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Manifold Models for Signals and Images

Gabriel Peyré ™

CNRS and CEREMADE, Université Paris-Dauphine

Abstract

This article proposes a new class of models for natural signals and images. The
set of patches extracted from the data to analyze is constrained to be close to a
low dimensional manifold. This manifold structure is detailed for various ensembles
suitable for natural signals, images and textures modeling. These manifolds provide
a low-dimensional parameterization of the local geometry of these datasets. These
manifold models can be used to regularize inverse problems in signal and image
processing. The restored signal is represented as a smooth curve or surface traced on
the manifold that matches the forward measurements. A manifold pursuit algorithm
computes iteratively a solution of the manifold regularization problem. Numerical
simulations on inpainting and compressive sensing inversion show that manifolds
models bring an improvement for the recovery of data with geometrical features.
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Capturing the complex geometry of signals and images is at the core of recent
advances in sound and natural image processing. Edges and texture patterns cre-
ate complex non-local interactions. This paper studies these geometries for several
sounds, images and textures models. The set of local patches in the dataset is mod-
eled using smooth manifolds. These local features trace a continuous curve (resp.
surface) on the manifold, which is a prior that can be used to solve inverse problems.
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1 Introduction

1.1 Previous Works

Global manifold models for image libraries. Dimensionality reduction meth-
ods such as Isomap [1], eigenmaps [2], LLE [3] or diffusion geometries [4] have be
used to study the manifold structure of a library of images. The manifold regularity
of certain images ensembles is emphasized by Donoho and Grimes [5] and Wakin
et al. [6]. These global non-linenar models have applications to image synthesis in
computer vision [7]. Manifold valued functions are introduced in [8] and can be pro-
cessed using multiscale methods. A global manifold model is used by Baraniuk and
Wakin [9] to reconstruct an image from compressive sensing measurements.

Local edge manifold and cartoon images. The study of set of patches of 3 x 3
pixels extracted from natural images has been carried over by Lee et al. [10]. They
report statistical evidences showing that the set of high contrast patches is located
around the manifold of edges. These results have been refined by Carlsson et al. [12]
that perform a simplicial approximation of the manifold.

Manifold parameterizations of local structures such as edges and corners is used in
computer vision to detect salient features in images. Baker et al. [13] propose fast
algorithms to search in a feature manifold. Huggins and Zucker [14] propose a local
principal components analysis over a feature manifold to speed up computations.

Images with contours contain sharp variations along regular curves that make wavelets
sub-optimal because of their square support [15]. Total variation methods [16] can-

not make use of the regularity of the edge curves since they only constraint the

overall length of the edges. A simple image model to describe geometric images is

the cartoon model introduced by Donoho [17]. A cartoon function is regular out-

side a set of edge curves which are themselves regular. Several tools from harmonic

analysis give optimal representations for such cartoon functions, including wedgelets

[17], curvelets [18] and bandlets [19,20].

Cartoon images and the edge manifold is studied in Section 3.2.

Locally parallel textures. Some natural textures are composed of nearly parallel
stripes that are modeled as local oscillations. This model of locally parallel textures
is the extension to images of the model of locally stationary sounds. This model is
studied Ben-Shahar and Zucker [21] who emphasis the role of the regularity of the
underlying flow in image perception. Spatially varying orientations has been used
in psychophysics as the simplest model for geometric textures, see for instance the
model of second order edges of Landy and co-workers [22].

Demanet and Ying [23] propose a waveatom basis to capture efficiently the anisotropic



regularity of such textures. Adaptive decomposition such as the grouplets bases of
Mallat [24] capture efficiently turbulent textures. The idea of characterizing textures
as highly oscillating function has been introduced by Meyer [25]. Efficient algorithms
to process such textures have been proposed by Aujol et al. [26] among others.

Section 3.3 studies locally parallel textures and shows how a patch manifold can be
optimized to capture specific texture patterns.

Non-local and sparse patch processing. The most successful texture syn-
thesis algorithms perform a consistent recopy of pixels and patches [27,28]. Local
manifolds of patches have been used for texture synthesis and modification [29,30].
Non-local filtering based on patch comparison has be proposed by Buades et al. [31]
to perform denoising, and adapted orthogonal basis can be constructed from non-
local graphs [32]. Non local regularization is able to solve inverse problems such as
super-resolution [33Jor compressive sensing [34]

Wavelets and more recent tools from harmonic analysis [15] leads to efficient image
compression, but fail to capture the geometry of natural images and textures [35].
The weakness of fixed representations can be alleviated by learning a dictionary
from examples. Olshausen and Field [36] obtained an optimized set of oriented filters
trained on patches extracted from natural images. Other algorithms have then been
proposed that minimizes various sparsity enforcing criterions, see for instance [37—
40]. These dictionary on small patches can be used to perform image denoising [41],
facial image compression [42] and to solve inverse problems such as inpainting [43]
or image separation [44].

Section 3.5 details a sparse model for patches originally introduced by Peyré [45] for
texture synthesis. It fits into our patch manifold framework, and can thus be used
to regularize inverse problems, as shown in Section 4.

1.2  Contributions

Section 3 details several patch manifolds for signals and images. This extends previ-
ous studies that consider mainly local edge models and makes the connection with
non-local filtering and sparse patch decompositions.

Section 4 proposes a manifold regularization to solve inverse problems, which relies
on the local manifold structure of images. Numerical results are shown on inpainting
and compressive sensing reconstruction. This extends global manifold regularization
that works for library of images and regularization with sparsity prior in patch
dictionaries.



2 DManifolds of Signals and Images Patches
2.1 Local Manifold Model for Patches

A patch p,(f) of width 7 > 0 extracted from a signal (d = 1) or image (d=2)
f € L*([0,1]%) around x € [0,1]%

vte[-r/2,7/2]Y,  p(f)(t) = fz +1). (1)

The point z is the center of the patch p,(f) and the width 7 controls the size of
typical features one wants to analyze.

A signal ensemble © C L?([0, 1]?) gathers typical data one is interested in. The patch
manifold associated to this ensemble is

M= {pa(g) \w € 0.1)%,g € O} C L*([~r/2,7/2)%. 2)

Section 3 details the structure of M for various signal and image ensembles O.
Section 4 uses a fixed manifold M to regularize inverse problems.

Figure 1 shows two examples of image and texture ensembles ©. The patches ex-
tracted from these images are parameterized by a small number of variables (for
instance the direction of the edge, the orientation and frequency of the texture) so
that the set /\/l has the structure of a smooth manifold.

Eﬂﬂﬂﬂﬂ III[III

Fig. 1. Ezamples of patches py(f) € M extracted from images f € © in the cartoon images
ensemble (left, see section 3.2) and in the oscillating textures ensemble (right, see section

3.4).

2.2 Manifold Parameterization

The set M is assumed to have a smooth manifold structure and is thus locally
parameterized around a feature p € M using a smooth mapping

0:QCR™ — () C M,

where p € ¢(2). The dimension m gives the number of parameters that describe the
local geometry of images in ©.



All the manifold studied in the sequel are globally described using a small number m
of parameters. A global parameter domain Q C R™ 7 x (S')* is used to parameterize
the whole manifold. The circle S' = {0\ |0| = 1} ~ [0,27) is used to account for
directional features and can be replaced occasionally by the set of orientations (half
circle)

St = (S8'/ ~) ~0,n) where (0 ~0 <= 0=0modm).

Thanks to this global parameterization, any signal f € © is represented as a curve
(for signals when d = 1) or a surface (for images when d = 2) traced on the manifold
M and equivalently over the parameter domain 2

cpix = p(f) eM,

_ (3)
Crra o™ pa(f)) C .

For signals (resp. images) with periodic boundary conditions, the corresponding
curve (resp. surface) is closed (resp. is topologically equivalent to a torus).

The mapping ¢y is a manifold valued function and in the following, one denotes by
V(M) the set of such manifold valued functions from [0, 1]¢ to M. Such functions
have been studied in [8].

2.3  Global Manifold Model for Signals and Images

The local manifold M introduced in (2) defines a patch manifold model that assigns
to any patch p € L*([~7/2,7/2]?) its distance to M

d(p, M) = |p — Proj(p)| where Proj,(p) = argrﬁin Ilp —ql (4)
qc

The goodness of fit d(p, M) to the manifold model is extended to any signal or image
f by averaging the distances of all the patches

Eu(f)= [ (), M= |

.70 1P2(F) = Proju(pu( MPdz. (5)

A signal or an image f with a low energy En(f) traces a curve (resp. a surfaces)
cr = {p2(f)}zeo,1)e close to the low dimensional manifold M. This curve is projected
on the manifold M and on the parameter domain €2 as follow

¢j(z) = Projy(p:(f)) € M and  Cp(z) = ™! (&(2)) € Q. (6)

The projection Proj,(f) of a signal f on the patch manifold model generated by
M is achieved by computing the set of patches cf(x) = p,(f), projecting these
patches on the manifold éf(x) = Proj,,(cs(x)) and then reconstructing a signal
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Proj(f) = Aver(¢y) from ¢; using the averaging operator

Aver(c)(x) = ! /|x_z|<7/2 p.(x —z)dz with p, = ¢(z). (7)

—d

Section 3 studies for several signal and image ensembles © the geometry of ¢¢. Section
4 uses the manifold energy Es to regularize inverse problems.

3 Examples of Patch Manifolds

This section studies the manifold model introduced in the previous section for various
image and signal ensembles ©.

3.1 Manifold of Smooth Variations
Smooth signals and images f belongs to the set

of
ﬁxi

@={feCl([O,l]d)\Hf\|oo<amax and |

< bmax} .
[e.9]

Typical patches from functions f € © are well approximated by affine functions

a(z) = f(z),
b(x) = V.f.

VIt <7/2, p(f)(t) = a(x) + (b(x), t) where

This leads us to consider the patch manifold of affine functions
M = {Pap \ |a] < @max and |b;] < bmax}, where pup:t—a+ (b t) (8)

which is close to the true manifold M generated by patches of © as defined in 2. In
the following, for simplicity, we do not make the distinction between M and M.

This affine manifold is parameterized globally as follow

[_ama}oamax] X [_bmaxa bmax]d — M

Q:
(a,b) — (ta+ (b 1))

This shows that M is a flat Euclidean manifold of dimension d+1. Geodesic distances
along M are equal, up to a constant, to the Euclidean distance over the parameter
domain. This analysis can be carried over for functions of higher smoothness or
for bandlimited functions. These smooth signals ensembles are processed optimally
using linear Fourier decomposition and linear filtering.



The projection Proj,(p) of p € L*([~7/2,7/2]¢) is computed by a linear regression.

Uniformly regular 1D signals. Smooth periodic signals in 1D are locally de-
scribed using the 2D manifold M of affine 1D functions. Each signal f defines a 1D
submanifold ¢y C M, see equation (6). This submanifold corresponds to a curve
over the parametric domain

Vo e[0,1], Crlx) = ¢ (Proju(pa(f))) = (f(2), f'(x)) € R

Figure 2, shows an example of a smooth function f together with the corresponding
embedding ¢ in (b). This shows that ¢ exihibits a finite number of self intersections,
which corresponds to points x # y where f(z) = f(y) and f'(z) = f'(y).

0 L N L L L L
0 o1 02 03 04 05 06 07 08 09 1

Signal f Curve ¢
Fig. 2. Manifold of smooth signals.

Uniformly regular 2D images. Smooth images f with periodic boundary con-
ditions are described using the 3D manifold M of affine images. The manifold M
thus defines a surface

va € 0,172 c}<x1,x2>=go-1<ProjM<px<f>>>z<f<:v> of af)eRi”.

’ 85[)1 ’ 8332

Figure 3, left, shows an example of a regular image, that is generated as a realization
of a Gaussian random field X whose power spectrum satisfies | X (w)| = (1 + |w|)™"
for a regularity exponent r > 1 (for the figure we have set r = 3).

Figure 3, right, shows the corresponding 2D surface ¢; embedded in the 3D volume
Q = ¢ 1(M). This surface is topologically equivalent to a torus but exhibits self
intersections along 1D curves.

3.2 Manifold of Cartoon Images

Uniformly smooth signals and images are of little practical interest to model natural
datasets. Signals with step discontinuities can be efficiently processed with wavelets
that avoid ringing artifacts of a linear Fourier approximation. Image with contours
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Fig. 3. Manifold of smooth images.

contains sharp variations along regular curves that makes wavelets sub-optimal be-
cause of their square support [15].

A simple model of binary images is defined as
©= {13 * h(z) \ B C [0,1]* with 0B regular} :

where h is a regular kernel. The compact set B represents the object of interest in
the scene. It is supposed to be connected with 0B of bounded curvature. This model
can be extended to multiple objects as long as their boundaries are separated by a
distance larger than 7.

Locally a patch of f is well approximated by a single straight edge
Po(f)(t) = Pows@)(t)  where  Pg)(t) = P(Ro(t — (4, 0)))7

where Ry is the planar rotation of angle §. The step is P = h * P where P(t) =0
if ¢, < 0 and P(t) = 1 otherwise. Figure 4 shows some examples of typical edge
patches.

m|
et
-

Fig. 4. Left: an example of cartoon image. Right: parameterization of the manifold of edge
patches and some examples.

5\70

This leads to the following 2D parameterization of the manifold of binary edge
patches

S xRt — M

(9)
(0, 5) — P(g’(g).



The manifold M is thus topologically equivalent to a cylinder, however, due to the
lack of translation invariance when the edge approaches the boundary of [—7/2, 7/2)?,
the manifold is not flat. Indeed the two constant functions equal to 0 and 1 play a
special role of poles. Figure 5 shows a 3D display of the corresponding embedding.
We note that for this edge manifold, one generally has M = C ¢ since the boundary
OB covers all the orientation § € S'. However the surface C; traced by f on the
parameter domain S* x Rt can be complex when 9B exhibits concavities that lead
to self intersections of Cy. Figure 5 shows curves that correspond to a 1D sections
in Cs. These curves trace closed loops on the manifold M.

- A

A

Fig. 5. Left: a cartoon image. Right: 3D representation of the edge manifold M (depicted
in 3D as a cylinder). The two curves on the manifold corresponds to patches extracted
along the two lines in the image.

3.8  Manifold of Locally Stationary Sounds

Natural sounds are usually modeled as highly oscillating signals with a phase that
is slowly varying. Such a signal can be written as

f(x) = A(z) cos(¥(x)),

where A(z) > 0 is the local amplitude, and ¥'(x) > 0 the local phase of the os-
cillations. Such a decomposition is however non uniquely defined and one usually
assumes that A and V'(z) are slowly varying with respect to the signal sampling so
that they can be reliably estimated. This leads to the following signals ensemble

O ={z— f(z) = A(z) cos(¥(z)) \ [A'loc € Amax and [ ¥"]oc < Winax-}

This model of locally stationary signals leads to the manifold of constant oscillations

M = {P(A,p,a) \N\A>0 and p>0 and §€ Sl}
where  Pa,,4)(2) = Acos(px +6).



The parameterization (A, p,d) — P4 ,s) shows that M is equivalent to Q = R x
Rt x S*.

The projection of a patch p € L*([~7/2,7/2]) on M can be carried over approxi-

mately using a windowed Fourier transform. One uses a smooth window function h
supported on [—7/2,7/2] and defines the windowed Fourier transform of p

plw) = / h(t)p(t) exp(—iwt)dt.
Following Delprat et al. [46] (see also [15]), the projection of p is then given as

) p = argmax [p(w)|
Proj,(p) = Pa,s where w0 (10)

B(p) = Aexp(id).

A 1D signal f defines a 1D curve ¢; C M traced on the manifold and a 1D curve
Cs in 3D parameter space

Cr = {(A(x), p(2),6(2)) }ecpoy) Where  Praw) pw)s) = Proju(pe(f))-

Figure 6 shows examples of a locally stationary oscillating signal together with its
spectrogram and the corresponding curve Cy over the parametric space.

el

Fig. 6. Upper-left: 1D signal of a bird singing, bottom left: the corresponding log-spectro-
gram log(|pz(f)(w)|) (the blue curve is the mazxima curve (x,p(x))), right: the 2D curve

(A(x), p(x)). For the display, the curve has been disconnected in areas where the bird stop
singing (characterized by a low value of A(x)).
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3.4 Manifold of Locally Parallel Textures

Some natural textures are composed of nearly parallel stripes that are modeled as
local oscillations. A locally parallel texture is defined as f(z) = A(x)h(¥(z))+ B(x)
where V, U controls the direction and frequency of the oscillations around the point
x, A(x) is a local amplitude, B(z) a local shift, and A : R — R is the 1D profile
of the oscillations. This model of locally parallel textures is the extension of locally
stationary sounds to images, if one considers the case h(x) = cos(z). Figure 1, right,
shows examples of locally parallel textures.

A local texture patch is approximated as
Pa(f) = Pla@),B2),p(@)0(2)6(x) Where P p o6 (x) = Ah(p(z, 0) +6) + B.

The parameter € S' is the direction of the oscillations, p their frequency and 9 is
a phase shift. The manifold M is parameterized as

Rt x R x Rt xS! x S' — M
o (11)
(AJ B? p? 97 5) — P(A,B,pﬂ,(s)'

An approximate estimation of (p(z),0(x),d(z)) from a texture f can be carried over
using local Fourier expansions over windows of size 7 as defined in the 1D case in

equation (10).
N 77

N

Image f Subsampling Proj v (f)
Fig. 7. An image and its projection Projy(f) on the manifold model of oscillating textures.
The center image displays a projection computed with a subset of non-overlapping patches
pz(f), to better see the importance of translation invariance.

h
L

The feature manifold depends on the specific choice of the profile h
M= My = {P(A,B,p,975) \ (A, B,p,@,(S) € Q} .
An adaptation of the manifold to an exemplar f € L*([0,1]%) to process is achieved

by optimizing the profile h so that the patches of f are as close as possible from the
manifold M. This amount to minimizing the energy Ej, defined in (5) to select

11



an adapted profile h*

h* = argmin En, (f), (12)
heH

where H C L*(R) is a set of profiles, that might for instance contains some smooth-
ness constraints on the texture profile.

We restrict the computation to a simple set of 1D profiles parameterized by a contrast
7 €(0,1]

h~(z) = sign(sin(x))| sin(z)|”. (13)
The optimal v minimizing Epy, (f) is computed by testing a discrete set of values in
[0, 1]. Figure 7 shows examples of projection with v = 0.35, which is the value mini-
mizing E, (f) for the fingerprint image f. More elaborated adaptation strategies
could be used to fit arbitrary texture profiles.

3.5  Manifold of Sparse Patches

Sparse patch expansion. The sparse patch model assumes that each patch p,(f)
extracted from a signal or image f has a sparse expansion

palf) = X sali)gs = Ds,

using a dictionary D = {p;}2! of P atoms. Each o; € L*([-7/2,7/2]%) is an
atomic template and s,(i) € R is the corresponding coefficient. The sparsity of the
decomposition is ensured by constraining the ¢° pseudo-norm of the coefficients to
be smaller than S € N*

Isello = # {0\ s2(i) # 0} < S.

This leads to the manifold of sparse patches

M= Mp = {Zsum \Jslo < s} .

%

This set M is not a smooth manifold but rather a non-linear union of S-dimensional
linear spaces. It is parameterized by the dictionary D and the sparsity level S.

The corresponding signal ensemble © with sparse patches is
©=0p={f\Vz, p.(f) = Ds, with |[s;]|p < S} (14)

This model has been introduced by Peyré [45] for texture synthesis and is re-casted
in our manifold patch model.

The projection on the sparse manifold M requires the computation of

Proj\(p) = argmin |p — Ds|,2 subject to |s]n < S.
sER™
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The exact computation of this projection is NP-hard for an arbitrary dictionary D,
but it can be solved approximately using for instance S' steps of orthogonal matching
pursuit algorithm, see [15].

Dictionary learning. The manifold M is optimized so that a given exemplar
f is as close as possible to ©p. This corresponds to the learning of the dictionary
D, that is optimized in order to minimize the goodness of fit of f to the model
generated by D
D* = argmin Ex, (f) (15)
D

where the energy Fuq, is defined in (5). This is similar to the adaptation of the
profile to optimize the oscillating texture model (12). In the optimization (15), the
atoms ¢; of D are only constrained to be of unit norm, |¢;| = 1.

The optimization (15) is re-written by optimizing over both the dictionary D and
the coefficients s, of the patches p,(f)

(D*, {sk}.) = argmin > _ |p.(f) — Ds,|* subject to |s,|e < S. (16)

1Sz fx x

This optimization problem is highly non-convex and a stationary point of Ex,,
with respect to D can be computed using several iterative algorithms, for instance
the MOD algorithm [37] or K-SVD [40]. Table 1 details the MOD optimization
process, that alternates between the computation of the coefficients {s,}, and the
optimization of the dictionary atoms ¢;.

Table 1 MOD dictionary learning algorithm.

(1) Initialization: set each ¢; as a realization of a white noise, normalized so that

lpill = 1.
(2) Coefficient update: compute the projection Ds, of each patch p,(f), on the
manifold M

s, = argmin |p,(f) — Ds| subject to |s|po < S.

This is computed approximately with S steps of orthogonal matching pursuit

applied to p,(f).
(3) Dictionary update: the dictionary D is computed by minimizing

win Y [pa(f) — Dsa |,

whose solution is given as
D« PST  where St =(5T9)"'s"t

where S = {s,}, is the matrix whose columns are the coefficients s, and P =
{p=(f)}+ is the matrix whose columns are the (discretized) patches p,(f).

(4) Normalization: for all i, ¢; — ¢;/|vil.

(5) Stop: while not converged, go back to 2.

13



Figure 8 shows an example of a dictionary learned from an homogeneous texture.

Ryd=T TN Ml el
LINE P B ielf
AR PURRF TV
MM SL =TI T A
MUEPFLALUYTAT Y
AYVRATITDwLLNE
e OV ¥ hivi 90 L0
EUEF R T ARNE=ITNANNTNG

Fig. 8. Left: input texture f, right: dictionary D learned to sparsity the patches pz(f).

learning
—

4 Inverse Problem Regularization with Manifold Models
4.1 Inverse Problems

The manifold prior model introduced in Section 2.3 is used to regularize the inversion
of an operator ® : L*([0,1]%) — V, where V is an Hilbert space of finite or infinite
dimension. The mapping & is typically ill-posed and difficult to invert since ®f
gathers only a limited amount of information from the original f to recover.

Forward measurements correspond to the computations of
y=0f+cecV,
where f is the data to recover and ¢ is an additive noise.

Regularization theory assumes that f belongs to some functional space H such as a
Sobolev space (linear regularization) or the space of bounded variations (non-linear
regularization). The recovered signal f* is the solution of an optimization problem

f* = argmin |y — ®g|* + A\E(g), (17)
geH

where E should be small when g is close to the smoothness model. The weight A
should be adapted to match the amplitude of the noise €, which might be a non-
trivial task in practical situations.

Classical variational priors include

— Total variation: The bounded variation model imposes that f* has a finite bounded
variation and uses

E(g) = lglrv = [ IVagldz, (18)

14



This prior has been introduced by Rudin, Osher and Fatemi [16] for denoising
purpose.

— Sparsity priors: Given an orthogonal basis {1}, }+ of L*([0, 1]%), a sparsity enforcing
prior is defined as

E(g) = Ek: (g, ¥r)]- (19)

This prior has been introduced by Donoho and Johnstone [47] with the wavelet
basis for denoising purpose. It has then been used to solve more general inverse
problems, see for instance [48] and the references therein. It can also be used
in conjunction with redundant frames instead of orthogonal bases, see for in-
stance [49,50].

4.2 Regularization with Manifold Model

This paper explores the global manifold energy E = E defined in equation (5) to
perform the regularization. The optimization (17) with £ = E, is performed by
introducing a manifold valued function ¢* € V(M). At each location z, the patch
c*(x) € M is tracking a local feature of f* and should be close to p,(f).

The optimization (17) is re-written using ¢* as

(f*a C*) = argmin SM (97 C)7 (20)
(9:0)€L2((0,1])x V(M)
where Elg.c) =y = 2o A [ Ipalo) —e(n)Pde(21)

whose solution f* also solves the original problem (17) for E = E .

The manifold valued mapping ¢* should be close to the original projected curve (or
surface when d = 2) é; as defined in (6). The manifold regularization of inverse
problems (20) computes a curve (or surface) traced on the manifold M that also
matches the forward measurements .

A stationary point of (20) is computed by alternatively minimizing over f* and ¢*:

— The image is fived. The manifold valued function ¢y minimizing Er¢(g,c) with
respect to ¢ € V(M) is computed with the projection defined in equation (4)

Va €[0,1%  co(z) = Projy(p.(9))- (22)

— The manifold-valued mapping is fived. The signal go minimizing Exq(g, c) with
respect to g € L2([0,1]%) is the solution of

(@T® + Ald) gy = "y + AAver(c)

where the averaged signal Aver(c) € L*([0,1]%) of ¢ is defined in (7).

15



The iteration of these two steps corresponds to the manifold pursuit detailed in table
2.

Table 2 Manifold pursuit to minimize (20).

(1) Initialization: set f© = ®Ty and k «+ 0.

(2) Manifold closest point: update the manifold valued function as

Vae[0,1]4  * D (2) = Projy(p.(f™)),

where the manifold projection Proj,, is defined in (4).
(3) Least square fit: update the current estimate as

fED = (TP + A1)~} ((IDTy + )\Aver(c(k+1))) :

and where the averaging Aver(c**1)) of ¢**1 is defined in (7).
(4) Stopping criterion: while not converged, set k < k + 1 and go back to 2.

The algorithm of table 2 shares some similarities with iterative thresholdings meth-
ods used to solve the non-linear regularized inversion (17) with a sparsity prior (19),
see for instance [48]. To handle the noiseless case € = 0, the value of the regulariza-
tion parameter A can be decreased toward 0 during the iterations.

The main computational burden in the manifold pursuit is the numerical compu-
tation of the projection Proj,, on the manifold. Depending on the image model
considered, specific solvers can be used. For complex manifolds without any ana-
lytical description, a dense sampling of the manifold is used together with a fast
closest-point algorithm.

Since the energy to optimize (20) is non-convex, the manifold pursuit might fail to
converge to the global minimizer of the problem. For a smooth manifold M, the
iterates (f*),c®)) of the algorithm 2 converge to a stationary point (f*,c*) of the
energy € since this energy satisfies the hypotheses of [51].

4.8  Numerical Fxperiments

Although any linear operator can be treated within our regularization framework,
this paper focusses on the following examples.

— Inpainting corresponds to the operation of removing pixels from an input data

0 if ze€q,
@) if wgQ,

(@f)(x) =

where Q C [0,1]% is the region where the input data has been damaged. Classical
methods for inpainting use partial differential equations that propagate the infor-
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mation from the boundary of €2 to its interior, see for instance [52-55]. Sparsity
promoting prior such as (19) in wavelets frames and local cosine bases have been
used to solve inpainting as a inverse problem [49,50].

— Compressive sensing is a new sampling theory that uses a fixed set of linear
measurements together with a non-linear reconstruction [56,57], see also the review
[58]. The sensing operator computes the projection of the data on a finite set of k
vectors

of = {{f, u) 5l € R (23)
The signal are discretized finite dimensional vectors f € R™. Compressive sensing
states hypotheses on both the input signal f and the sensing vectors {u;}; for this
non-uniform sampling process to be invertible with ¢! minimization. The sensing
vectors {u;}; must be incoherent, which is the case with high probability if they
are drawn randomly from unit norms Gaussian white noise vectors. Under the
additional condition that f is sparse in some orthogonal basis { }«

# {3\ {f5 w) # 0} <5,

the optimization of (17) with the sparsity prior (19) leads to a perfect recovery
f*=fif k= 0(Slog(n/S)), where n is the dimension of the sampled signal f.
This result holds in the noiseless case ¢ = 0, A — 0 and can be extended to an
approximate recovery in the noisy case € # 0, A > 0.

The following numerical experiments compare the efficiency of sparsity regularization
with ¢! prior (19) with the patch manifold energy Fi (5). Sparsity regularization
leads to a convex optimization, which is an advantage over the non-convex manifold
regularization that might be trapped in a local minimum.

For numerical computation, discretized signals and images are obtained by an uni-
form sampling at n points. The corresponding manifolds of patches M C R™" are
embedded in a finite dimensional space. The following numerical experiments are
performed with patches of width w = 10 pixels. Compressive sensing experiments
are performed with sensing vectors u; that are random discrete Fourier vectors,
which allows one to compute the sensing operator ® with the FFT algorithm.

Smooth images. Figure 9 shows iterations of the algorithm 2 to solve the in-
painting problem on a smooth image using a manifold prior with 2D linear patches,
as defined in 8, with a low amplitude noise €. This manifold regularization together
with the overlapping of the patches performs a smooth interpolation of the missing
pixels.

The iterations of the algorithm are similar to a linear diffusion that propagates the
available information inside the set (2 of removed pixels. The performances of the
algorithm are similar to linear methods such as inpainting with a Sobolev regularizer
E(f) = [|Vf|? that corresponds to a heat diffusion inside ).

Cartoon images. Figures 10 and 11 show iterations of the projection algorithm 2
with a manifold model of binary edges, as defined in equation (9). For this numerical
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Measurements y Iter. #1 Iter. #3 Iter. #50
Fig. 9. [Iterations of the inpainting algorithm on an uniformly regular image.

optimization, the manifold of edges is discretized as already done for the display of
figure 5 and the projection Proj,, is computed with a fast nearest-neighbor search.
For both inpainting and compressive sampling, the manifold of edges allows to re-
construct with good precision the boundary of a single smooth object (here a disk).

» 906

Measurements y Iter. #1 Iter. #3 Iter. #50
Fig. 10. Iterations of the inpainting algorithm on a geometrical image with the binary edge

model.

Iter. #1 Iter. #2 Iter. #3 Iter. #50

Fig. 11. [Iterations of the compressive sensing reconstruction algorithm on a geometrical
image with the binary edge model. The number of sensed vectors is ng = n/10 where n is
the number of pixels.

Figure 12 shows a more challenging compressive sensing problem where the image
is composed of layers of occluding objects with smooth boundaries and varying
intensities. In order to cope with a non-binary image, the manifold of affine edges is
used

M ={aPys+b\ (0,0) €S' xR" and (a,b) € R" x R}. (24)
This manifold is four dimensional, but the projection on this manifold is computed
efficiently by iteratively optimizing the projection over (6,d) parameters and then
the (a,b) parameters. The patches extracted from figure 12, left, are however not
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always close to this manifold because of crossings that occur when two singularity
curves meet.

Figure 12 compares the compressive sensing reconstruction with a sparsity prior (19)
in a translation invariant wavelet frame (center) and with a manifold prior in the
affine edges manifold (24). The optimization of the sparsity energy (19) is performed
with an iterative thresholding algorithm, see [48], whereas the optimization of the
manifold energy (20) is performed with the algorithm 2. The reconstruction with a
manifold prior is of better quality than the sparsity prior in a wavelet frame. This is
because, in 2D, wavelets cannot take advantage of the regularity of the boundaries
of the objects.

\ v v

Original f Wavelets, SNR=25.7dB Manifold, SNR=31.3dB

Fig. 12. Compressive sensing reconstruction results on a geometrical image with sparsity
prior in wavelets and with the manifold model of affine edges. The number of sensed vectors
is ng = n/8 where n is the number of pizels.

Locally parallel textures. Figure 13 shows an example of inpainting of a fin-
gerprint image using the manifold of 2D oscillations (11). Figure 14 shows the com-
pressive sensing reconstruction from the same image, where the manifold prior is
compared to a sparsity prior (19) in a local Gabor redundant frame, see [15]. Such
local oscillating atoms have been introduced with success for texture decomposition
and inpainting in [49,50]. The manifold prior is better able to capture the geomet-
ric regularity of the texture than the sparsity prior that diffuses the orientation
information over several Gabor coefficients.

Iter. #1 Iter. #2 Iter. #3 Iter. #50

Fig. 13. Iterations of the inpainting reconstruction algorithm on a locally parallel texture.
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Original f Gabor, SNR=7.9dB Manifold, SNR=9.5dB
Fig. 14. Compressive sensing reconstruction results on a locally parallel texture with spar-
sity prior in a redundant Gabor dictionary and with the manifold model. The number of
sensed vectors is ng = n/4 where n is the number of pixels.

Sparse patches. Figure 15 shows a reconstruction from compressive sensing using
a manifold prior in the sparse texture ensemble (14). The dictionary D is learned
by minimizing Fuq, (fe) for an exemplar texture f. that is close to the texture f to
recover. In practice, both image are extracted from different localization of the same
image. The central part of the texture is badly reconstructed, because this part is
not similar to the exemplar f,.

Original f Iter. #1 Iter. #1 Iter. #20

Fig. 15. [Iterations of compressive sensing reconstruction results using a manifold model
in a learned dictionary. The number of sensed vectors is ng = n/6 where n is the number
of pizels.

Figure 16 shows a comparison of inpainting with a sparse prior (19) in a translation
invariant wavelet frame and a sparse patch manifold model prior. The dictionary
D is learned from a set of patches p,,(y) extracted from the observed data, where
the point x; are located at a distance larger than 7 from the missing region to be
inpainted. The resulting algorithm is similar to the inpainting algorithm of Mairal
et al. [43], although they use a more complicated scheme to learn a dictionary with
missing data.
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Measurements y Wavelets, SNR=22.5dB Manifold, SNR=31.1dB

Fig. 16. Comparison of inpainting using a sparsity prior in a wavelet basis and the sparse
manifold model with a dictionary learned from the observed data y.

Conclusion

This paper has reviewed several manifold models for sounds, images and textures.
These models constrain the set of patches extracted from the image and describe
efficiently the non-linear geometry of some classes of natural signals and images. A
new manifold pursuit algorithm is used to regularize ill-posed inverse problem while
maintaining the manifold model constraints. Results on various images and textures
show how this manifold-driven restoration enhances variational models based on
sparse expansions for inpainting and compressive sensing reconstruction.
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