n] near n = me are
close to the values near n = mo. This association field is denoted as Aℓ[mo] = me−mo. One
can use for instance a block matching similar to equation (16) to compute this association
between mo and me. One then computes new means and differences using equations (17)
and (18). Those values are respectively stored in the even sub-grid Gℓ+1,e and the odd sub-
grid Gℓ+1,o, together with an update of the weights using equation (19). This cascade of
orthogonal operators decomposes the original signal in an orthogonal basis called grouplet
basis that is adapted to the signal geometry. Figure 22 (c) shows examples of grouplet
vectors which have 1 vanishing moments.

Figure 20: Column embedded grids subsample the columns of Gℓ−1 to define the grid
Gℓ (empty circles) and the complementary grid G̃ℓ (filled circles). The association field
groupings are illustrated by arrows.

The splitting Gℓ,e = Gℓ+1,e∪Gℓ+1,o can be performed freely and one can devise a scheme
for any targeted application. Figure 20 shows an example of horizontal associations where
the “even sub-grid” G1,e is the set of even columns (black dots) and the “odd sub-grid” G1,o

is the set of odd columns (white circles). This kind of splitting scheme is relevant for 2D
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signals where the geometric structures propagate in the horizontal direction. This is indeed
the case for seismic imaging, as one can see on the association fields computer in figure
21. For other applications, one can design a more isotropic splitting scheme that does not
favor any orientation.

Figure 21: Grouping of an association field at scales 21, 22 and 23 computed by block
matching for a seismic image shown in transparency.

On figure 22, one can see the grouplet coefficients obtained by transforming the image
according to the associations fields displayed on figure 21. The detail coefficients require
the same amount of storage as the original image, but for a better understanding of their
structure, figure 22 (b) rearranges them from the coarse scale 2ℓ = 2 to fine scales from left
to right. One can see that most of these transformed coefficients are gray (near zero) which
was not the case of the original image. It means that the transform has been able to exploit
the anisotropic regularity of the seismic image in order to reach a sparser representation
than the pixel values. It is however unclear how to adjust the complexity of the association
fields so that it can be coded with few bits to reach good compression results with grouplets.

(a) (b) (c)

Figure 22: (a): Original seismic image. (b): Orthogonal grouplet coefficients over 6 scales,
displayed with the same dynamic range as in (a). (c) Example of grouplet vectors.

A denoising of the image can be performed by using the thresholding technic defined in
(13). Grouplet coefficients below the noise level are thresholded to zero. The association
fields {Aℓ}ℓ, which define the geometry of the transform, are computed over the noisy
image. Thanks to the block matching procedure of equation (16) the estimation can be
made robust by choosing a radius P large enough. This thresholding denoising is equivalent
to performing automatically an adaptive averaging of the signal along the directions of
regularity estimated by the association fields. Figure 23 gives an example from [?] for
denoising a seismic image.
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(a) (c) (e)

(b) (d) (f)

Figure 23: (a): Original image. (b): Noisy seismic image (PSNR=26dB). (c): Orthog-
onal grouplet coefficients. (d): Thresholded grouplet coefficients. (e): Image reconstructed
from thresholded orthogonal coefficients (PSNR=27.3dB). (f): Image reconstructed from
thresholded tight frame coefficients (PSNR=29.5dB).

5.2 Translation Invariant Grouplet Tight Frame

For denoising and computer graphics applications, the strict orthogonality of the grouplet
transform is a source of inefficiencies since it forbids a translation invariant processing of
the image. In order to solve this issue, one should remove the sub-sampling of the Haar
transform in order to have a stable redundant transform. The same ideas carry over the
grouplet setting by replacing the splitting of the grids by a partial ordering m ≺ m′ of the
points m,m′ ∈ G0 on the original grid. This ordering can be thought as a 1D traversal
of the grid points that ensures that a point m satisfying m ≺ m′ is processed before m′

during the grouplet computations.
For each scale 2ℓ, the current mean values a[m] is defined on the whole grid G0. Each

grid point m ∈ G0 is associated to a point m̃ ∈ G0 located before: m̃ ≺ m. The association
field is defined Aℓ[m] = m−m̃ and the optimization of m̃ is carried using a block matching
similar to (16) under the restriction that m̃ ≺ m. We further require that |m − m̃| ≈ 2ℓ

in order to force the averaging of the grouping process to be performed over an increasing
distance. This grouplet transform is not computed “in place” since it increases the number
of coefficients. The grouped points (m, m̃) are processed in order to update “in place” the
weight s and mean a values and to extract a new detail coefficient dℓ[m] that are stored in
a different array.

dℓ[m] = (a[m] − a[m̃])

√
s[m]s[m̃]√
s[m] + s[m̃]

a[m̃] =
s[m] a[m] + s[m̃] a[m̃]

s[m] + s[m̃]

s[m̃] = s[m] + s[m̃].

Once the process has been performed over L grouplet scales, the recursion is stopped and
the remaining coarse scale layer is kept with a renormalization aL[m] = a[m]

√
s[m]s[m].
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The translation invariant grouplet transform maps the original signal a[m] to the set of
coefficients {dℓ, aL}m∈G0

ℓ≤L . The overall process is stable and one can prove [?] that is satisfies
an energy conservation:

||a||2 =
∑

m∈G0,ℓ≤L

1

2ℓ
|dℓ[m]|2 +

∑

m∈G0

1

2L
|aL[m]|2. (20)

This means that {dℓ[m], aL[m]}1≤ℓ≤L
m∈G0

can be interpreted as the signal coefficients in a
grouplet tight frame. A thresholding can be applied over these tight frame coefficients
in order to perform denoising. Figure 23 shows that the translation invariance brings a
significant improvement with respect to the original orthogonal grouplet denoising and
improves the PSNR by 2.2dB.

5.3 From Grouplets to Bandlets

A grouping bandlet transform is obtained by applying the grouplet bandletization process
to the set of coefficient of a multiscale representation. One applies the orthogonal grouplet
transform over each scale 2j and orientation k of an orthogonal wavelet transform in order
to get the decomposition of the image on an orthogonal basis B(Γ) = {bν}ν of grouping
bandlets. The index ν = (j, k, ℓ,m) refers to the wavelet scale 2j , wavelet orientation k,
grouplet scale 2ℓ and grouplet position m. Similarly to the original orthogonal bandlet
exposed in section 4.3, the cascade of the orthogonal wavelet transform and the orthogonal
grouplet transform defines an orthogonal grouping bandlet transform. The geometry Γ =
{Aj,k

ℓ }j,k
ℓ is now composed of the association fields Aj,k

ℓ computing during the grouplet
transforms for each wavelet scale 2j , orientation k and grouplet scale 2ℓ.

Another option is to use a translation invariant wavelet tight frame and to apply the
translation invariant grouplet tight frame over each scale and orientation. Similarly to the
orthogonal bandlet bases, the set of association fields is denoted as Γ. Those geometries
parameterizes the grouping bandlet transform whose coefficients are the inner product with
bandlet function {bν}ν . The cascade of the wavelet and grouplet tight frames defines a
grouping bandlet tight frame of L2([0, 1]2). Figure 24 shows an example of such a decompo-
sition, where the association fields are displayed for various wavelets orientation and scales.
For such application of the bandlet translation invariant transform, the partial ordering
≺ is set in order to match the direction k of the wavelet (either horizontal, vertical or
diagonal), see [?].

The grouping bandlet bases are more flexible than the orthogonal bandlet bases exposed
in section 4.3. If one impose multiscale association fields that follow the integral lines of
a locally parallel vector field γ̃′, then the grouplet transform is equivalent to the original
Alpert bandletization with 1 vanishing moment. However, the bandletization with grouping
is more general since the association fields can deviate from the integral lines in order to
converge to singularity points such as junction or crossings. The following applications to
denoising and synthesis show that this flexibility is indeed crucial when one is not concerned
with image compression.

5.4 Applications of Grouplets

Image denoising. The flexibility of the association process of grouping bandlets makes
it efficient for the denoising of textures with a complex geometry. Figure 25 compares
the denoising obtained on the textured hat of the Lena image using a thresholding in
wavelet and grouping bandlet tight frames. The bandlet transform is able to recover the
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Scale 2

Scale 4

Figure 24: Multiscale association fields for various scale and orientation of a translation
invariant wavelet transform. Left: original image. Center: horizontal details. Right:
vertical details.

fine structures of the texture, which is not possible with wavelets that perform an isotropic
regularization not suited to the directional oscillations of the texture.

Texture synthesis. To perform texture synthesis one can exploit the sparsity of the
representation of a given input texture f in a grouping bandlet frame B(Γ) = {bΓν}ν , where
the association fields Γ are computed during the grouping bandlet transform of f . The
texture synthesis is performed by modifying the original geometry Γ into Γ̃ using some
user interaction. Figure 26, left, shows some examples of vector fields defined by the user
that can be used to construct associations fields along integral line of the flow. This new
geometry defines a new bandlet frame B(Γ̃) adapted to the texture to synthesize. Figure
26, right, shows some example synthesis f̃ where the coefficients 〈f̃ , bΓ̃ν 〉 are realizations
of a random variable whose histogram matches the one of the original texture coefficients
{〈f, bΓν 〉}ν , using an algorithm introduced in [?].

Image inpainting. In inpainting applications, one needs to fill some hole Ω ⊂ [0, 1]2

where pixels of an image f are missing. One thus looks for an image f̃ such that f̃(x) = f(x)
for x /∈ Ω and the overall function f̃ should have the same geometrical regularity as f
outside Ω. This is enforced by imposing that the bandlet image representation is sparse
which is obtained by minimizing the ℓ1 norm of bandlet coefficients. This solution is thus
calculated with the following minimization

f̃ = argming,Γ

∑

ν

|〈g, bΓν 〉| subject to ∀x /∈ Ω, f̃(x) = f(x), (21)

with some additional constrained on Γ that can be enforced by using a large enough radius
P during the block matching computation (16) of the association fields Γ. The minimization
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Original image Noisy images

Wavelet denoising Bandlet denoising

Figure 25: Comparison of the denoising with a translation invariant wavelet transform
and a translation invariant grouping bandlet transform.

of equation (21) is hard to solve and in practice, one can use an iterative thresholding
procedure similar to the morphological component analysis of Starck et al. [?]. The
resulting algorithm fills the hole with some random noise and perform iterative denoising
using a decreasing threshold T . Between each iteration, the known values f̃(x) = f(x) of
the pixels x /∈ Ω are enforced.
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Figure 26: Left: original texture, whose adapted bandlet frame is B(Γ). Center: geomet-
rical flow used to define the multiscale association field Γ̃ for the synthesis. Right: texture
synthesized as a realization of a random field over the coefficients in the bandlet frame
B(Γ̃).

Figure 27: Iteration of the inpainting process that modifies the image to obtain a sparse
representation in an adapted grouping bandlet basis.

25


