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Abstract

This paper introduces orthogonal bandelet bases to approximate images hav-
ing some geometrical regularity. These bandelet bases are computed by apply-
ing parametrized Alpert transform operators over an orthogonal wavelet basis.
These bandeletization operators depend upon a multiscale geometric flow that
is adapted to the image at each wavelet scale. This bandelet construction has a
hierarchical structure over wavelet coefficients taking advantage of existing regu-
larity among these coefficients. It is proved that C˛-images having singularities
along C˛-curves are approximated in a best orthogonal bandelet basis with an
optimal asymptotic error decay. Fast algorithms and compression applications
are described. c
 2008 Wiley Periodicals, Inc.

1 Introduction

Wavelet bases are suboptimal to approximate natural images because they can-
not take advantage of the geometrical regularity of image structures. Indeed, wavelets
have a square support and are thus not adapted to the anisotropic regularity of ge-
ometrical elements including edges. Several frames such as the curvelets of Can-
dès and Donoho [4] and the warped bandelets of Le Pennec and Mallat [14] have
been introduced to improve the approximation performances of wavelets. The im-
age is decomposed over vectors that are elongated and have vanishing moments
in various directions to take advantage of existing image regularity along specific
directions. Asymptotic theorems give better approximation error decays in these
frames compared to wavelet bases, but curvelets and warped bandelets do not seem
to clearly improve the numerical approximation capabilities of wavelets for most
natural images.

The human visual system suggests a different hierarchical approach to geomet-
ric image representation. Hubel and Wiesel [13] showed in the 1960s that the V1
visual cortex region includes simple cells that have a quasi-linear response rela-
tive to the input visual stimuli received on the retina. The response of a simple
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cell can thus be interpreted as an inner product between the retina image and an
“impulse response.” The support of these impulse responses, also called receptive
fields, are well localized in the retina image. Many experiments [7] have mea-
sured these impulse responses, which are oscillating functions similar to wavelets.
More recent physiological experiments have shown that a geometrical integration
appears through horizontal connections between these simple cells [2, 12] within
the columnar structure discovered by Hubel and Wiesel. These horizontal connec-
tions vary depending upon the image properties. Horizontal connections are also
involved in the perception of geometric illusions such as the Kaniza triangle [15].

From a mathematical point of view, the question raised by these recent physi-
ological models is to understand if one can construct hierachical image represen-
tations from wavelet coefficients to take advantage of geometric image regularity.
Defining a geometry on wavelet coefficients also offers the flexibility to let this
geometry depend upon the image scale. This can be important for textures having
multiscale structures following different geometries at each scale.

We prove that defining a hierarchical geometric representation from wavelet
coefficients has a number of mathematical and algorithmic advantages over direct
decompositions such as curvelet and warped bandelet frames. As opposed to these
previous constructions, the resulting bandelet bases are orthogonal and inherit the
regularity of the wavelets they are constructed from. The geometry can also be
adapted at each scale. These bases are derived from a wavelet basis with a cascade
of orthogonal operators that define a discrete bandeletization, which leads to a fast
algorithm.

The key property that enables us to construct a hierachical representation from
wavelet coefficients is given in Section 4, which proves that geometric regularity
is preserved over sets of orthogonal wavelet coefficients. It produces a form of re-
dundancy among wavelet coefficients. A bandeletization operator transforms these
orthogonal wavelet coefficients to take advantage of their regularity with vanishing
moments along appropriate directions. This bandeletization is implemented with
an Alpert transform along parametrized multiscale geometric flows. The succes-
sion of the orthogonal wavelet transform and adapted bandeletization is equivalent
to a decomposition in an adapted orthogonal bandelet basis.

To best approximate an image f fromM coefficients, a “best” bandelet basis is
constructed by optimizing the geometrical parameters of the bandeletization. For
images f that are C˛ besides a set of C˛-curves, the main theorem proves that an
approximation fM from M parameters in an optimized bandelet basis satisfies

kf � fMk2
L2 D O.M�˛/:

Similar to the original result proved for warped bandelets [14], this approxima-
tion scheme is adaptive with respect to the regularity exponent ˛, which is a priori
unknown. However, it introduces no boundary artifacts, and proofs are simpler be-
cause it takes advantage of the approximation properties of the underlying wavelet
basis.
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For discrete images with N pixels, this bandelet construction also defines or-
thogonal bases of R

N . Section 7 describes a fast algorithm that decomposes an
image in a best bandelet basis with O.NM �/ operations, where M is the number
of parameters used for approximation and � D .˛C1/.p�1/2. For a compression
application where the number M of parameters scales like N 
 , 
 < 1, the overall
complexity is O.N 1C
�/.

For compression applications, images are decomposed in a best bandelet basis,
and the resulting coefficients are quantized and entropy coded. For images that
are discretizations of C˛-functions outside C˛-edges, Section 8 proves that the
error introduced by this compression scheme decays like log˛.R/R�˛, where R
is the number of bits of the compressed code. The resulting distortion-rate curve
approaches the Kolmogorov asymptotic lower bound up to a logarithmic factor.

2 Wavelet Approximation of Geometrically Regular Images

Donoho [9] introduced a cartoon image model where f .x/ for x 2 Œ0; 1�2

is C˛ over regions whose boundaries are piecewise C˛-curves. To incorporate
the diffraction blur produced by the optics of a camera, this model is refined in
[14] with a convolution by an unknown regular kernel. An example is shown in
Figure 2.1(a). The following definition formalizes this model:

DEFINITION 2.1 A function f 2 L2.Œ0; 1�2/ is said to be C˛-geometrically-regular
with a scale s > 0 if f D Qf � h where Qf 2 C˛.ƒ/ for ƒ D Œ0; 1�2 � f
ig1�i�G .
The blurring kernel h is C˛, supported in Œ�s; s�2 with khkC˛ � s�.2C˛/. The edge
curves 
i are C˛ and do not intersect tangentially. For s D 0, the same definition
is valid for f D Qf .

The image Qf is typically discontinuous along the edge curves 
i that may cor-
respond to the boundaries of objects in the observed scene. The convolution with
the blurring kernel h accounts for the diffraction phenomenon. The scale parame-
ter s of h may be arbitrarily small. For an open set � in R

2, C˛.�/ is the space of
˛-Holderian functions, and kf kC˛.�/ is the usual norm on this space.

An isotropic wavelet orthogonal basis of L2.Œ0; 1�2/ is obtained by translating
and dilating three mother wavelets f H ;  V ;  Dg (for the horizontal, vertical,
and diagonal directions) [16]. We consider compactly supported wavelets having a
support in Œ�K;K�2. Let p be the number of vanishing moments of these wavelets.
Inner products in this basis of L2.Œ0; 1�2/ are written
(2.1)

f kj Œn�
defD hf; kjni with

8
<̂

:̂

k 2 fH;V;Dg; j < 0;

n D .n1; n2/ 2 f0; : : : ; 2�j � 1g2;
 kjn.x/ D 2�j k.2�jx1 � n1; 2�jx2 � n2/;
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FIGURE 2.1. (a) Example of a C˛-geometrically-regular function f .
(b) Orthogonal wavelet coefficients at different scales 2j . (c) Zoom over
wavelet coefficients located in a square including a singularity curve.

with appropriate modifications of  kjn to maintain their support in Œ0; 1�2, as ex-
plained by Cohen, Daubechies, and Vial in [6]. In the following, we shall drop the
orientation index k 2 fH;V;Dg to simplify notation.

LetM be the number of wavelet coefficients above a threshold T . TheM -term
wavelet approximation of f is

fM D
X

jfj Œn�j�T

fj Œn�  jn:

If f 2 C˛.Œ0; 1�2/ with ˛ < ˇ, then wavelet coefficients are small at fine scales,
and one can prove [18] that the approximation error satisfies

(2.2) kf � fMk2
L2 D O.M�˛/:

An image that is C˛-geometrically-regular is usually not uniformly C˛ over Œ0; 1�2

because of the discontinuities across edges. For such an image f , the approxima-
tion error kf � fMkL2 is dominated by wavelet coefficients fj Œn� corresponding
to wavelets  jn whose support intersects the singularity curves of f . As a conse-
quence the error kf � fMk2

L2 decays like M�1 as opposed to M�˛. These edge
wavelet coefficients thus need to be retransformed in order to reduce this approxi-
mation error.

3 Review of Geometric Image Approximations

For C˛-geometrically-regular functions, one wants to find an approximation
scheme with M parameters which yields an error that decays like M�˛, as in a
wavelet approximation of uniformly C˛-functions. Indeed, although these func-
tions may be discontinuous, one can take advantage of the regularity of the geom-
etry of their edge curves.
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3.1 Curvelet Frame

In order to exploit the geometric image regularity along edge curves, the image
is decomposed over functions having vanishing moments along several directions
and a support that is elongated. The curvelets of Candès and Donoho [4] are such
elongated functions that define a frame. Candès and Donoho proved that for ˛ D 2

the best M -term approximation fM of a C˛-geometrically-regular function f sat-
isfies

(3.1) kf � fMk2
L2 D O.log3.M/M�2/:

Curvelet approximations are nearly optimal for ˛ D 2, but one does not reach
the M�˛ optimal bound for ˛ > 2. For bounded variation functions, curvelet
approximations do not reach the optimal error decay ˛ D 1 obtained by wavelet
bases. This is due to the nonadaptivity of curvelet frame geometry.

To define an orthonormal basis of R
N , Do and Vetterli [8] have introduced a

modified construction with contourlets implemented with a multiscale and direc-
tional filter bank. However, contourlets do not satisfy the asymptotic decay error
property (3.1) of curvelets.

3.2 Adaptive Schemes

Instead of decomposing the image in a fixed basis or frame, adaptive schemes
adapt the approximation procedure to an estimated geometry calculated from the
image.

The wedgelet scheme of Donoho [9] divides the image support into adapted
dyadic squares as in Figure 5.2. Over each square the image is approximated with
a “wedge” that is constant on each side of a straight line that approximates the
image edge in the square. This approach is generalized by Shukla et al. [21] with
polynomials separated by polynomial curves. A classification and regression tree
(CART) [3] algorithm is used to optimize the dyadic image segmentation.

These approximation schemes can reach the same error decay (3.1) as curvelets
only if the edges are discontinuities with no blurring, and the image segmenta-
tion in dyadic squares introduces blocking artifacts in the approximation that are
discontinuities at the boundaries of the squares.

3.3 Capturing Wavelet Regularity along Edges

Wavelet approximations of geometrically regular functions are inefficient be-
cause edges create many large-amplitude wavelet coefficients. To improve wavelet
representations, several approaches have been proposed to further transform wave-
let coefficients along edges. Wakin et al. [22] and Dragotti and Vetterli [11] per-
form a vector quantization of wavelet coefficients. Following the work of Matei
and Cohen on adaptive essentially non-oscillatory (ENO) lifting [17], new lifting
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FIGURE 3.1. (a) Image segmentation in dyadic squares, inside each of
which there is a single edge. (b) Zoom on a band shown in (a) with its
geometric flow nearly parallel to the edge. (c) This band is warped into
a square where the flow becomes horizontal. A separable anisotropic
wavelet with a rectangular support in this square corresponds to a ban-
delet parallel to the flow in the original band.

schemes have also been introduced to predict wavelet coefficients from their neigh-
bors [5]. These approaches are mostly algorithmic and do not lead to approxima-
tion theory. They require detecting edge curves, which makes it difficult to obtain
optimal approximation results when the image is blurred.

3.4 Warped Bandelet Approximation

The warped bandelet transform, introduced by Le Pennec and Mallat [14], also
uses dyadic square segmentation to approximate functions. In each square the ge-
ometry is defined by finding not an edge location but an orientation along which
the image has regular variations. This orientation is defined by a vector field called
geometric flow, which is nearly parallel to the edge as shown in Figure 3.1(a). To
take advantage of the image regularity along the flow, a larger band parallel to the
flow is warped into a rectangle as in Figure 3.1(b). The image in the band is warped
into a rectangular image whose flow is either horizontal or vertical. Decompos-
ing this warped image over an anisotropic separable orthogonal wavelet basis is
equivalent to decomposing the original image in orthogonal bandelets obtained by
warping these wavelets [14].

Figure 3.1 illustrates this process. The union of these bandelet bases over all
the bands defines a bandelet frame of L2.Œ0; 1�2/. Le Pennec and Mallat proved
that decomposing a C˛-geometrically-regular image over a best bandelet frame
yields a bandelet approximation that satisfies kf � fMk2

L2 D O.M�˛/ where M
is the total number of bandelet coefficients and parameters that specifies the geo-
metric flow and segmentation. Difficulties and boundary issues appear for warped
bandelets because adjacent image squares are typically warped with different geo-
metric flows. The resulting bandelets are discontinuous at these boundaries and the
orthogonality is lost.
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This paper introduces new orthogonal bandelet bases obtained with orthogonal
operators applied directly to wavelet coefficients. A multiscale geometric flow is
defined over wavelet coefficients, which avoids all boundary issues and maintains
the orthogonality of this transform. The next section analyzes the regularity of
wavelet coefficients, which is at the core of this construction.

4 Polynomial Approximations of Wavelet Coefficients

To improve wavelet approximations, this section studies the regularity of wave-
let coefficients located along edges. This regularity suggests approximating these
wavelet coefficients with piecewise polynomials in the wavelet coefficient domain.
For C˛-geometrically-regular functions, the resulting approximation scheme yields
a nearly optimal approximation error and gives the basic principles of bandelet
approximations constructed over wavelet bases.

4.1 Anisotropic Regularity of Wavelets Coefficients

Orthogonal wavelet coefficients of f are calculated through convolutions with
scaled wavelets

hf; jni D fj .2
jn/

where fj .x/
defD f �  j .x/ and  j .x/ D 1

2j
 .�2�jx/:

The convolution guarantees that fj is at least as regular as j . The function fj also
inherits the regularity of f . In the following, we suppose that the wavelet  is C˛.

If f is C˛-geometrically-regular with a scale s in the sense of Definition 2.1,
then it can be written f D ef � h, where Qf is piecewise C˛ with singularities
along piecewise C˛-curves and where h is a regularization kernel that is supported
in Œ�s; s�. As a consequence,

(4.1) fj D Qf � h �  j D 2j Qf � hj
where hj D 2�jh �  j is a new regularization kernel. Since  j has a support in
Œ�K2j ; K2j �2, the new kernel hj has a support in Œ�sj ; sj �2 with sj D s CK2j .

4.2 Local Warping

In the neighborhood of an edge, the values of the wavelet coefficients fj .x/ are
regular when moving nearly parallel to the edge. Such displacement directions are
specified by a geometric flow that is a vector field. Following the original bandelet
approach [14], the geometric regularity of fj is characterized after a warping that
transforms the geometric flow in a horizontal or vertical vector field.

Locally an edge can be parametrized horizontally or vertically. The geometric
flow is a vector field that is also parametrized horizontally or vertically and which
is constant in the other direction. Figure 4.1(c) shows an example in a square S �
Œ0; 1�2 of length � > 0, where the edge curve is parametrized horizontally by x2 D
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x2

(a)

Ksj

w

γ

˜

˜

˜
x2

x1

x1

S

S

(b) (c)

FIGURE 4.1. (a) Original image f . (b) Wavelet coefficients of f .
(c) Zoom on wavelet coefficients in a square S including an edge. A geo-
metric flow is a vector field nearly parallel to the edge curve. The warp-
ing w aligns the flow horizontally or vertically.


.x1/. For .x1; x2/ 2 S the coordinates of a flow vector can be written .1; Q
 0.x1//,
where Q
 0 specifies the flow direction. If the edge is parametrized vertically, then the
geometric flow is parallel vertically and hence can be locally written . Q
 0.x2/; 1/.

Let us consider the warping operator

(4.2) . Qx1; Qx2/ D w.x1; x2/
defD .x1; x2 � Q
.x1//;

where Q
 0 is the derivative of Q
 . The curve x2 D Q
.x1/ is an integral curve of the

flow. This warping transforms the geometric flow in a horizontal flow as illustrated

in Figure 4.1(c). If the flow direction Q
 0 is sufficiently close to the edge direction


 0, then Proposition 4.1 gives upper bounds on the partial derivatives of the warped

wavelet coefficients fjW. Qx/ defD fj .w
�1. Qx//. A similar result is proved in [14].

PROPOSITION 4.1 Let f be a C˛-geometrically-regular function with a scale s.
Suppose that f has only one singularity curve parametrized horizontally by x2 D

.x1/. Let sj D s C K2j . There exists a constant C > 0 such that for any 2j if,

over a square S of length � � s
1=˛
j a polynomial flow direction 
 0.x/ satisfies

(4.3) 8.x1; x2/ 2 S D S1 � S2; j
 0.x1/ � Q
 0.x1/j � .1C k
kC˛ /�˛�1;

then the resulting warped wavelet coefficients fjW. Qx/ defD fj .w
�1. Qx// satisfy

(4.4) 8i1 � ˛; 8i2 � ˇ; 8 Qx 2 w.S/;
ˇ̌
ˇ̌
ˇ
@i1Ci2fjW

@x
i1
1 @x

i2
2

. Qx/
ˇ̌
ˇ̌
ˇ � C2j .1C k
k˛C˛ /s

�i1=˛�i2
j :

PROOF: Condition (4.3) implies that there exists an integral curve Q
 of the
flow Q
 0 that satisfies k
 � Q
kL1 � .1C k
kC˛ /�˛.
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The derivatives of 
 � Q
 are first bounded using condition (4.3). Let 
1 be a
Taylor expansion of degree ˛ � 1 of 
 inside S1. It satisfies k
 .i/ � 


.i/
1 kL1 �

k
kC˛�˛�i . The derivatives of 
 � Q
 can be bounded using

k
 .i/ � Q
 .i/kL1 � k
 .i/ � 
 .i/1 kL1 C k
 .i/1 � Q
 .i/kL1 :

The second term is bounded using an expansion in f�mg˛�1
mD0, the orthogonal family

of Lagrange polynomials on S1,



.i/
1 � Q
 .i/ D

˛�1X

mD0

h
1 � Q
; �mi� .i/m

and thus

k
 .i/1 � Q
 .i/kL1 � ˛k
1 � Q
1kL1 max
m

k�mkL1k� .i/m kL1 :

There exists a constant C� independent of � such that k�mkL1 � C��
1=2 and

k� .i/m kL1 � C��
�i�1=2. Using the fact that k
 .i/1 � Q
 .i/kL1 � k
 .i/1 �
 .i/kL1 C

k
 .i/ � Q
 .i/kL1 � .1C 2k
kC˛ /�˛�i , one has

(4.5) 8i � ˛; k
 .i/ � Q
 .i/kL1 � C1�
˛�i � C1s

1�i=˛
j

for a constant C1.
Equation (4.1) shows that fj D 2j Qf �hj where hj D 2�jh� j has a support in

Œ�sj ; sj �2. The proof of inequality (4.4) is performed by expanding the derivatives
of the convolution

fjW.x/ D 2j
Z

Qf .x1 � u1; x2 C Q
.x1/ � u2/hj .u/du

D 2j
Z

Qf .A.x; u//hj .B.x; u//du

where

A.x; u/
defD .x � u1; x2 C 
.x1 � u1/ � u2/;

B.x; u/
defD .u1; u2 C Q
.x1/ � 
.x1 � u1//:

Taking derivatives leads to

(4.6)
@i1Ci2fjW

@x
i1
1 @x

i2
2

.x/ D

2j
Z i1X

dD0

 
d

i1

!
@i1�d

@x1i1�d
Œ Qf .A.x; u//� @d

@x1d

" 
@i2hj

@x2i2

!
.B.x; u//

#
du:
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By hypothesis the function x1 7! Qf .A.x; u// is regular, and there exists a constant
C such that ˇ̌

ˇ̌
ˇ
@i1�d

@x1i1�d
Œ Qf .A.x; u//�

ˇ̌
ˇ̌
ˇ � Ckf kC˛.ƒ/ max.k
k˛C˛ ; 1/:

The second term of equation (4.6) is bounded with the Faà di Bruno formula for
the derivatives of a composition,

(4.7)
@d

@x1d

" 
@i2hj

@x2i2

!
.B.x; u//

#
D

X

.ks/s

dŠ

k1Š � � � kd Š
@kCi2hj

@kx1@i2x2
.B.x; u//

dY

sD1

 
Q
 .s/.x1/ � 
 .s/.x1 � u1/

sŠ

!ks

;

where the sum is on all d -tuple .ks/s such that
P
sks D d and where k

defD
P
ks .

The deviation on the geometry is bounded using

(4.8)

j Q
 .s/.x1/ � 
 .s/.x1 � u1/j

� j Q
 .s/.x1/ � 
 .s/.x1/j„ ƒ‚ …
�C1s

1�s=˛

j

C j
 .s/.x1/ � 
 .s/.x1 � u1/j„ ƒ‚ …
� k
kC˛ sj

� C1 max.1; k
k˛C˛ /s
1�s=˛
j :

Using the fact that

(4.9)

ˇ̌
ˇ̌
ˇ
@kCi2hj

@kx1@i2x2
.B.x; u//

ˇ̌
ˇ̌
ˇ � C s

�2�i2�k
j ;

where C is a constant that depends only on  , expression (4.7), together with
bounds (4.8) and (4.9), leads to

ˇ̌
ˇ̌
ˇ
@d

@x1d

"
@i2hj

@x2i2
.B.x; u//

#ˇ̌
ˇ̌
ˇ � C

X

.ks/s

s
�2�i2�k
j

dY

sD1

s
ks.1� i

˛
/

j

� C max.1; k
k˛C˛ /s
�2�i2� ˛

d

j :

The term corresponding to d D i1 thus dominates in equation (4.6), and one ob-
tains the bound (4.4) by using the fact that the size of the support of hj is s2j . ¤

4.3 Polynomial Regression over Band-Shaped Domains

The regularity of warped wavelet coefficients along edges implies that these co-
efficients can be approximated with piecewise polynomials. This section explains
how to construct these polynomials to approximate edge wavelet coefficients at
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(a) (b)
(c) (d)

FIGURE 4.2. (a) A geometrically regular image. (b) Wavelet coeffi-
cients. (c) A nondyadic segmentation into squares together with bands
of size � � � over each square crossing the singularities. (d) A dyadic
subdivision of the coefficients together with a dyadic subdivision into
bands.

each scale 2j . We suppose that f is C˛-geometrically-regular, with a regulariza-
tion scale s. A regularization by a scale s ¤ 0 is essentially equivalent to translating
the wavelet scale 2j by s and replacing 2j by sj D s C K2j . We suppose that
s D 0 to simplify explanations.

This section gives some insights to understand why an appropriate piecewise
polynomial approximation of the wavelet coefficients of f leads to an approxima-
tion fM of f that satisfies

(4.10) kf � fMk2
L2 � C log.M/˛M�˛;

whereM is the total number of parameters needed to specify fM . Technical details
are omitted to carry out the main ideas. A more precise theorem is proved in
Section 5.

The set E of edge wavelet coefficients fj Œn� D fj .2
jn/ D hf; jni corre-

sponds to wavelets  jn whose support intersects a single edge of f . Since the
support of  jn is included in Œ2jn � K2j ; 2jn C K2j �, it corresponds to the set
of points 2jn that are at a distance smaller than K2j from an edge. This set E of
edge wavelet coefficients is first segmented in squares of length � such that in any
such square S , the corresponding edge is parametrized either horizontally or verti-
cally. Figure 4.2(c) shows an example of such a segmentation. In the following, a
horizontal parametrization x2 D 
.x1/ is assumed.

The width � of the squares is chosen in order to match the precision of the
approximation. Over each square S , an approximated flow Q
 0 is defined as the
Taylor expansion of degree ˛ � 2 of 
 inside S . It satisfies inside S

(4.11) k
 0 � Q
 0kL1 � k
kC˛ �˛�1:

The warpingw.x1; x2/ D .x1; x2� Q
.x1//maps the flow Q
 0 onto a horizontal flow.
As shown on Figure 4.3(d), the warped domain w.S/ is subdivided into horizontal
bands of length � and width � that will be adjusted. This set of warped bands
defines a segmentation of the square S into bands that follow the approximated
flow Q
 0; see Figure 4.3(e).
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(a)

(d)
(e)

γ

γ

γ

β

S

w(β)

w
(b) (c)

λ

FIGURE 4.3. (a) A geometrically regular image with a square S of
width � on which the geometry 
 is parametrized horizontally. (b) Ap-
proximated geometric flow Q
 0. (c) Horizontal flow over the warped do-
main w.S/. (d) A horizontal band w.ˇ/ of size � � � in the warped
domain. (e) The corresponding band ˇ.

4.4 Polynomial Approximation

The size � � � of the bands is set by analyzing the polynomial approximation
error over each band ˇ � S . Wavelet coefficients fj Œn� for 2jn 2 ˇ are approxi-
mated by a polynomial Pˇ of degree ˇ � 1 defined over the warped domain w.ˇ/.
Choosing Pˇ as a Taylor expansion of the warped function fjW inside w.ˇ/ leads
to an error

(4.12)

8x 2 ˇ; jfj .x/ � Pˇ .w.x//j D jfjW.w.x// � Pˇ .w.x//j

�
X

i1Ci2D˛







@˛fjW

@x
i1
1 @x

i2
2







1

�i1�i2 :

Condition (4.11) allows us to use Lemma 4.1 to bound the derivatives of fjW and
leads to

8x 2 ˇ; jfj .x/ � Pˇ .w.x//j � C.1C k
k˛C˛ / 2
j

X

i1Ci2D˛

s
�i1=˛�i2
j �i1�i2

� C 0.2j s�1
j �˛ C 2j s�˛

j �˛/:

To minimize this approximation error bound, the ratio width W length D �=� of
the bands is chosen so that 8x 2 ˇ

(4.13) s�1
j �˛ D s�˛

j �˛ H) jfj .x/ � Pˇ .w.x//j � 2C 02j s�1
j �˛:

This defines the width � of the bands as a function of their length �.
Since the number of bands is

Mj D area of all bands

area of a band
D LK2j

��
;
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where L is the total length of the edge curves of f , the chosen length � can be
expressed as a function of the number of bands Mj ,

(4.14) � D �s
1=˛�1
j H) � D .CK/�1s�1

j M�1
j :

4.5 Approximation Error

Let Qfj Œn� D Pˇ .w.2
jn// be the approximated wavelet coefficients. This con-

struction is carried over each band ˇ inside E , which defines a discrete piecewise
polynomial approximation Qfj over the set of coefficients located near edges. Let
M0 > 0 be some fixed integer. For locations .2jn/ outside the set E of edge co-
efficients, the approximated coefficients are set to Qfj Œn� D fj Œn� if fj Œn� is one of
the M0 highest coefficients and Qfj Œn� D 0 otherwise.

In the following, E denotes the set of coefficients located near edge curves and

R [ C are the remaining coefficients, where R stands for the coefficients over

regular areas and C for corner coefficients where two curves are crossing. For each

scale 2j � 2j0
defD M�˛

0 , the number of bands is fixed to Mj D M0. By using

equations (4.13) and (4.14), the approximation error can be computed for the set

of edge coefficients
X

j�j0

kfj � Qfj k2
`2.E/

�
X

j�j0

.# coefficients in bands/ max
ˇ;.2jn/2ˇ

jfj Œn� � Pˇ .w.2jn//j2

�
X

j�j0

LK2�j .2C 02j s�1
j �˛/2 �

X

j�j0

C1s
�1
j �2˛

�
X

j�j0

C1M
�˛
j � CM�˛

0 log.M0/:

(4.15)

The scale 2j0 D M�˛
0 ensures that the error for the remaining scale 2j < 2j0 is

bounded by O.M�˛
0 /. The error of the wavelet approximation of a regular image

withM0 coefficients decays likeO.M�˛
0 / as stated in equation (2.2). One can thus

prove that the error for the remaining coefficients in region R [ C satisfies

(4.16)
X

j�j0

kfj � Qfj k2
`2.R[C/

D O.M�˛
0 /:

Let
fM

defD
X

j;n

Qfj Œn� jn:

From equations (4.15) and (4.16) we get that

(4.17) kf � fMk2
L2 D

X

j

kfj � Qfj k22 D O.M�˛
0 log.M0//:
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4.6 Number of Parameters

Let M be the total number of parameters that specifies fM . One has M D
MB CMG where MB is the number of polynomial coefficients needed to specify
the approximated coefficients Qfj Œn�, and MG is the number of geometric coeffi-
cients needed to specify the polynomial bands.

For each relevant scale 2j � 2j0 , the number of polynomial coefficients is

p.p C 1/

2
Mj D p.p C 1/

2
M0

so that

MB D M0 C
X

j�j0

p.p C 1/

2
Mj D C log.M0/M0:

To specify each band ˇ, one needs to record the coordinates of the segmentation
square S containing ˇ and the coefficients of the adapted polynomial flow Q
 0. Since
Q
 0 is a one-dimensional polynomial of degree p�1, the number of geometric coef-
ficients at each scale 2j � 2j0 is proportional to Mj , and thus MG is proportional
to M0 log.M0/.

Summing the number of polynomial and geometric parameters leads to

M D MB CMG D C log.M0/M0:

Combining this result with the error bound (4.17) leads to the global approximation
bound (4.10),

kf � fMk2
L2 � C log.M/˛C1M�˛:

The technical details are skipped since the bandelet basis construction presented
in Section 5 gives a constructive proof of these results without the suboptimal
log.M/˛ factor.

5 Orthogonal Bandelet Bases

The scheme presented in the previous section does not provide an effective
algorithm for computing the adapted geometric flows Q
 0 since the location of the
edges 
 is unknown. It also does not describe a way to estimate the optimal size
� � � of the bands since the Holder exponent ˛ is unknown.

We introduce a computational scheme where wavelet coefficients are trans-
formed by an orthogonal bandeletization operator that decomposes these coeffi-
cients over a discrete Alpert basis. This Alpert basis depends upon the segmen-
tation and geometrical flows computed at the corresponding scale. This geometry
is calculated with a best basis search strategy that optimizes the resulting image
approximation. The resulting adaptive bandeletization establishes connections be-
tween orthogonal wavelet coefficients with a geometry that is adapted to the image.
In that sense, this approximation scheme has similarities with the horizontal con-
nections observed in the V1 visual cortex between simple cells computing wavelet
coefficients.



ORTHOGONAL BANDELET BASES 15

5.1 Alpert Bases

For fast computations, wavelet image coefficients are segmented with dyadic
squares. Figure 4.2(d) shows an example of such dyadic subdivisions. Wavelet
coefficients located in a square S � Œ0; 1�2 of length � at a given scale 2j are ap-
proximated by decomposing these coefficients in an Alpert basis and thresholding
the resulting coefficients. This Alpert basis [1] depends upon the geometric flow
calculated in this square. It is defined from a multiresolution constructed over the
space `2.S/ of wavelet coefficients in S , with piecewise polynomials over bands of
dyadic widths that are parallel to the geometric flow. We shall see that thresholding
the transformed wavelet coefficients in this Alpert basis is equivalent to automati-
cally adjusting the optimal width � D s

1=˛�1
j � without any knowledge of ˛.

A geometric flow direction Q
 0 is assumed to be known over S . The warping

operatorw in (4.2) warps S into QS as shown in Figure 5.1(a). Points xn
defD 2jn 2 S

are warped onto Qxn
defD w.2jn/. The space `2.S/ is the set of sampled functions

fg.xn/g2jn2S . Similarly, `2. QS/ denotes functions sampled in the warped domain

f Qg. Qxn/g2jn2S . A set of wavelet coefficients ffj Œn�g2jn2S are sample values of

fj .x/ at points xn or of Qfj . Qx/ at points Qxn.

To define a multiresolution, for each scale 2`, the warped square QS is recur-

sively subdivided into 2�` horizontal bands QS D
S2�`�1
iD0

Q̌
`;i . This process is

illustrated in Figure 5.1. The scheme divides Q̌
`;i D Q̌

`�1;2i [ Q̌
`�1;2iC1 by

looking for a horizontal cut ensuring that Q̌
`�1;2i and Q̌

`�1;2iC1 contain the same

number of points. The recursive subdivision is stopped at the scale ` D L such

that 2L.�2�j /2 � p.p C 1/=2.

Each band ˇ`;i
defD w�1. Q̌

`;i / in the original square S has a width roughly
equal to �2` and contains 2`.�2�j /2 sampling points. Note that some bands near
the boundary of S might be disconnected.

Alpert multiresolution spaces QV` � `2. QS/ are defined for each scale 2`, L �
` � 0, by

QV`
defD
n

Qg 2 `2. QS/
ˇ̌
ˇ 8.2jn/ 2 ˇ`;i , Qg. Qxn/ D Pi . Qxn/ with Pi

a polynomial and deg.Pi / < p.

o
:

The space QV` is composed of discrete vectors sampled from piecewise polynomials.
There is no continuity requirement on these underlying continuous functions so that
vectors of QV` can exhibit jump discontinuities across bands.

These spaces are embedded since QV` � QV`�1. An orthogonal basis f Qh`;i;kgi;k of
each space QV` is defined using discrete Legendre polynomials where k D .k1; k2/

with k1 C k2 < p indexes the polynomial degree and 0 � i < 2�` indexes the
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w

ℓ =-1 ℓ =-2 ℓ =-3

(a)

(a’)

(b) (c) (d)

(b’) (c’) (d’)

FIGURE 5.1. (a) Wavelet coefficients over a square S near an edge
curve. The adapted flow Q
 0 is depicted as arrows. (a0) The warping maps
the flow onto a horizontal flow. (b)–(d) Refinements of the segmenta-
tion in bands. (b0)–(d0) Corresponding horizontal segmentation over the
warped domain.

position. Basis vectors f Qh`;i;kgk are obtained by Gram-Schmidt orthogonalization
of the set of monomial f QPkgk vectors defined by

8 Qxn 2 Q̌
`;i ; QPk. Qxn/ D . Qx1/k1. Qx2/k2 where Qxn D . Qx1; Qx2/:

Alpert wavelets f Q‰`;i;kgi;k are an orthogonal basis of the orthogonal complement
QW` of QV` in QV`�1 that satisfies QV`�1 D QV` ˚? QW`. The Alpert wavelet vectors

f Q‰`;i;kgk are computed by Gram-Schmidt orthogonalization of the family
˚ Qh`�1;2i;k � Qh`�1;2iC1;k

	
k1Ck2<p

� QV`�1

against the family f Qh`;i;kgk1Ck2<p � QV`. The numerical computation of the de-
composition of a vector on this Alpert basis is carried over by a fast algorithm
described in Appendix B. This algorithm involves the orthogonalization over low-
dimensional spaces and thus avoids the numerical burden of orthogonalizing di-
rectly the vectors Qh`;i;k .

The resulting multiwavelet vectors Q‰`;i;k are sampled from piecewise polyno-
mial functions that are discontinuous at the middle of the band Q̌

`;i . Each vector
Q‰`;i;k has vanishing moments over the warped domain since it is orthogonal to QV`,

8k1 C k2 < p;
X

n

Q‰`;i;k. Qxn/. Qxn/k D 0
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where . Qxn/k
defD . Qx1/k1. Qx2/k1 for each point Qxn D . Qx1; Qx2/ in the warped domain.

The orthogonal basis f Q‰`;i;kg`;i;k of `2. QS/ defines an orthogonal Alpert basis of
`2.S/ by

‰`;i;k.xn/
defD Q‰`;i;k. Qxn/:

Note that this definition over the original domain S does not involve any interpola-
tion.

In the following,m D .i; k/ indexes the p.pC 1/2`�1 Alpert wavelets f‰`;mg
at a scale 2`, and we considerm as an integer. The orthogonal Alpert basis B.S; Q
 0/

of `2.S/ is defined by

B.S; Q
 0/
defD f‰`;m j L � ` � 0 and 0 � m < p.p C 1/2`�1g:

In the following we write ‰`;mŒn� D ‰`;m.xn/, the coordinates of the discrete
Alpert vector.

The following proposition gives the normalization of the Alpert basis vectors,
which is used to find upper bounds for Alpert coefficients.

PROPOSITION 5.1 There exists a constant C‰ such that for any flow Q
 0 defined
over S , the Alpert basis B.S; Q
 0/ D f‰`;mg`;m satisfies

(5.1)
k‰`;mk2 D 1; k‰`;mk1 � C‰�

�12� `
2 2j ;

k‰`;mk1 � C‰�2
`
2 2�j :

PROOF: The support of an Alpert vector ‰`;m is ˇ`;m, and its cardinal is

Card.ˇ`;m/ D f# points in Sg
f# bandsg D �22`2�2j :

Let

(5.2) I`;m D
�
n
ˇ̌
ˇ j‰`;mŒn�j � 1

2
k‰`;mk1

�
:

One has the following bound:

(5.3) 1 D k‰`;mk2 �
X

n2I`;m

j‰`;mŒn�j2 � 1

2
Card.I`;m/k‰`;mk21:

Asymptotically, the coefficients‰`;mŒn� are samples from one of p.pC1/=2 piece-
wise polynomials scaled by a factor 2`. One thus has

8`;m; Card.I`;m/ � C‰ Card.ˇ`m/;

where Cb is a constant that does not depend on ` or m. As a result,

(5.4) k‰`;mk1 �
p
2C‰ Card.ˇ`;m/

� 1
2 ;
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S41 S42

S43 S44

S2S1

S3 S4

(a) (b) (c)
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FIGURE 5.2. (a)–(c) Construction of a dyadic segmentation by succes-
sive subdivisions. (d) Quadtree representation of the segmentation. Each
leaf of the tree indicates a square in the segmentation and can be repre-
sented with a binary string whose length is proportional to the depth of
the tree.

which implies (5.1) by inserting (5.4) and (5.2) in (5.3). The bound on the `1-norm
is obtained using

k‰`;mk1 � Card.ˇ`;m/k‰`;mk1:

¤

5.2 Bandeletization of Wavelet Coefficients

Segmentation of Wavelet Coefficients

For each scale 2j , a segmentation Sj D fSgS2Sj
subdivides Œ0; 1�2 into non-

overlapping squares S of width bigger than 2j . Following the ideas of Section 4.3,
the length � of the squares must be adapted to the approximation precision.

In order to do so, the segmentation Sj is enforced to contain only squares of
dyadic lengths 2k for k � 0. A segmentation of Œ0; 1�2 using dyadic squares is
obtained by a recursive subdivision of the original square into four squares of equal
sizes. On Figure 5.2 one can see the subdivision steps leading to the construction of
a dyadic subdivision Sj , together with the tree representing the subdivision process.
Each square S 2 Sj of size 2k � 2k corresponds to a leaf of the tree at depth k.

For a geometrically regular image f , an adapted segmentation Sj should en-
capsulate the singularity curves in a set of squares whose size � matches the ap-
proximation precision. Junctions between singularity curves should be covered by
small squares as in Section 4.3, and the remaining domain should be covered by
the largest possible squares.

The squares of the dyadic segmentation Sj are partitioned into several groups:

� The set E.Sj / D EH .Sj / [ EV .Sj / of edge squares. By definition,
a horizontal (respectively, vertical) edge square S 2 EH (respectively,
S 2 EV ) is a square smaller than �.T / that is at a distance less than

sj
defD s CK2j from one and only one edge curve. This curve is supposed

to be parametrized horizontally (respectively, vertically) by x2 D 
.x1/
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Regular square

Edge square

Small Edge square

Corner square

b

(a) (b)

FIGURE 5.3. (a) Wavelet transform of a geometrically regular function.
(b) Example of a segmentation Sj adapted to the geometry of the func-
tion.

(respectively, x1 D 
.x2/) with

(5.5) j
 0j � 2:

Over such a square, the adapted flow Q
 0 should be designed to approxi-
mate 
 0.

� The set C.Sj / of corner squares. By definition, a corner square is a square
that contains the junction of two curves.

� The set R.Sj / of regular squares. These are the squares that do not contain
any edge curves.

Figure 5.3 shows an example of such an adapted dyadic segmentation.

Bandelet Basis

Inside each square S 2 Sj , the choice of discrete Alpert basis B.S; Q
 0
S / con-

structed in Section 5.1 depends on the choice of a geometric flow Q
 0
S .

Over regular square S 2 R.Sj /, a basis adapted to the geometrically image f
should not transform the wavelet coefficients. For such a square S , the flow Q
 0

S
is undefined and the projection onto B.S; Q
 0

S / leaves the wavelet coefficients in S
unchanged.

A dyadic segmentation together with the adapted flows �j D .Sj ; f Q
 0
SgS2Sj

/

specifies a bandeletization basis B.�j / of the whole space of wavelet coefficients
at a scale 2j ,

B.�j /
defD

[

S2Sj

B.S; Q
 0
S /:

A discrete Alpert vector ‰� 2 B.�j / is thus specified by � D .j; S; Q
 0
S ; `;m/

where

� 2j is a scale of the two-dimensional wavelet transform,
� S 2 Sj is a square of width � D 2�L=2 2j ,
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S3

(a)
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(b’) (c’) (d’)

FIGURE 5.4. (a) Localization on the wavelet domain of the squares Si
on which each Alpert wavelet vector is defined. (b)–(d) Discrete Alpert
vectors‰`i for various scales 2`. (b0)–(d0) Corresponding bandelet func-
tions b`i .

� Q
 0
S is a geometric flow,

� ` 2 fL; : : : ; 0g and m 2 f0; : : : ; p.p C 1/2�`�1 � 1g are the scale and
index of a discrete Alpert vector ‰`;m 2 B.S; Q
 0

S / and

8.2jn/ 2 S 2 Sj ; ‰� Œn� D ‰`;mŒn� where B.S; 
 0
S / D f‰`;mg`;m:

The coefficients ‰� Œn� are the coordinates of a bandelet function b� 2 L2.Œ0; 1�2/
in the wavelet basis. This function is defined by

(5.6) b�.x/ D
X

n

‰� Œn� jn.x/:

This function is called a bandelet. Indeed, it is a combination of wavelets along a
band and its support is thus also along a band as illustrated in Figure 5.4. Bandelets
are obtained from an orthogonal wavelet basis with an orthogonal transformation
that we call a “bandeletization.” If we apply this transformation to each scale 2j ,

B.�/
defD
[

j�0

fb� j ‰� 2 B.�j /g where �
defD
[

j�0

�j

is an orthogonal basis of L2.Œ0; 1�2/.
Bandelets are as regular as the underlying wavelets because they are obtained in

(5.6) as a finite linear combination of wavelets of the same scale 2j . If the wavelets
have a compact support, then the resulting bandelets have a compact support. The
support of bandelets overlap in the same way that the support of wavelets overlap.
Setting to zero bandelet coefficients does not create any blocking artifact because
bandelets are regular. This is particularly important for reconstructing image ap-
proximations with no artifacts.
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6 Best Bandelet Basis Approximation

The set of bandelet bases defines a dictionary of orthogonal bases

D D fB.�/g�2G :

In order to approximate a function f with M parameters, one would like to find a
bandelet basis B.�?/ D fb�g� adapted to f . This adapted basis should be chosen
in order to minimize the approximation error kf � fMk of f in B.�?/ defined by

(6.1) fM
defD

X

jhf;b�ij>T

hf; b�ib�

where the number of coefficients is M D MB CMD, where

(6.2) MB
defD Cardf� j jhb� ; f ij � T g

is the number of bandelet coefficients above the threshold and MD is the number
of coefficients needed to specify �? in G. Our goal is to choose B.�?/ such that

kf � fMkL2 D O.M�˛/:

6.1 Bandelet Basis Dictionary

The number of bandelet bases in the dictionary is reduced to a finite size by
parametrizing the flows Q
 0

S up to a precision T 2 and by limiting the bandeletization
to the scales 2j > T 2.

Parameterizing the Geometry

Inside a square S of length �, a geometric flow direction Q
 0 is parametrized by
a polynomial of degree p � 2 whose coefficients are quantized at a precision � :

(6.3) Q
 0.x/ D
p�2X

iD0

ai�

�iC1
xi with ai 2 Z:

In the following, the precision is set to

(6.4) � D �.�/
defD �p

p � 1;

which ensures that a flow 
 0 can be approximated by a flow Q
 0 quantized as in
equation (6.3) with k
 0 � Q
 0kL1 D O.�˛�1/.

The adapted geometric flow Q
 0 is thus chosen in the finite set

(6.5) G.S/
defD
�

Q
 0.x/ D
p�2X

iD0

ai�.�/

�iC1
xi
ˇ̌
ˇ̌ ai 2 Z and jai j � 2C�

�.�/

�
;

where the constant C is set so that the following bound on the polynomial expan-
sion holds:

(6.6) 8x 2 Œ0; 1�; ja0 C a1x C � � � C a˛�1x
˛�1j � 1 H) 8i; jai j � C :
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Construction of the Dictionary

The dictionary Dj of bandeletization bases at a given scale 2j is composed
of the bases B.�j / for all possible dyadic segmentations Sj and geometric flow
directions Q
 0

S 2 G.S/ inside the squares S of the segmentation:

Dj
defD fB.�j / j �j D .Sj ; f Q
 0

Sg/ and 8S 2 Sj ; Q
 0
S 2 G.S/g:

Let T > 0 be the nonlinear approximation threshold. A finite bandelet dictionary
DT 2 of bases of L2.Œ0; 1�2/ is constructed by using bandeletization bases for the
first wavelet scales 2j � T 2 and using the wavelet basis functions for the remain-
ing scales:

DT 2
defD fB.�/ j 82j � T 2; B.�j / 2 Dj g:

6.2 Best Basis Approximation

A Lagrangian minimization computes a bandelet basis B.�?/ whose segmen-
tation fSj gj and geometric flows f Q
 0

SgS2Sj
are adapted to f .

Number of Coefficients

Let T > 0 be some approximation threshold and

(6.7) B.�/ D fb�g� 2 DT 2 where � D
[

j

�j

be a bandelet basis, where �j D .Sj ; f Q
 0
SgS / are the parameters that describe the

basis at each scale. The thresholded approximation at T in this basis is defined by
equation (6.1). The number of parameters M needed to describe fM is decom-
posed as

(6.8) M D MB CMD where MD D MG CMS D
X

j;k

MGj CMSj :

The number of bandelet coefficients MB is determined by equation (6.2) and for
each scale 2j :

� MSj is the number of parameters needed to specify the segmentation Sj .
The dyadic segmentation is described using a quadtree structure, as shown
in Figure 5.2. The quadtree is coded using one coefficient per node to
specify whether it is an interior node or if it corresponds to a square S that
is either a horizontal edge S 2 EH .Sj /, a vertical edge S 2 EV .Sj /, or
regular square S 2 R.Sj /. Corner squares S 2 C.Sj / are treated as regular
squares since no bandeletization is performed on the wavelet coefficients
of these squares. One has

(6.9) MSj � Card.Sj /:
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� MGj is the number of parameters needed to specify the geometric flows Q
 0
S

over all the dyadic squares S 2 Sj . The adapted flow Q
 0
S is parametrized

with p � 1 polynomial coefficients. The number of geometric coefficients
is thus

(6.10) MGj � .p � 1/Card.Sj /:

Lagrangian Minimization

A best basis is computed by minimizing the Lagrangian

(6.11) L.f;B.�/; T /
defD

X

jhb� ;f ij<T

jhb� ; f ij2 C T 2M;

as introduced by Donoho in [9]. A similar Lagrangian is optimized by Le Pennec
and Mallat in [14]. The best bandelet basis B.�?/ adapted to f is defined by

(6.12) B.�?/
defD argmin

B.�/2D
T 2

L.f;B.�/; T /:

This best bandelet basis can be computed with a fast algorithm described in Sec-
tion 7. The following theorem gives the approximation rate of a geometrically
regular function f in this adapted bandelet basis B.�?/.

THEOREM 6.1 Let f be a C˛-geometrically-regular function. There exists C such
that for any T > 0 the M -parameter approximation fM in the best bandelet basis
B.�?/ satisfies

(6.13) kf � fMk2
L2 � CM�˛:

This theorem states that the approximation of geometrically regular functions
in a best bandelet basis recovers the asymptotic M�˛ decay of the approximation
of uniformly regular functions in a wavelet basis. This asymptotic decay rate is
thus optimal.

PROOF: The proof relies on Lemma 6.2, which constructs an optimized ban-
delet basis within the dictionary that yields an approximation error fromM param-
eters that decays in O.M�˛/.

LEMMA 6.2 Let f be a C˛-geometrically-regular function of Definition 2.1. There
exists C such that for all T > 0 there exists a bandelet basis B.�/ 2 DT 2 in which
the thresholded approximation fM of f at T in this basis satisfies

(6.14) kf � fMk2
L2 � CT

2˛
˛C1 and M � CT � 2

˛C1 :

The proof of Lemma 6.2 is in Appendix A. Theorem 6.1 is derived by showing
that the best basis that minimizes the Lagrangian is nearly as good as the optimized
bandelet basis provided by Lemma 6.2.
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Lemma 6.2 provides an adapted bandelet basis B.�/ 2 DT 2 such that

L.f;B.�?/; T / � L.f;B.�/; T / � CT
2˛

˛C1 ;

so

kf � fMk2
L2 � L.f;B.�?/; T / � CT

2˛
˛C1(6.15)

and

MT 2 � L.f;B.�?/; T / � CT
2˛

˛C1 :(6.16)

Combining these equations proves equation (6.13) in Theorem 6.1. ¤

7 Fast Bandelet Approximation

This section describes the fast transform of a discretized image in a best ban-
delet basis. A Matlab implementation of this transform is available [19].

A discretized image f of N � N pixels is obtained by projecting a function
f 2 L2.Œ0; 1�2/ onto a set of orthogonal scaling functions f�Jngn at a resolution
2J D N�1

8n 2 f0; : : : ; N � 1g2; f Œn�
defD hf; �Jni

where �Jn.x/
defD 2�J�.2�Jx � n/:

In the following, � is assumed to be the scaling function associated with the two-
dimensional wavelet functions used for the construction of the bandelet bases. This
allows us to consider that the discrete coefficients fj Œn� computed with the fast or-
thogonal wavelet transform are inner products hf; jni of the underlying continu-
ous function with the wavelet basis defined in (2.1). This hypothesis simplifies the
explanations since the continuous approximation results of Section 6.2 carry over
without modification in the discrete setting. These theoretical results are still valid
for an arbitrary scaling function � as long as it is C˛ regular and has a compact
support, using arguments similar to those of [14].

The forward fast discrete bandelet transform decomposes the discrete image f
in a best bandelet basis of R

N�N , which is equivalent to the decomposition of the
underlying function f on a best bandelet basis of L2.Œ0; 1�2/.

(1) Two-dimensional wavelet transform. The wavelet coefficients ffj Œn�gj;n
are computed using a discrete wavelet transform of the image f . The complexity
of the fast wavelet transform is O.N 2/ [16].

(2) Fast Alpert transform. For each scale 2j � T 2, for each dyadic square S
of length � larger than 2j , and for each geometric flow Q
 0 2 G.S/, let B.S; Q
 0/ D
f‰`;mg`;m. The Alpert coefficients hfj ; ‰`;mi of the wavelet coefficients fj of f
inside S are computed using the fast Alpert transform described in Appendix B.
The complexity of the Alpert transform for each square is O.m2/ where m2 D
.2�j�/2 is the number of coefficients in the square S .
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(3) Lagrangian Minimization For each scale 2j , the dyadic segmentation Sj
is computed using a fast bottom-up algorithm similar to the CART regression pro-
cedure [3]. This involves computing the value of the LagrangianL.fj ;B.S; Q
 0/; T /

for all the squares S and geometries Q
 0 2 G.S/. This set of Lagrangians is stored
in a full quadtree that is pruned by the regression tree algorithm as detailed in [14].
The resulting dyadic segmentation Sj corresponding to the tree together with the
set of optimized geometries Q
 0

S for each S 2 S?j are the best basis parameter for

the scale 2j .

Numerical Complexity

The Lagrangian minimization requires the computation of the Alpert transform
over each square S of dyadic length for each geometry of G.S/. The bottom-up
procedure that builds the quadtree has a negligible complexity. For each scale 2j ,
the complexity of computing the Alpert transform over the set of all squares of
length � and all geometries is

.1=�/2„ƒ‚…
# squares

� CA.2
�j�/2„ ƒ‚ …

complexity of
Alpert transform

�CG�
�.p�1/2

„ ƒ‚ …
# geometries

D C2�2jT �2.p�1/2 ;

since equation (6.5) shows that the cardinal of G.S/ is proportional to ��.p�1/2 and
that � � 2j � T 2. As the number of such widths � and scales 2j is proportional to
jlog2.T /j, the overall complexity of the bandelet transform is O.N 2 T �2.p�1/2/.
Since the number of parametersM used for the approximation in the best bandelet
basis scales like T �.˛C1/=2, the complexity of the algorithm is O.NM �/ with
� D .˛ C 1/.p � 1/2.

The complexity of the algorithm scales linearly in the number of pixels as for
the classical wavelet transform. It requires testing an exhaustive set of local ge-
ometries with a precision related to M , which makes the algorithm slower than an
orthogonal wavelet transform. In [20] the authors describe an application to sur-
face compression and propose the use of bandelets with one vanishing moment,
thus replacing the Alpert transform by an orthogonal Haar transform. The result-
ing compression algorithm competes favorably with the state of the art, and the use
of one vanishing moment is enough for this kind of geometrical data. The overall
complexity of the resulting scheme is roughly equal to a dozen orthogonal wavelet
transforms for a typical compression scenario.

8 Best Bandelet Basis Compression

An image f is compressed in a bandelet basis B.�/ D fb�g� 2 DT 2 by quan-
tizing and coding its transformed coefficients and by coding the geometric param-
eters � D f�j gj that describe the basis, where �j D .Sj ; f Q
 0

SgS2Sj
/. The restored



26 STÉPHANE MALLAT AND GABRIEL PEYRÉ

image from the compressed code is

(8.1) fR
defD
X

�

QT .hf; b�i/ b� ;

where QT is a uniform quantizer defined by

(8.2) QT .x/ D qT if .q � 1
2
/T � x � .q C 1

2
/T:

The coding distortion is

D.R/
defD kf � fRk2

L2 :

Since jx �QT .x/j � T=2 and QT .x/ D 0 if jxj � T=2, one has

D.R/ D kf � fRk2
L2 D

X

�

jhf; b�i �QT .hf; b�i/j2(8.3)

�
X

jhf;b�ij<T=2

jhf; b�ij2 C 1

4
MBT

2(8.4)

� kf � fMk2
L2 C 1

4
MBT

2;(8.5)

which links the distortion D.R/ with the nonlinear approximation fM obtained
with a thresholding at T=2 as defined in (6.1). The number of coefficients M D
MB CMS CMG is computed following Section 6.2.

The bit budget of this transformed code is

R
defD RB CRS CRG D

X

j

.RBj CRSj CRGj /

where:

� RBj is the number of bits that is needed to code the bandelet coefficients
hf; b�i D hfj ; ‰�i for a single scale 2j . Since there are 2�2j bandelet
coefficients at a scale 2j , the index of each of the MBj nonzero quantized
coefficients is coded using log2.2

�2j / bits per coefficient. For a bounded
image f , one has

jhf; b�ij � kfj k1 k‰�k1 � 2j kf kL1 k kL1Cb � kf kL1 k kL1Cb:

Consequently, there exists a constantC1 such that the quantized amplitudes
QT .hf; b�i/ are coded using less than log2.C1=T / bits per coefficient.
The number of bits to code the bandelet coefficients is thus bounded by

RBj � MBj .log2.2
�2j /C log2.C1=T //:

The usual scale restriction 2j > T 2 implies that RBj � CMBj jlog2.T /j.
� RSj is the number of bits needed to code the quadtree segmentation Sj

for a single scale 2j . One needs to differentiate between interior, vertical
edge, and horizontal edge nodes, so 2 bits per segmentation coefficient is
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needed, and thus RSj D 2MSj , where MSj is the number of coefficients
needed to specify the dyadic segmentation Sj , as described in Section 6.2.

� RGj is the number of bits needed to code the adapted geometric flow Q
 0
S 2

G.S/ inside each square S of each quadtree Sj . Each geometric coefficient
MGj is quantized and equation (6.5) shows that there are Card.G.S// D
CG�

�.1�p/2 possible quantized geometries where CG is a constant. As
� � 2j , the condition 2j � T 2 implies

RGj � MGj log2.CG�
�.1�p/2/ � CMGj jlog2.T /j:

Using this coding scheme, the total bit budget is thus

R D
X

2j �T 2

.RBj CRSj CRGj / � CM jlog.T /j;

where M D
P
j .MBj CMSj CMGj / is the total number of coefficients needed

to specify fM as described in Section 6.2.
In order to minimizeD.R/, equation (8.5) shows that one should use the Lagra-

gian minimization of (6.12) with a Lagrange multiplier equal to T=2. An adaptive
compression of the image is thus performed by using the best bandelet basis de-
fined by

B.��/
defD argmin

B.�/2D
T 2

L.f;B.�/; T=2/:

One needs to compute the distortionD.R/ in this basis and link this distortion with
the number of bits R.

The bounds of equation (6.15) shows that the thresholding approximation fM
at T=2 in the bandelet basis B.��/ satisfies

(8.6) kf � fMk2
L2 � C.T=2/

2˛
˛C1 with M � C.T=2/�

2
˛C1 :

The scheme used to code the bandelet coefficients and the geometric parameters
ensures thatR � CM jlog.T /j. Combining this result with the bounds of equations
(8.5) and (8.6) proves the following theorem:

THEOREM 8.1 Let f be a C˛-geometrically-regular function. There exists C > 0

such that for any T > 0, the compressed image fR in the best bandelet basis
B.��/ satisfies

kf � fRk2
L2 � C log2.R/

˛R�˛:

The class of geometrically regular functions contains the class of uniformly
C˛-functions, for which the Kolmogorov bound decreases likeR�˛; see [10]. This
theorem thus proves that the asymptotic coding error decay in an adapted bandelet
basis reaches the Kolmogorov lower bound for geometrically regular functions up
to a jlog.R/j˛ factor.
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Appendix A: Proof of Lemma 6.2

PROOF: A bandelet basis B.�/ 2 DT 2 is built by choosing, for each scale 2j , a
discrete Alpert basis B.�j /. At each scale 2j the thresholded approximation fjMj

of the wavelet coefficients fj at T in B.�j / D f‰�g� is defined by

fjMj
D

X

jhfj ;‰�ij�T

hfj ; ‰�i‰� :

The number of parameters is defined following equation (6.8) by Mj D MGj C
MSj CMBj . Using the fact that hf;‰�i D hfj ; b`;mi for some index .`;m/, one
can decompose the approximation error as

kf � fMk2
L2 D

X

j

kfj � fjMj
k22 where M

defD
X

j

Mj :

In order to build a bandelet basis adapted to the function f , one has to consider
three approximation modes depending on the scale.

For fine scales. 2j < 2j0
defD T

2˛
˛C1 , a standard result, states that kfj k22 � C2j

for a constant C that depends only on f . As jfj Œn�j � kf kL1 k kL12j , one has,
for T small enough, fj Œn� D 0, so Mj D 0 and
X

j<j0

kfj � fjMj
k22 �

X

j<j0

C2j � 2C2j0 D 2CT
2˛

˛C1 with
X

j<j0

Mj D 0:

For coarse scales. 2j > 2j1
defD T 1=.˛C1/. There are fewer than 2�2j1 coeffi-

cients so X

j>j1

kfj � fjMj
k22 � 2�2j1T 2 � T

2˛
˛C1 :

Since there is no segmentation and no flow, MSj D MGj D 0 and hence
X

j>j1

Mj � 2�2j1 � T
�2

˛C1 :

For intermediate scales. 2j0 � 2j � 2j1 . A bandeletization basis B.�j /

adapted to f is used to approximate the coefficients. Such a basis is provided
by Lemma A.2. This lemma proves that a thresholding in this basis gives the fol-
lowing error:

j1X

jDj0

kfj � fjMj
k22 �

j1X

jDj0

C
�
s

˛�ˇ
ı

j T
4˛ˇ

ı C 22j˛
�

where ı
defD 2˛ˇ C ˛ C ˇ

� 2C
�
2j0

˛�ˇ
ı T

4˛ˇ
ı C 22j1˛

�
� 4CT

2˛
˛C1 :

Combining all these bounds proves (6.14) in Lemma 6.2. ¤
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A.1 Adapted Segmentation of Wavelet Coefficients

In order to match the approximation precision given by T , the optimal width of
the square in an adapted segmentation Sj is set to

(A.1) �.T /
defD C0T

2ˇ
ı s

ˇC1
ı

j and ı
defD 2˛ˇ C ˛ C ˇ;

where C0 is a constant that depends only on f and whose value is tuned during
the proof of Lemma A.3. This definition of the optimal width is similar to the one
given in equation (4.14), but it is parametrized by the threshold value T .

Section 5.2 has introduced the partition of squares S 2 Sj into edge squares
S 2 E.Sj /, corner squares S 2 C.Sj /, and regular squares S 2 R.Sj /. Only edge
squares S 2 E contain an adapted flow Q
 , since in the other squares the original
coefficients are not modified. Ideally, one would like to have only regular squares
and squares of width �. But topological constraints (such as edge crossings and
corners) and curvature variations (horizontal edges that become vertical) force us
to subdivide some squares of width � into smaller ones. The set of edge squares is
thus subdivided as E D E� [ QE� where E� is the set of squares length �.T / and QE�
contains squares of smaller lengths. The following lemma shows that one can build
a dyadic segmentation with a small number of these subdivided squares S 2 QE�:

LEMMA A.1 Let f be a geometrically regular function. There exists a constant C
such that for all � > 0, there exists a dyadic segmentation Sj of Œ0; 1�2 into squares
of width larger than 2j that has the following properties:

Card.Sj / � C.��1 C jlog2.�=2
j /j/; Card.E�.Sj // � C��1;

Card. QE�.Sj // � C jlog2.�=2
j /j; Card.C.Sj // � C:

PROOF: Following [14], a dyadic image segmentation is performed by itera-
tively labeling edge squares S 2 E and corner squares S 2 C while removing
temporary unlabeled squares S 2 T . The algorithm proceeds as follows:

� Initialization: label the square S D Œ0; 1�2 as temporary S 2 T .
� Step 1: Split into four every temporary square S 2 T and remove S

from T .
� Step 2: Label, in the following order, each new subdivided square S as

follows:
– A regular square S 2 R.Sj / if it is at a distance larger than sj from

all edges.
– A corner square S 2 C.Sj / if its size is smaller than 2j .
– A horizontal edge square S 2 EH .Sj / if a single horizontal edge

component 
 is closer than sj to S . Following the edge square defini-
tion of Section 5.2, the curve is supposed to be parametrized horizon-
tally with j
 0j � 2.
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FIGURE A.1. Recursive subdivision of dyadic squares with the corre-
sponding labeling S 2 fR; EV ; EH ; Cg.

– A vertical edge square S 2 EV .Sj / if a single vertical edge compo-
nent 
 is closer than sj to S .

– A temporary square S 2 T otherwise.
� Step 3: Go to step 1 if any temporary squares remain.

Figure A.1 illustrates this process.
The first set of subdivision steps subdivides squares that contain edges until

the square length reaches �.T /. Due to the regularity of the curves, the number
of resulting edge squares is of order O.��1/. The nontangency condition of the
curves also ensures that after a constant number of steps, only a constant number
of squares near junctions are labeled as temporary.

In the neighborhood of the junctions, the recursive splitting continues during
log.�=2j / steps until the length of the squares is 2j . Since there is only a fi-
nite number of such junctions, the number of the small edge squares is of order
O.log.�=2j //. ¤

The following lemma constructs an adapted bandeletization basis for a given
scale 2j . It uses the construction of an adapted dyadic segmentation together with
an adapted quantized geometric flow that closely matches the real geometry.

LEMMA A.2 Let f be a C˛-geometrically-regular function. There exists C such
that for any T > 0, if 2j satisfies

T
2˛

˛C1
defD 2j0 � 2j � 2j1

defD T
1

˛C1 ;

then there exists a bandeletization basis B.�j / 2 Dj such that the thresholding
approximation fjMj

at T of fj in this basis satisfies

(A.2)

8
<
:

kfj � fjMj
k22 � C max

�
s
.˛�ˇ/=ı
j T 4˛ˇ=ı ; 22j˛

�
;

Mj � Cs
.˛�ˇ/=ı
j T �2.˛Cˇ/=ı with ı

defD 2˛ˇ C ˛ C ˇ

PROOF: The optimal width � D �.T / of the edge squares is defined in equa-
tion (A.1). Lemma A.1 provides a dyadic segmentation of Œ0; 1�2 with edge squares
conforming as much as possible to this optimal length �. A bandeletization basis
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B.�j / is defined by choosing the bandelet basis B.S; Q
 0
S / provided by Lemma A.3

over edge squares S 2 E�.Sj / [ QE�.Sj / and by keeping the original wavelet co-
efficients over the remaining squares. Wavelet coefficients inside a square S are
denoted fj Œn�, and the corresponding thresholded approximation withM.S/ coef-
ficients is denoted fjM.S/. One has the following error:

kfj � fjMj
k22 D

X

S2R.Sj /

kfj � fjM.S/k2`2.S/
C

X

S2C.Sj /

kfj � fjM.S/k2`2.S/

C
X

S2E�.Sj /

kfj � fjM.S/k2`2.S/
C

X

S2 QE�.Sj /

kfj � fjM.S/k2`2.S/

with

MBj D
X

S2R.Sj /

M.S/C
X

S2C.Sj /

M.S/C
X

S2E�.Sj /

M.S/C
X

S2 QE�.Sj /

M.S/:

In regular squares S 2 R.Sj /, we saw in equation (2.2) that

8.2jn/ 2 S; jhf; jnij � Cf 2
j.1C˛/;

where Cf is proportional to kf kC˛.ƒ/. Let 2j? be the cutoff scale defined by

2j?
defD .Cf /

� 1
˛C1T

1
˛C1 :

If j < j?, one has jfj Œn�j < T ; thus
P
S2R.Sj /

M.S/ D 0. If j � j?, one has

X

S2R.Sj /

M.S/ � 2�2j? � .Cf /
2

˛C1 T � 2
˛C1 � .Cf /

2
˛C1 s

˛�ˇ
ı

j T �2˛Cˇ
ı :

In both cases one has
X

S2R.Sj /

kfj � fjM.S/k2`2.S/
� 2�2j

�
max

S�R.Sj /
jfj Œn�j2

�
� .Cf /

2 22j˛:

In corner squares S 2 C.Sj /, there is a constant number C of coefficients and
thus
X

S2C.Sj /

kfjM.S/�fj k2
`2.S/

� C T 2 � Cs
˛�ˇ

ı

j T
4˛ˇ

ı and
X

S2C.Sj /

M.S/ � C;

which satisfies bounds (A.2).
In edge squares S 2 E�.Sj / of size �, Lemma A.3 bounds the bandelet ap-

proximation error and the number of coefficients needed. Since there are fewer
than C��1 such squares, one has

(A.3)
X

S2E�.Sj /

kfj � fjM.S/k2`2.S/
� .C��1/�s

˛�ˇ
ı

j T
4˛ˇ

ı
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together with

(A.4)
X

S2E�.Sj /

M.S/ � .C��1/�s
˛�ˇ

ı

j T �2˛Cˇ
ı ;

and since

(A.5) �.T /
defD C0 T

2ˇ
ı s

ˇC1
ı

j and ı
defD 2˛ˇ C ˛ C ˇ;

one get (A.2) by inserting (A.5) into (A.3) and (A.4).
In small edge squares S 2 QE.Sj / of size less than �, Lemma A.3 still ap-

plies. The number of bandelet coefficients M.S/ is bounded by the number of
coefficients needed for squares of optimal size �. Since there are fewer than
jlog2.�=2

j /j � C1jlog2.T /j such squares, bounds (A.2) still hold.
Geometric coefficients. By combining these bounds together, one gets the error

bound of equation (A.2). Equations (6.9) and (6.10) show that

MSj CMGj � p Card.Sj / � C��1 � CC�1
0 T �2ˇ

ı s
� ˇC1

ı

j

� CC�1
0 s

˛�ˇ
ı

j T �2˛Cˇ
ı

�
T �2˛

ı s
� 1C˛

ı

j

�
„ ƒ‚ …

�1 since sj �T 2˛=.˛C1/

� .CC�1
0 /s

˛�ˇ
ı

j T �2˛Cˇ
ı ;

which gives the bound of equation (A.2) for the number of coefficients. ¤

The technical analysis of the bandelet approximation in an edge square S is
detailed in Lemma A.3. In this lemma, fj is the set of wavelet coefficients inside S ,
fjM.S/ is the thresholded approximation of fj at T in basis B.S; Q
 0/, andM.S/ is
the number of needed bandelet coefficients.

LEMMA A.3 Let f be a C˛-geometrically-regular function. There exists C > 0

such that for any T > 0 and 2j satisfying

(A.6) T
2˛

˛C1
defD 2j0 � 2j � 2j1

defD T
1

˛C1 ;

for any edge square S of width �
defD �.T / there exists an adapted geometric flow

Q
 0 2 G.S/ such that

(A.7)

(
kfj � fjM.S/k2`2.S/

� C�s
.˛�ˇ/=ı
j T 4˛ˇ=ı

M.S/ � C�s
.˛�ˇ/=ı
j T �2.˛Cˇ/=ı with ı

defD 2˛ˇ C ˛ C ˇ:

PROOF: The edge curve is parametrized in S by x2 D 
.x1/. Let Q
 0
0 be a

Taylor polynomial expansion of degree ˛�2 of 
 0 inside S . An adapted polynomial
flow Q
 0 2 G.S/ quantized with a precision � D �˛=.p � 1/ is defined by

Q
 0
0.x/ D

p�2X

iD0

˛i

�iC1
xi and Q
 0.x/ D

p�2X

iD0

ai�

�iC1
xi with ai D Q� .˛i /;
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where the uniform quantizer Q� is defined by

Q� .x/ D q� if .q � 1
2
/� � x � .q C 1

2
/�:

Since the edge square definition of equation (5.5) enforces that j
 0j � 2, one has

8x 2 Œ0; 1�;
ˇ̌
ˇ̌
p�2X

iD0

�˛i
�

�
xi
ˇ̌
ˇ̌ � 2 H) jai j � 2C

�

�
;

where the constant C is defined by equation (6.6) and thus Q
 0 2 G.S/. Further-
more, this adapted flow satisfies

k Q
 0 � 
 0kL1 � k Q
 0 � Q
 0
0kL1 C k Q
 0

0 � 
 0kL1

� .p � 1/ �
�

C k
kC˛�˛�1 � .1C k
kC˛ /�˛�1:(A.8)

The set of points x such that j
.x1/ � x2j � Ksj is denoted T . The support of an
Alpert vector is ˇ`;m.

A.2 Bounding Bandelet Coefficients

There are two kinds of Alpert vectors ‰`;m 2 B.S; Q
 0/:

� If ˇ`;m does not intersect T , the fact that f is C˛-regular away from edges
implies

(A.9) 8.2jn/ … T ; jfj Œn�j D jhf; jnij � Cf 2
j.1C˛/;

where Cf is proportional to kf kC˛.ƒ/, which leads to

jhfj ; ‰`;mij � Cf kfj k1 k‰`;mk1 � .Cf C‰/2
j˛2

`
2�

where k‰`;mk1 is given by equation (5.1). A bandelet cutoff scale 2L0 is
defined by

.Cf C‰/2
j˛2L0=2� D T H) 2L0

defD .Cf C‰/
�22�2j˛T 2��2;

hence

(A.10) 2` � 2L0 H) jhf;‰`;mij � T:

� If ˇ`;m intersects T , one needs to use the regularity of the warped func-

tion fjW. Let P.x/ be a Taylor polynomial expansion of degree p of the

function fjW inside w.ˇ`;m/, where w is the warping operator defined

by equation (4.2). The definition (A.1) of �.�/ together with the bound

sj � 2j � T 2˛=.˛C1/ implies that �.�/ � C0 s
1=˛
j . Equation (A.8) then

allows us to apply Proposition 4.1, which provides bounds on the deriva-

tives of fjW. The construction of the band detailed in Section 5.1 enforces
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thatw.ˇ`;m/ is of size ���where �
defD �2`. Similarly to equation (4.12),

the error is bounded by

8 Qx 2 w.ˇ`;m/; jfjW. Qx/ � P. Qx/j �
X

.i1;i2/2I
p
˛






@˛fjW

@x
i1
1 @x

i2
2 L1





�
i1�i2

� C.1C k
k˛C˛ /
X

.i1;i2/2I
p
˛

2j s
�

i1
˛�i2

j �i1�i2

� CW2
j
�
s�1
j �˛ C s

�ˇ
j .2`�/ˇ

�
;

where the constant CW depends on k
kC˛ and kf kC˛.ƒ/ and where the set
of indices is

Ip˛
defD
�
.i1; i2/

ˇ̌
ˇ̌ i1 C i2 D p and i1 < ˛;
˛ C i2 � p and i1 D ˛

�
:

The result is that for all Qx D w.x/ 2 w.ˇ`;m/,

(A.11) fjW. Qx/ D P. Qx/C �. Qx/ with k�kL1 � CW2
j
�
s�1
j �˛ C s

�ˇ
j .2`�/ˇ

�
:

The bandelets inner products are bounded using the fact that ‰`;m is or-
thogonal to the space of discrete warped polynomials of degree p � 1 on
w.ˇ`;m/,

hf;‰`;mi D
X

2jn2ˇ`;m

fj Œn�‰`;mŒn� D
X

2jn2ˇ`;m

fjW.w.2
jn//‰`;mŒn�

D
X

2jn2ˇ`;m

�.w.2jn//‰`;mŒn�;

which leads to the bound

jhf;‰`;mij � k�kL1k‰`;mk1
� .CWC‰/�

ˇC1s
�ˇ
j 2

`
2 max

�
s
ˇ�1
j �˛�ˇ2`ˇ

�
;

(A.12)

where k‰`;mk1 is bounded by equation (5.1). A bandelet cutoff scale 2L1

is defined by

s
ˇ�1
j �˛�ˇ D 2L1ˇ H) 2L1

defD s
1�1=ˇ
j �

˛
ˇ

�1:

The constant C0 that defines the optimal length �.T / in equation (A.1) is
set to

C0
defD .CWC‰/

� ı
2p ;

which implies

(A.13) 2` � 2L1 H) jhf;‰`;mij � .CWC‰/�
ı

2ˇ s
� 1Cˇ

2

j � T:
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A.3 Bounding M.S /

The number of coefficients above the threshold

M.S/
defD Card.JT / where JT

defD f.`;m/ j jhf;‰`;mij � T g
can be bounded using the sets

J0
defD f.`;m/ j Supp.‰`;m/ \ T D ¿ and 2` � 2L0g

and

J1
defD f.`;m/ j Supp.‰`;m/ \ T ¤ ¿ and 2` � 2L1g

since equations (A.10) and (A.13) imply that JT � .J0 [ J1/.
One has

Card.J0/ �
X

`�L0

2�` � 2.2�L0/

� 2.Cf C‰/
2� 22j˛„ƒ‚…

�T 2˛=.˛C1/

�„ƒ‚…
�T 2ˇ=ı

T �2

� 2.Cf C‰/
2�T �2 ˛

˛C1
ˇC1

ı � 2.Cf C‰/
2�s

˛�ˇ
ı

j T �2˛Cˇ
ı :

For each scale 2`, there are fewer than K2j =.�2`/ bandelets in f‰`;mgm that in-
tersect T , so

Card.J1/ �
X

`�L1

K2j

�2`
� 2K2j��12�L1

� 2K2j s
1
ˇ

�1

j �� ˛
ˇ � 2Ks

1
ˇ

j �
� ˛

ˇ � 2K�s
˛�ˇ

ı

j T �2˛Cˇ
ı :

The number of coefficients is thus bounded by

M.S/ � Card.J0/C Card.J1/ � C2�s
˛�ˇ

ı

j T �2˛Cˇ
ı :

A.4 Bounding kfj � fjM.S /k
2
2

One has

kfj � fjM.S/k22 D
X

.`;m/…JT

jhfj ; ‰`;mij2

D
X

.`;m/2.J0[J1/nJT

jhfj ; ‰`;mij2(A.14)

C
X

.`;m/2eJ o[eJ 1

jhfj ; ‰`;mij2;
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where the set of coefficients are split according to

eJ 0 defD f.`;m/ j Supp.‰`;m/ \ T D ¿ and 2` < 2L0g

and

eJ 1 defD f.`;m/ j Supp.‰`;m/ \ T ¤ ¿ and 2` < 2L1g:

The first part of the error in equation (A.14) is bounded using
X

.`;m/2.J0[J1/nJT

jhfj ; ‰`;mij2 � .Card..J0 [ J1/ n JT /T 2

� .Card.J0 [ J1/T 2 � C2�s
˛�ˇ

ı

j T
4˛ˇ

ı :

Bounding the contribution of eJ 0 [ eJ 1 to the error using directly equation (A.12)
leads to a suboptimal result. The linear space

V
defD Spanf‰`;m j .`;m/ 2 J0 [ J1g

allows us to write the second part of the error in equation (A.14) as a projection
X

.`;m/2eJ o[eJ 1

jhfj ; ‰`;mij2 D kfj � PV .fj /k22:

The following decomposition

fj D f 0j C f 1j where

(
8.2jn/ 2 T f 0j Œn� D 0 and f 1j Œn� D fj Œn�;

8.2jn/ … T f 0j Œn� D fj Œn� and f 1j Œn� D 0;

leads to

kfj � PV .fj /k2 � kf 1j � PV .f
1
j /k2 C kf 0j k2 C k PV .f

0
j /k2

� kf 1j � PV .f
1
j /k2 C 2kf 0j k2:

The norm of f 0j is bounded using the fact that the wavelet coefficients are bounded
by equation (A.9) outside T ,

kf 0j k22 � .�22�2j /„ ƒ‚ …
neighboring points in S

.Cf /
222j.˛C1/

� .Cf /
2� 22j˛„ƒ‚…

�T 2˛=.˛C1/

�„ƒ‚…
�T 2ˇ=ı

� .Cf /
2�T

2˛
˛C1

C 2ˇ
ı s

ˇC1
ı

j � .Cf /
2�T

4˛ˇ
ı s

˛�ˇ
ı

j :

Equation (A.11) allows us to decompose fjW D P C� inside each warped domain
w.ˇL0;m/. The fact that warped discrete polynomials P belong to V implies that
the pointwise error is bounded by

8.2jn/ 2 ˇL0;m; jf 1j Œn� � PV .f
1
j /Œn�j � 2k�kL1 � 4CW2

j s�1
j �˛:
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Since the number of points .2jn/ � T where f 1j Œn� ¤ 0 is .Ksj =�/.b2�j /2, one
gets the estimate

kfj � PV .fj /k22 �
�
Ksj

�

�
.�2�j /2.2k�kL1/2

� Cs�1
j �2˛C1 � C�T

4˛ˇ
ı s

˛�ˇ
ı

j :

¤

Appendix B: Fast Alpert Transform

Let B.S; Q
 0/ D f‰`;mg`;m be an Alpert bandeletization basis over a square S
containing wavelet coefficients fj Œn� for .2jn/ 2 S . An adapted Alpert transform
[1] computes with a fast algorithm the coefficients fhfj ; ‰`;mig`;m of fj with a
complexity of O.N/ where N is the number of input wavelet coefficients fj Œn�.

For x 2 R
2, let xt D x

t1
1 x

t2
2 and jt j D t1Ct2. The two-dimensional monomials

are indexed using

8t such that jt j < p; Qt defD 1

2
jt j.jt j C 1/C t2 2

�
0; : : : ;

p.p C 1/

2
� 1

�
:

In the following, the sampling locations of wavelet coefficients are written as xn
defD

2jn 2 Œ0; 1�2 and the warped points Qxn
defD w.xn/ where the warping is defined

by (4.2). If A and B are two matrices, ŒAIB� denotes the concatenation along
columns, ŒA; B� the concatenation along rows, and diag.A;B/ the concatenation
along the diagonal.

B.1 Polynomial Inner Product

The dot product of two polynomials P and Q defined over a band Q̌
`;m is

hP;Qi`;m
defD

X

xn2ˇ`;m

P. Qxn/Q. Qxn/ D P
T

A`;mQ;

where P is the column vector of coefficients of P in the basis of monomials

P.x/ D
X

jt j<p

P Qt x
p:

For all m, the symmetric matrices A`;m of size p.p C 1/=2 � p.p C 1/=2 are the
matrices of the dot products over Q̌

`;m for discrete polynomial vectors expressed
in the basis of monomials, defined by

(B.1) 8m D 0; : : : ; 2` � 1; .A`;m/es;Qt
defD

X

xn2ˇ`;m

. Qxn/sCt :

These matrices are computed iteratively during the Alpert transform.
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B.2 Initialization

The finest partition S D
S2�L�1
mD0 ˇLm is computed by recursive splits as ex-

plained in Section 5.1. For all m 2 f0; : : : ; 2�` � 1g, one needs to compute the
polynomial PLm of degree p that interpolates fj on ˇLm,

8xn 2 ˇLm; PLm. Qxn/ D fj Œn�:

These polynomials correspond to the finest scale representation of fj in the basis of
local monomials. The matrices ALm must also be calculated with (B.1) for ` D L.

B.3 Computation of Alpert Coefficients

For each scale ` D L; : : : ;�1 and each m, the pair of polynomials .P0; P1/
defD

.P`;2m; P`;2mC1/ is decomposed into a sum of a polynomial P
defD P`C1;m defined

on the whole band ˇ`C1;m and a residual .Q0;Q1/ that is orthogonal to polynomi-
als of degree less than p � 1. The polynomials P0 and Q0 are restricted to Q̌

`;2m,
and the polynomials P1 andQ1 are restricted to Q̌

`;2mC1, whereas the polynomial
P D P0 � Q0 D P1 � Q1 is restricted to Q̌

`C1;m. In the following we denote

A0 D A`;2m, A1 D A`;2mC1, and A
defD diag.A0; A1/.

The residual polynomials .Q0;Q1/ are computed as the projection of .P0; P1/
onto a set of orthogonal couples of polynomials f.h0t ; h1t /g0�jt j<p . Each couple

ht
defD .h0t ; h

1
t / is the piecewise polynomial that interpolates the bandelet vector

‰
`Qi for Qi defD p.pC1/i=2C Qt over the set of locations Q̌

`C1;m D Q̌
`;2m[ Q̌

`;2mC1,

8 Qxn 2 Q̌
`;2mC�; b

`;Qi Œn�
defD h�t . Qxn/ for � 2 f0; 1g:

The bandelet piecewise polynomials ht are computed by satisfying two criteria:

� Orthogonality. For each 0 � jt j; jt 0j < p, one should have

ıt;t 0 D
X

xn2ˇ`C1;i

ht . Qxn/ht 0. Qxn/

D
X

xn2ˇ`;2i

h0t . Qxn/h0t 0. Qxn/C
X

xn2ˇ`;2iC1

h1t 0. Qxn/h1t . Qxn/
(B.2)

where ı is the Kronecker symbol.
� Vanishing moments. For each 0 � jsj; jt j < p, ht is orthogonal to the

monomial xs defined on Q̌
`;m,

0 D
X

xn2ˇ`C1;i

ht . Qxn/. Qxn/s

D
X

xn2ˇ`;2i

h0t . Qxn/. Qxn/s C
X

xn2ˇ`;2iC1

h1t 0. Qxn/. Qxn/s:
(B.3)
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One can express conditions (B.2) and (B.3) in matrix form in the basis of the mono-
mials as

(B.4)
�
(B.2) ” H TAH D Id

�
and

�
(B.3) ” ŒA0; A1�H D 0

�
;

where the column of index Qt of the matrix H of size p.p C 1/ � p.p C 1/=2 is
Œh0t Ih1t �. Conditions (B.4) mean that

A1=2H is an orthogonal basis of the kernel of ŒA0; A1�A
�1=2:

MatrixH can thus be computed with a constant number of operations proportional
to .p.p C 1/=2/3. The residual is computed by ŒQ0IQ1� D HŒP 0IP 1�, and
the low-scale polynomial is P D P0 � Q0. The bandelet coefficients are the
projections of .Q0;Q1/ onto the computed basis using the dot product defined
by A,

hfj ; ‰`emi D hh0t ;Q0i`;2m C hh1t ;Q1i`;2mC1 D .ht /
TAŒQ0IQ1�

for em defD p.p C 1/i=2C Qt . The dot product matrix for the next scale is computed
using A`C1;m D A`;2m C A`;2mC1.

A constant number of operations is needed to compute each bandelet matrixH
and to update matrices A`;m for each scale 2`. Since this process is repeated N=2`

times for each scale, the overall complexity of the algorithm is O.N/ to transform
N wavelet coefficients fj Œn�.
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