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IMAGE PROCESSING

WITH NON-LOCAL SPECTRAL BASES

GABRIEL PEYRÉ∗

Abstract. This article studies regularization schemes that are defined using a lifting of the image pixels in a
high dimensional space. For some specific classes of geometric images, this discrete set of points is sampled along
a low dimensional smooth manifold. The construction of differential operators on this lifted space allows one to
compute PDE flows and perform variational optimizations. All these schemes lead to regularizations that exploit
the manifold structure of the lifted image. Depending on the specific definition of the lifting, one recovers several
well-known semi-local and non-local denoising algorithms that can be interpreted as local estimators over a semi-
local or a non-local manifold. This framework also allows one to define thresholding operators in adapted orthogonal
bases. These bases are eigenvectors of the discrete Laplacian on a manifold adapted to the geometry of the image.
Numerical results compare the efficiency of PDE flows, energy minimizations and thresholdings in the semi-local and
non-local settings. The superiority of the non-local computations is studied through the performance of non-linear
approximation in orthogonal bases.

Key words. Image processing, manifold, non-local denoising, adapted bases.
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Local Semi-local Non-local
Fig. 0.1. Representations of the discrete manifold M for the three computation modes for a regular image f .

The color at each point p ∈ M is set according to f̃(p). Left: local manifold x 7→ f(x), center: semi-local manifold

x 7→ (x, λf(x)), right: non-local manifold x 7→ px(f). The non-local manifold is a subset of R
τ
2

where τ is the
width of the patches px(f), but it can be approximately embedded in R

3 by a dimension reduction using principal
components analysis.

In order to capture the complex structure of natural images, modern processing methods need
to exploit non-local interactions. The anisotropic regularity of images is a consequence of the
geometric patterns one can find for instance along edges and textures. Recent works in harmonic
analysis such as the grouplets of Mallat [38] show how to build highly adaptive orthogonal bases to
extract elongated texture patterns. On the other hand, very effective denoising methods such as the
non-local means of Buades et al. [8] lead to an adaptive filtering without the explicit construction
of an orthogonal transform.

The main contribution of this paper is that it bridges the gap between adaptive filtering meth-
ods and thresholding in adapted orthogonal bases. In order to do so, it reviews recent approaches
to semi-local and non-local adaptive filtering of images. The use of thresholding in non-local
orthogonal bases is suggested in [50] and we further study the properties of such thresholdings.
The connexions with more traditional wavelet-based and total variation algorithms is made clear
together with a study of the pros and cons of each method.

1. Local, Semi-local and Non-local Manifolds in Images Processing. In the following,
we consider a discrete image as a finite dimensional vector f ∈ R

n, which is a mapping f : Λ → R

where the sampling grid is Λ
def.

= {0, . . . ,
√

n−1}2. These images are supposed to be sampled from a
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2 G. PEYRÉ

continuous function defined on [0, 1]2 and section 2.2 briefly studies the convergence of the discrete
operators to their continuous counterparts.

1.1. High Dimensional Lifting. In order to describe in a unified way several recently pro-
posed image restoration schemes, this paper considers a lifting that maps pixels to elements of a
high dimensional set

ϕf : x ∈ Λ 7−→ ϕf (x) ∈ M ⊂ R
d.

This lifting should really be understood as a one-to-one association so that M = (ϕf (x))x∈Λ.
Thanks to this association, one can map any function g ∈ ℓ2(Λ) to a function

g̃ : M −→ R where ∀ p ∈ M, g̃(p) = g(ϕ−1
f (p)). (1.1)

In order to process g ∈ ℓ2(Λ) (which might be different from f), one can make computations on
the lifted mapping g̃ ∈ ℓ2(M). Although computations done on g̃ can be performed equivalently
on g, it is useful to think about computations on g̃ as really making use of the geometry of M.
This paper explores various processing methods of elements of ℓ2(M) using tools from harmonic
analysis on manifolds and graphs.

It is also important to note that the lifting ϕf might depend on the image f , which can make

even linear computations on f̃ actually non-linear and adaptive.
The set M can be thought of as being sampled along a low-dimensional manifold (a surface

parameterized by a small number of relevant parameters) embedded in the high dimensional feature
space R

d. In practice, the set M can have a complex structure with a non-trivial topology, which
prevent it from being globally a smooth manifold.

1.2. From Local to Non-Local Processing. This article considers three different kinds of
such liftings ϕf , that correspond to three different computation modes.

Local processing corresponds to the traditional setting where only local interactions of neigh-
boring points in Λ are considered. The manifold is M = Λ and the corresponding lifting is
trivial,

∀x ∈ M = Λ, ϕf (x) = x. (1.2)

In this case, the feature space dimension is d = 2. All classical isotropic image processing
algorithms make the assumption that the regularity of f propagates equally in all directions over
Λ. This includes Fourier and wavelets domain image processing [37]. Figure 0.1, left, shows this
flat manifold Λ.

Semi-local processing corresponds to non-linear image processing methods where the geometry
of f can favor some local neighboring relationships in Λ. This is done through the following low-
dimensional lifting

ϕf (x) = (x, λf(x)) ∈ M = {(x, f(x)) \ x ∈ Λ} ⊂ Λ × R ⊂ R
3. (1.3)

This semi-local lifting considers f as a height field surface embedded in a feature space of dimen-
sion d = 3. The parameter λ weights the locality of the method. This lifting is implicitly used
in some recent image filtering algorithms such as Yaroslavsky’s filter [57], the bilateral filter [51]
and Susan filter [47]. In [18], Comaniciu and Meer introduces an iterative mean-shift procedure
over the semi-local set M that extends bilateral filtering. This 3D lifting is used by Spira et al.
[49] where a Beltrami flow over M allows one to perform denoising. Figure 0.1, center, shows
this semi-local manifold for a smooth image f .

Non-local processing takes into account neighboring relationship of pixels that can be far
away in the image domain Λ. Buades et al. [8] have proposed to use the following lifting

ϕf (x) = px(f) ∈ M ⊂ ℓ2(Λτ ) (1.4)

where px(f) is the patch of width τ > 0 extracted from f around x

∀ t ∈ Λτ , px(f)(t)
def.

= f(x + t). (1.5)
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where the sampling grid is Λτ
def.

= {−(τ − 1)/2, . . . , (τ − 1)/2}2 and τ is an odd integer. The set
M is composed of all the patches

M def.

= {px(f)}x∈Λ ⊂ ℓ2(Λτ ) ⊂ R
τ2

. (1.6)

The dimensionality of the feature space is thus d = τ2. The set M can be thought as a man-
ifold embedded in the Euclidean space R

d, although it often has a complex structure with self
intersections. Figure 0.1, right, shows this non-local manifold. For a smooth image f , this mani-
fold can be displayed as a 2D surface embedded in R

3 using principal component dimensionality
reduction, see section 1.3 for more details.

The geometry of the local manifold M = Λ in (1.2) is flat and hence trivial. The semi-local
manifold (1.3) also has a simple geometry because it has an explicit parameterization as an elevation
field x 7→ (x, λf(x)). This paper is focussed on the study of non-local manifolds (1.6) which are
embedded in the high-dimensional space ℓ2(Λτ ).

1.3. The manifold structure of patches. Small patches px(f) of width τ are extracted
from an image f ∈ ℓ2(Λ) as defined in equation (1.5). Each patch px(f) is a vector of R

d with
d = τ2. The point x is the center of the patch px(f) and the width τ controls the size of typical
features one wants to analyze. The set of patches M ⊂ ℓ2(Λτ ) can be thought as a set in a high
dimensional space whose geometry reflects the features of f .

The mapping x 7→ px(f) gives a trivial 2D parameterization of the set M. The set of patches
in a particular function f can thus be thought locally as a 2D sub-manifold of R

d. Excepted in
simple cases, this mapping is however globally not injective and is typically badly behaved in real
applications. Complex images f lead to set M with high curvature variations and self-intersections.
A feature p ∈ M where this set intersects itself corresponds to points x 6= y such that p = px ≈ py.

For some specific classes of images, the set of patches M = {px(f)}x∈Λ is close to a continuous
set M̃ having a manifold structure. In numerical processing of discretized images, this manifold
model assumes that M is a discrete sampling of the underlying continuous manifold M̃. After a
brief review of recent developments in the field of manifold modeling of images, we give two simples
examples (smooth images and cartoon images) where M is actually a subset of a low dimensional
smooth manifold of R

d.
Patches in natural images. The study of M for discretized images and a width τ of 3 pixels

has been carried over by Lee et al. [36]. They report statistical evidences showing that for natural
images, the set M restricted to high contrast patches is located around the manifold M̃ of edge
patches. These results have been refined by Carlsson et al. [11, 12] that perform a simplicial
approximation of the manifold. Peyré in [42] studies several models of local image manifolds for
which an explicit parameterization is available.

In computer vision, the manifold parameterization of structures such as edges and corners is
an efficient way to express the salient features detection problem. Baker et al. [3] formulate this
manifold search and propose efficient algorithms to solve it. Huggins and Zucker [32] propose a
local principal components analysis over these features manifolds in order to locally retain only
relevant quantities and speed up computations.

The geometric diffusion framework of Coifman et al. [16] can be used to process functions
defined on a graph computed from M. Szlam et al. [50] use this diffusion framework to perform
various image processing tasks. In particular they perform image denoising using a linear heat
diffusion on a graph as exposed in section 4.2. They also propose more general non-linear operators
but they do not explore this possibility any further. We show in sections 5 and 6 how these
general linear and non-linear regularization schemes on graphs relate to several recently proposed
variational methods. In particular a non-linear thresholding in an adapted orthogonal basis is
shown to perform better than a linear diffusion on the adapted graph.

The general study of library of images is emerging as an application of methods from learning
theory. In particular, the manifold structure of certain images ensembles is emphasized by Donoho
and Grimes [23] and Wakin et al. [53]. These non-linear models have applications to image
synthesis in computer vision [1] and texture synthesis in computer graphics [43, 54, 40]. They
share similarities with technics of local patch recopy following the original work of Efros and Leung
[26]. This paper shows that the set of local patches indeed often has a manifold structure that can
be exploited to perform non-local image processing such as denoising.
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The example of smooth images. A patch px(f) extracted from a smooth C2 image f has a
slowly varying intensity. In the continuous setting, such a patch is well approximated by a linear
function

px(f)(t) ≈ P(a(x),b(x))(t) where P(a,b)(t) = 〈t, a〉 + b with

{
a = ∇xf
b = f(b)

.

This shows that the patch manifold M corresponding to a smooth image is close to the continuous
3D manifold of R

d composed of linear patches

M̃ =
{
πΛτ

P(a,b) \ (a, b) ∈ R
3
}
⊂ ℓ2(Λτ )

where πΛτ
is a sampling operator that maps a continuous function to a vector defined on Λτ .

Figure 0.1, right, shows graphically the inclusion M ⊂ M̃, where the set M is displayed as a
sampled 2D surface (the grid indicates the sampling locations) included in a box that represents a
cube of M̃ (each axis corresponds respectively to values of a and b). Even in this case, one can see
that the set M does not samples the full manifold M̃ (only a 2D sub-surface). When one refines
the sampling of the original image f , the set M converges to a smooth surface embedded in M̃
that exhibits self intersections along curves.

The example of cartoon images. As introduced in [22], a cartoon image is sampled from a
function that is regular outside a set of regular edges. An even simpler model consists of images
of a binary object f = 1B where the boundary ∂B is a smooth curve. Locally a patch of f is well
approximated by a single straight edge

px(f)(t) ≈ P(θ(x),δ(x))(t) where P(θ,δ)(t) = P
(
Rθ(x − (δ, 0))

)
,

where Rθ is the planar rotation of angle θ. The vertical step edge is P (t1, t2) = 0 if t1 < 0 and
P (t) = 1 otherwise. In this simple setting, the discrete set of patches M is close to the manifold
of binary edges

M̃ =
{
πΛτ

P(θ,δ) \ (θ, δ) ∈ [0, 2π) × R
}
⊂ ℓ2(Λτ )

This edge manifold M̃ is parameterized by the orientation θ of the edge in [0, 2π) and the distance
δ of the edge from the center of the patch. Figure 1.1 shows this 2D parameterization of the
manifold of step edges.

δ

δ

0

0

θ

θ

Fig. 1.1. Left: an example of cartoon image. Right: parameterization of the manifold of edge patches and
some examples.

For this simple class of black and white images, the set M is thus approximately sampled
along a smooth manifold M̃ of dimension 2 embedded in R

d for d = τ2. In this case, the set M
samples the whole continuous manifold M̃, however this sampling might be highly non-uniform.
The manifold M̃ has the topology of a cylinder, and figure 1.2 shows an example of a discrete set
M sampled on this cylinder.
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Fig. 1.2. Left: a cartoon image. Right: 3D representation of the set M as samples of the edge manifold
M̃ (depicted in 3D as a cylinder). The two curves on the manifold corresponds to patches extracted along the two
lines in the image.

2. Diffusions and Laplacians on a Manifold. In order to process an image f ∈ ℓ2(Λ), this
paper uses tools from graph theory and calculus on manifolds in order to modify the associated
mapping f̃ ∈ ℓ2(M) defined over the discretized manifold M. This section reviews several linear
operators that can be applied to elements of ℓ2(M).

2.1. Discrete Diffusion Operators on Graphs. In the three processing modes, the set M
is embedded in the Euclidean space R

d with d = 2 for local computations, d = 3 for semi-local
computations and d = τ2 for non-local computations. As shown in section 1.3, in some special
case, the set M is close to a low dimensional smooth manifold M̃. It thus makes sense, for close
enough features p, q ∈ M to consider their extrinsic distance ||p − q|| computed over R

d as an
approximation for the geodesic distance dM̃(p, q) over M̃ which is usually not available.

Diffusion kernel. In order to process a manifold mapping g ∈ ℓ2(M) (such as for instance f̃
itself or other mappings), one defines a symmetric isotropic kernel on pairs of points of the discrete
manifold

∀ p, q ∈ M, W0(p, q)
def.

= exp

(
−||p − q||2

2σ2

)
. (2.1)

The parameter σ is supposed to be small enough so that the extrinsic computation of ||p − q||
approximates the geodesic distance dM̃(p, q) for close pair of points (p, q) ∈ M2. In practice, σ
should be adapted for specific image processing applications.

The normalized filtering kernel is defined as

W (p, q)
def.

=
1

D(p)
W0(p, q) where D(p)

def.

=
∑

q∈Λ

W0(p, q). (2.2)

The kernel W defines an operator on mappings g ∈ ℓ2(M)

∀ p ∈ Λ, Wg(p)
def.

=
∑

p∈M
W (p, q)g(q). (2.3)

This can be thought as a low-pass filtering of g since this operator does not modify constant
functions: W1 = 1. This filtering can be very different with respect to traditional isotropic
filterings when one considers semi-local or non-local embeddings. The left images of figure 2.1
show the diffusion of a Dirac Wδ located in the center of the image. This diffusion is performed
using the operator W corresponding to the three computation modes (local, semi-local and non-
local). One should note that although Wδ ∈ ℓ2(M) is defined on the set M, it can be equivalently
displayed as a standard 2D image.

Linear operators such as W acts on elements of ℓ2(M) which can be represented as discrete
vectors in R

n where n = |M| is the number of pixels in the input image f . These operators can
thus be considered as n × n matrices.

Laplacian operators. The Laplacian operator L and its symmetrized version L0 are defined as

L
def.

= Id − W and L0
def.

= D1/2LD−1/2 = Id − D−1/2W0D
−1/2, (2.4)
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(a)

(b)

(c)

Fig. 2.1. Left: original image f . Right: heat diffusions with an increasing time for: (a) local embedding
x 7→ x, (b) semi-local embedding x 7→ (x, λf(x)), (c) non-local embedding x 7→ px(f).

where D is the diagonal operator D = diagp∈M(D(p)).

The normalized Laplacian L0 corresponds to a discrete graph Laplacian as defined for example
by Chung [15]. For computer graphics purposes, other discretizations of the Laplacian are available
[44, 56] that make use of a triangulation data-structure. On real image data-sets, finding such a
triangulation is however non-trivial although some methods are emerging [11].

Gradient operators. The gradient operator maps g ∈ ℓ2(M) defined on the discrete set M to
a measure of similarity on each couple of points of M×M

∀ (p, q) ∈ M×M, (Gg)(p, q) =
√

W0(p, q)

(
g(p)√
D(p)

− g(q)√
D(q)

)
. (2.5)

This gradient is thus a linear mapping G : ℓ2(M) 7→ ℓ2(M×M), which corresponds to a matrix
of n × n2 elements. One can also consider point-wise gradient vectors

∀ p ∈ M, Gpg = ((Gg)(p, q))q∈M, (2.6)

which corresponds to vectors in R
n.

This normalized gradient is different from the more classical un-normalized gradient, as intro-
duced for instance in [30, 29]

∀ (p, q) ∈ M×M, (G̃g)(p, q) =
√

W0(p, q) (g(p) − g(q)) . (2.7)

Section 7.1 and in particular figure 7.4 studies the advantages of using the normalized formulation.

The Laplacian L0 and its un-normalized version D−W0 are symmetric operators than can be
decomposed as

L0 = GTG and D − W0 = G̃TG̃ (2.8)

where GT is the transposed matrix.

Approximate Operators. The diffusion and Laplacian kernels W0 and L0 are linear operators on
ℓ2(M) ≃ R

n and are computed as matrices of size n× n acting on R
n. These matrices are defined

using the gaussian weights (2.1) and are thus full and difficult to use for intensive computations. In
order to speed up both filtering computations and eigenvectors extraction, one typically uses either
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a k-nearest-neighbors or an ε-distance approximation of the gradient defined in equation (2.5)

(Gkg)(p, q)
def.

=

{
(Gg)(p, q) if q ∈ NNk(p),

0 otherwise,
(2.9)

and (Gεg)(p, q)
def.

=

{
(Gg)(p, q) if ||p − q|| 6 ε,

0 otherwise,
(2.10)

where q belongs to the set NNk(p) of k-nearest neighbors of p if

# {r ∈ M \ ||p − r|| < ||p − q||} < k.

The approximated Laplacians are defined as

Lk
0

def.

= GkT
Gk and Lε

0
def.

= GεTGε. (2.11)

These reduced operators can be conveniently stored as sparse matrices which leads to efficient
algorithms for the iterative resolution of partial differential equations and the extraction of eigen-
vectors. The convergence of Lk

0 and Lε
0 toward L0 when k → n and ε → 0 is fast whenever the set

of points M is close to a smooth manifold M̃. The following section studies the convergence of
these finite dimensional operators to their continuous counterparts when n → +∞.

2.2. Convergence Analysis. In order to understand the behavior of the denoising algo-
rithms proposed in this paper, it is important to study the connexion between the discrete opera-
tors introduced in section 2.1 and their continuous counterparts defined using differential calculus
on manifolds.

As explained in section 1.3, the set M can sometimes be well approximated by a low dimen-
sional manifold M̃. In order to study the convergence properties of operators such as W and L0,
the discrete set M is supposed to be sampled on a continuous manifold M̃ ⊂ R

d of dimension
d̃ < d ≪ n. The Riemannian metric of M̃ is defined thanks to the embedding of M̃ in R

d.
For such a smooth manifold M̃, the Laplace Beltrami ∆M̃ operates on smooth functions

g̃ ∈ L2(M̃). It can be defined as the limit of a local averaging

∀ p ∈ M̃,
2

σ2
(g̃(p) − (W g̃)(p))

σ→0−→ ∆M̃g̃(p) (2.12)

where W is a local geodesic averaging

∀ p ∈ M̃, (W g̃)(p) =
1

|B(p)|

∫

B(p)

g̃(q)dq where B(p)
def.

=
{

q ∈ M̃ \ dM̃(p, q) 6 σ
}

(2.13)

where dM̃(p, q) is the geodesic distance along the manifold M̃, the length of the shortest curve

traced on M̃ between p and q.
Equation (2.12) is a continuous version of the definition (2.4) of the discrete Laplacians L and

L0. The width σ of the averaging in (2.13) is the equivalent of the width of the gaussian kernel in
(2.1). The discrete sum used in the avergaging (2.2) is replaced by a continuous averaging over a
geodesic ball in (2.13).

One can make this connection more precise since if the sampling M of M̃ is uniform, both L
and L0 converge to ∆M̃. This convergence is proved by Belkin [5] and Lafon [16] when one first
take an infinite number of points and then σ → 0. The following bound on both n and σ is derived
by Singer [46] and refines a result of Hein et al. [31] in the case where M is drawn uniformly at
random on M̃

∀p ∈ M,
2

σ2
(Lg)(p) = (∆M̃g̃)(p) + O

(
n−1/2σ−(2+d̃/2), σ

)
.

where the discrete g ∈ ℓ2(M) is obtained by sampling a smooth function g̃ ∈ L2(M̃). The original
bound [46, 31] is derived for L but the result also applies to L0. This suggests an optimal asymptotic

choice for the gaussian width σ
def.

= C(M̃)n−1/(6+d̃), where C(M̃) is a constant that depends on
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geometric properties of M̃. For this well chosen σ, the discrete Laplacians converges with a speed
σ toward ∆M̃.

The main issue is thus to know wether, in applications to image processing, the set M is an
uniform sampling of some continuous manifold M̃. Indeed, this sampling is constrained by the
lifting x ∈ Λ 7→ ϕf (x) ∈ M, which might not be uniform in practical situations. To be more
precise, one needs to make the distinction between the three modes of computation introduced in
section 1.1.

Local lifting: in this case, the embedding is trivial ϕf (x) = x and thus L converges to

∆M̃ = ∆ = − ∂2

∂x2
1

− ∂2

∂x2
2

,

the traditional Laplacian over R
2.

Semi-local lifting: in this case, M corresponds to a height field and L is close to L. If λ in
equation (1.3) is small, the sampling of the manifold is close to uniform. This approximate
convergence is related to the convergence of neighboring filters to non-linear partial differential
equations, see for instance [4, 27, 48]

Non-local lifting: in this case, M might be a complicated set of points. Indeed, the examples of
smooth images and cartoon images exposed in section 1.3 show that even in simple cases, this
sampling might be far from uniform. In this case L0 is very different from L and the convergence
of L0 to ∆M̃ is not true in general. In some restricted cases one can however make an asymptotic
derivation for non-local averaging operators, see for instance the analysis of the non-local means
filter [9].

2.3. Manifold Spectral Basis. The symmetric Laplacian L0 defined in equation (2.4) is
L0 = Id − W̃ where W̃ = D−1/2W0D

−1/2. Using the decomposition (2.8), the inner product
associated to this symmetric operator can be written for g ∈ ℓ2(M)

〈L0g, g〉 = 〈GTGg, g〉 = 〈Gg, Gg〉 =
∑

p,q∈M
W0(p, q)

(
g(p)√
D(p)

− g(q)√
D(q)

)2

.

This implies that L0 is a positive semi-definite operator with only the constant vectors in its kernel
as soon as the graph is connected. One can thus define the orthogonal basis (uω)n−1

ω=0 of ℓ2(M)

L0uω = λωuω with 0 = λ1 6 λ2 6 . . . 6 λn.

These eigenvectors can be conveniently stored in an orthogonal matrix U0 ∈ R
n×n, where one uses

the identification ℓ2(M) ≃ R
n

U0(p, ω) = uω(p) =⇒ L0 = U0ΛU0
T where Λ = {λω}ω.

The parameter ω plays the role of a frequency parameter with small ω corresponding to low-
frequencies. Indeed, in the case of the local lifting ϕf (x) = x, the eigenvectors of L0 are exactly
the Fourier basis, which can be written for the periodic 1D case as

∀ p ∈ Z/nZ,

{
u2ω(p) = 2√

2n
cos
(

2πpω
n

)
,

u2ω+1(p) = 2√
2n

sin
(

2πpω
n

)
,

with λ2ω = λ2ω+1 = sin2
(ωπ

n

)
. (2.14)

The eigendecomposition (2.3) corresponds to the diffusion geometries expansion introduced by
Coifman et al. [16] which has been applied to image graphs by Szlam et al. [50].

Figure 2.2 shows some uω on a cartoon image. It compares the eigenvectors of the local, semi-
local and non-local Laplacians. The eigenvectors for the local Laplacian are the Fourier vectors that
extend those of (2.14) to 2D. The eigenvectors for the semi-local Laplacian are similar excepted
that the oscillations are localized either inside or outside the boundary. The eigenvectors of the
non-local Laplacian can be classified in three groups.

The first two eigenvectors are constant on each side of the shape B. The projection on these two
vectors recovers perfectly a binary cartoon image.

The low frequency eigenvectors for small ω are located along the boundary ∂B and are highly
oscillating. The projection on these eigenvectors recovers sharp steps along ∂B.

The remaining higher frequencies are irrelevant and capture noise.
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(a)

(b)

(c)

Fig. 2.2. Some eigenvectors uω of Laplacians for (a) the local Laplacian (Fourier basis), (b) the semi-local
Laplacian, (c) the non-local Laplacian. The image f used to compute the discrete manifold is shown on figure 1.1,
left.

3. Denoising: PDE Flows, Variational Minimization and Thresholding. Denoising
is modeled in a probabilistic way as an inverse problem where one wishes to recover an image f
from a noisy observation f = f0 +ε where ε is a white noise of variance |ε|2. A denoising algorithm
builds an estimator f̄ ∈ R

n of the true data f0 that depends only on the observed f . This estimator
is a random vector that depends on the gaussian noise ε and its efficiency is measured using the
expectation of the error E(||f0 − f̄ ||2).

This section reviews three important classes of estimators, which are all based on taking
advantage of a well chosen energy Ef (g) that should be small for typical images one wishes to
recover. It is important to note that the energy Ef might depend on the noisy input f itself, which
makes some of the proposed methods adaptive to the content of the image.

Sections 4, 5 and 6 specialize these three kinds of estimators to computations on a discrete
manifold M. They use either operators such as the gradient and the Laplacian on M (defined in
section 2.1) or the manifold spectral basis (introduced in section 2.3) to define the energy Ef .

Two approaches are usually considered in the literature. The first one uses tools from vari-
ational calculus and partial differential equations, while the other one exploits decompositions of
harmonic analysis with thresholdings in orthogonal bases. All the proposed estimators f̄ = ft

depend on some scale t > 0 that controls the degree of regularization one imposes on the solution.
This scale is adapted to the noise level more or less automatically.

3.1. PDE Flows. A PDE-flow regularizes the original noisy input f by a gradient descent
of the energy

∀ t > 0,
∂ft

∂t
= −gradft

(Ef ) with f0 = f. (3.1)

If the original energy Ef is quadratic, this leads to a linear differential equation, otherwise it can
be non-linear. For instance, the heat equation and the total variation flow are derived formally
from

Ef (f) =

{
1
2

∫
|∇xf |2dx,∫

|∇xf |dx
=⇒ ∂fh

t

∂t
(x) =

{
∆ft

div
(

∇ft

||∇ft||

)
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and do not depend on f . Other non-linear flows such as the anisotropic diffusion of Perona and
Malik [41] can be considered.

It is also possible to compute quadratic energies that depend on f , such as an anisotropic
diffusion along a tensor field estimated from f , see [55]. In this case, although the flow t 7→ ft

is linear, the estimator computation f 7→ ft is actually non-linear because Ef depends on the
noisy input f . Section 4 derives PDE flows using an energy Ef computed using operators on the
discrete manifold M. Such energies depends on f and makes the whole computation adaptive and
non-linear.

Time-dependant manifold. The flow of equation (3.1) is computed from the energy Ef which
depends only on the noisy input image. The discrete manifold M is computed once for all from
the original input and does not change during the computations. Another option is to modify the
manifold and actually compute it from the current estimate ft at time t

∀ t > 0,
∂ft

∂t
(x) = −gradft

(Eft
) with f0 = f. (3.2)

The overall process becomes even more non-linear than the original PDE.

Several works on adaptive filtering use such time-dependant regularization, see for instance
anisotropic diffusion along time-varying tensors fields [52] and diffusion on triangulated surfaces [21].

3.2. Variational Regularization. A variational regularization defines an estimator ft as a
minimizer of a penalized functional

∀ t > 0, ft = argmin
g

1

2
||f − g||2ℓ2 + tEf (g), (3.3)

The Rudin-Osher-Fatemi denoising method [45] for instance uses the total variation energy E(g)
def.

=∫
|∇g| which does not depend on f .

3.3. Thresholding in an Orthogonal Basis. Another line of research, initiated by Donoho
and Johnstone [24], solves the estimation problem using operators that manipulate independently
each coefficient of the decomposition of f in an orthogonal basis.

ℓ2, ℓ1 and ℓ0 regularization. Thresholding operators in an orthogonal basis {uω}ω of R
n are

defined as

fp
t

def.

=
∑

ω

sp
t (〈f, uω〉) uω for p ∈ {0, 1, 2}. (3.4)

The pointwise functional sp
t modifies independently each coefficient and is defined by

s2
t (x) =

x

1 + tλω
, s1

t (x)
def.

=

{
x − sign(x)t if |x| > t,
0 if |x| 6 t,

and s0
t (x)

def.

=

{
x if |x| > t,
0 if |x| 6 t.

The estimator f2
t is linear and depends on a set of weights λω > 0 whereas the soft thresholding

f1
t and hard thresholding f0

t perform a non-linear denoising.

In order to achieve an optimal decay rate of the risk E(||f0 − ft||), Donoho and Johnstone [24]

shows that one can use the universal threshold value t
def.

= |ε|
√

2 log(n). In practice however this
threshold value can be set approximately to t = 3|ε|.

These estimators enjoy several optimality results when the function f0 to recover belongs to
a smoothness class that can be efficiently approximated linearly (for p = 2) or non-linearly (for
p = 1 and p = 0). Donoho and Johnstone [24] show that f0

t and f1
t , for the universal threshold

t
def.

= |ε|
√

2 log(n), are asymptotically minimax for the estimation of piecewise regular 1D signals
when one uses the wavelet basis [37].
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Variational interpretation of thresholding. As shown by [14], these thresholding operators are
also minimizers of variational energies of the form (3.3)

fp
t = argmin

g

1

2
||f − g||2ℓ2 + tEp

f (g) where





E2
f (g) = 1

2

∑
ω λω|〈g, uω〉|2,

E1
f (g) =

∑
ω |〈g, uω〉|,

E0
f (g) = t

2# {ω \ 〈f, uω〉 6= 0} .
(3.5)

This bridges the gap between the construction of variational denoisers and the use of orthogonal
bases.

If the orthogonal basis (uω)ω is a fixed basis (such as Fourier or wavelets) then the energy
Ep

f do not depends on the input f and the estimator ft is non adaptive. Section 6 uses manifold
spectral bases computed from f , which makes the thresholding estimators adaptive to the input.

4. Filtering and Diffusion on Manifolds. This section explains how PDE flows introduced
in section 3.1 can be extended by using energies Ef derived from operators on the manifold set

M. Such energies are used to process the function f̃ ∈ ℓ2(M) defined from the noisy input
f ∈ ℓ2(Λ), see equation (1.1). Since the set M = (ϕf (x))x is computed from the noisy input f , the
corresponding flow t 7→ ft is adaptive and non-linear even if Ef is a quadratic energy. One recovers
this way several recently proposed semi-local and non-local denoising algorithms.

4.1. Non-iterative Manifold Smoothing. Before introducing linear and non-linear PDE
flows, a simpler approach to denoise f is to perform a 1-step diffusion of f̃ ∈ ℓ2(M)

ft
def.

= Wf̃, (4.1)

using the averaging operator defined in equation (2.2). The scale parameter t of this estimator
corresponds to the scale t = σ used in the definition of the smoothing kernel (2.1).

To minimize the average risk E(||ft − f̃0||2), one needs to correctly define this scale parameter
t that should grow in proportion to the noise level |ε|. This non-iterative denoising approach
corresponds to various filtering operators.

An isotropic linear filtering for the local embedding ϕf (x) = x: the operator W is a convolution
against a gaussian kernel.

A spatially varying filter for the semi-local embedding ϕf (x) = (x, λf(x)): the degree of spatial
adaptivity is controlled by λ and the corresponding filter y 7→ W (x, y) is compactly supported
around x. In a general setting, the corresponding estimator can be written as

f̄(x) =
1

D(x)

∑

y

ws

( ||x − y||
σs

)
wv

( ||f(x) − f(y)||
σv

)
f(y)

where D(x) is the usual normalizing term. Our choice of gaussian weight (2.1) corresponds to
choosing ws = wv as a gaussian kernel and σs/σv = λ is the embedding constant. Depending
on specific choice for ws and wv, one retrieve several neighborhood filters such as Yaroslavsky’s
filter [57], the bilateral filter [51] or Susan filter [47].

A spatially non-local filter for the non-local embedding ϕf (x) = px(f): this corresponds to the
non-local means of Buades et al. [8]. In a general setting, the corresponding non-local estimator
can be written as

f̄(x) =
1

D(x)

∑

y

w

( ||px(f) − py(f)||
σ

)
f(y)

where D(x) is the usual normalizing term. Our choice of gaussian weight (2.1) corresponds to
the original choice of w, see [8], but other kernels can be used. More advanced non-local filters
have been also proposed, see for instance [19].

It is important to note that, although the filtering f̃ 7→ Wf̃ is linear, the operator W depends in
a non-linear way on the input f , making the overall process non-linear.
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4.2. Manifold Heat Diffusion. Instead of performing a fixed amount of diffusion, one can
consider a continuous diffusion process defined through the normalized gradient L defined in equa-
tion (2.5). This heat diffusion corresponds to the PDE flow (3.1) of the following manifold quadratic
energy

∀ g ∈ ℓ2(M), Eq
f (g) =

1

2
||Gg||2, (4.2)

which depends on the input f since the operator G is computed on the discrete manifold M.
To diffuse a noisy image f , one thus looks for a function (x, t) 7→ fh

t (x) that satisfies

∀ t > 0,
∂fh

t

∂t
(x) = −Lfh

t (x) with fh
0 = f̃ . (4.3)

The estimator of f0 from the noisy data f is then defined as fh
t where the stopping time t should

be carefully chosen to match the noise level |ε|.
It is important to note that in this application, the width σ of the smoothing kernel W0,

equation (2.4), is independent of the noise level |ε|. This width σ should be set to account for the
sampling M of the true underlying continuous manifold. This is different from the non-iterative
diffusion (4.1) where σ depends on |ε|.

The PDE (4.2) is applied to a discrete manifold in the geometric diffusion framework [16]. It
has been used to process images with semi-local and non-local embeddings by Szlam et al. [50].
The mean-shift procedure with a gaussian kernel applied to the set M as done [18] is closely related
to (4.2). This diffusion is also related to the short time evaluation of the Laplace Beltrami flow
of Spira et al. [49], although these procedures correspond to a time-dependant embedding and a
PDE diffusion flow (see the end of section 3.1).

Iterative resolution. The equation (4.3) can be solved using an explicit discretization in time
with time-steps η. This leads to the following iterations

fh
k+1 = (1 − η)fh

k + ηWfh
k with fh

0 = f̃ . (4.4)

If one chooses η = t/k, one has fh
k → fh

t when k → +∞. To ensure numerical stability, n
and k should grow according to the CFL condition. The non-iterative denoising, equation (4.1),
corresponds to only one iteration of this process with a large time step η = 1.

Image f̃ Local embedding Non-local embedding
Fig. 4.1. The coefficients |〈f̃ , uω〉| of a noisy image f . Center: using the local spectral basis (uω)ω, which is

the Fourier basis, right: using the non-local spectral basis.

Spectral resolution. The normalized Laplacian introduced in equation (2.4) is related to the
symmetric Laplacian through L = D−1/2L0D

1/2. The eigenvectors of L are thus U = D−1/2U0

and one can compute the eigendecomposition of some vector g on U as

ĝ(ω) = (U−1g)(ω) = 〈uω, D1/2g〉.

This spectral decomposition ĝ allows one to solve the heat equation in the transformed domain
since

∀ω,
d

dt
f̂h

t (ω) = −λω f̂h
t (ω) =⇒ f̂h

t (ω) = e−λωt ˆ̃
f(ω). (4.5)
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This equation allows one to solve exactly for fh
t and offers a non-iterative alternative to (4.4)

to compute the solution of the heat equation at a fixed time t. The diffused function fh
t at a

time t has its spectral coefficients reduced by the factor e−λωt which is small for large t and for
high-frequencies ω.

On figure 4.1, one can see the magnitude of noisy coefficients 〈f̃ , uω〉 for the local and non-
local expansions. The energy of the image is more concentrated on the low frequency part of the
spectrum for the non-local Laplacian. This is a result of the adaptivity of the non-local Laplacian
to the geometric content of the image. The high frequency residual is mostly the projection of the
noise 〈ε̃, uω〉. This compaction of the energy makes the heat diffusion over the non-local manifold
much more efficient that over the local one, since the spectral attenuation efficiently removes the
high frequency noise.

Diffusion examples. Figure 2.1 shows the filtering fh
t of an impulse Dirac distribution fh

0 = δ.
On figure 4.2 one can see the time evolution of fh

t for the three computation modes, starting from
the noisy input fh

0 = f̃ .

The local embedding leads to the traditional Euclidean heat equation. This diffusion blurs the
image since the embedding does not take into account the geometric features of f .

Both the semi-local and the non-local embeddings correspond to a non-linear processing of f since
the Laplacian L takes into account the structures of the image. This leads to a diffusion that
does not blur the geometrical features. On geometrical images, these two diffusions give similar
results. On complex natural images, non-local diffusion often surpasses semi-local diffusion as
reported by Buades et al. [8], see section 7.

(a)

(b)

(c)

Fig. 4.2. Heat flow fh
t

with an increasing t for: (a) local embedding (traditional heat equation) (b) semi-local
embedding, (c) non-local embedding.

4.3. Time-dependant Manifold Diffusion. The manifold diffusion (4.3) use a fixed dis-
crete manifold M computed from the noisy input f̃ . As defined in equation (3.2), it is possible to
consider a flow where the manifold is continuously updated during the diffusion

∀ t > 0,
∂f h̃

t

∂t
(x) = −LMt

f h̃
t (x) with

{
f h̃
0 = f̃ ,

Mt =
(
ϕ

f h̃
t

(x)
)

x∈Λ

(4.6)
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In this equation, the manifold Mt is computed from the solution of flow at time t, and the
dependancy of the Laplacian operator L = LMt

on the manifold is made explicit. The resulting

flow t 7→ f h̃
t depends non-linearly from the initial condition f h̃

0 , which makes the overall process
radically different from the original heat flow fh

t .

Such a time-dependant flow has been defined, in the semi-local setting, by Spira et al. [49],
where the Laplacian is an accurate discretizeation of the Laplace Beltrami ∆M̃ of the height field

M̃. In the non-local setting, this flow shares similarities with iterated non-local means filterings
introduced by Brox and Cremers [7]. This iterated non-local means however does not converge to

f h̃
t but rather to a stationary point of a filtering process.

The non-linear PDE (4.6) can be solved explicitly in time by iterating the following two steps

{
Mk =

(
ϕ

f h̃
k

(x)
)

x∈Λ
,

f h̃
k+1 = (1 − η)f h̃

k + ηWMk
f h̃

k ,

with the initialization f h̃
0 = f̃ and where the averaging WMk

is computed using the discrete
manifold Mk.

5. Variational Regularization on Manifolds. As explained in section 3.2, one can replace
the PDE flow by a variational optimization that takes into account both a regularization through
the energy Ef and an attach to the original noisy data.

This section first details the quadratic energy (4.2) in the case of a discrete manifold energy
Ef and then proposes other non-linear alternatives. These estimators have been proposed in recent
works using a slightly different formalism. We show how they fit into the regularization framework
introduced in section 3.2 and detail several algorithms to compute efficiently these flows.

5.1. Quadradic Manifold Regularization. The quadratic energy (4.2) used to define the
heat equation leads to the following quadratic regularization

∀ t > 0, fq
t = argmin

g∈ℓ2(M)

||f̃ − g||2ℓ2 + t||Gg||2ℓ2 (5.1)

where the manifold gradient G is defined in equation (2.5).

A similar energy is studied by Gilboa and Osher for image restoration and segmentation [30].
They use a continuous formulation of the non-normalized gradient G̃ as defined in equation (2.7),
whereas in this paper we use a normalized operator G defined in equation (2.4). For semi-supervised
learning applications, Belkin et al. [6] have introduced a manifold regularization framework that
performs interpolation by a quadratic penalization similar to (5.1).

Once the operator G is fixed, the solution of minimization (5.1) depends linearly on the input
f and requires the inversion of the graph laplacian L0 = GTG

∀ t > 0, fq
t = (Id + tGTG)−1f̃ = (Id + tL0)

−1f̃ .

It is important to remember that the mapping f 7→ fq
t is however non-linear because G actually

depends on f in a non-linear way.

One can take advantage of the spectral basis introduced in equation (2.3) and compute the
quadratic regularized solution over the transformed domain

∀ t > 0, 〈fq
t , uω〉 =

1

1 + tλω
〈f̃ , uω〉.

One should compare this spectral attenuation with the one obtained in (4.5) for the heat equation.
The diagonal kernel for the quadratic regularization is (1+ tλω)−1 which is similar to the low-pass
kernel e−λωt of the heat diffusion.

This quadratic regularization (4.5) can also be interpreted as an estimator f2
t as described in

equation (3.5) using the spectral basis {uω}ω and the eigenvalues λω as quadratic weights.
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5.2. Total Variation Manifold Regularization. In order to turn the quadratic regular-
ization (5.1) into a non-linear penalty that favors emergence of large gradients near discontinuities,
one can consider the following non-linear TV-like energy

∀ g ∈ ℓ2(M), Etv
f (g) =

∑

p∈M
||Gpg||ℓ2 ,

where the gradient vector Gpg is defined in equation (2.6). The estimator is defined as

f tv
t = argmin

g∈ℓ2(M)

1

2
||f̃ − g||2ℓ2 + t

∑

p∈M
||Gpg||. (5.2)

A similar formulation is introduced by Gilboa et al. [29] in the continuous setting. They use
the un-normalized Laplacian introduced in equation (2.7) whereas our formulation (5.2) uses the
normalized gradient (2.5). Section 7.1 and in particular figure 7.4 shows the superiority of the
normalized regularization over regular areas of the image. A related non-linear energy is used
in Kindermann et al. [33] to solve more general inverse problems. An alternative non-linear
regularization is proposed by Zhou and Schölkopf [58] and Elmoataz et al. [28] that consider the
p-laplacian which is non-linear for p 6= 2.

The estimator f tv
t depends non-linearly on the input f both because the energy Etv

f is not

quadratic and because the operator G depends non-linearly on f . The computation of f tv
t requires

some special care for points p where Gpf
tv
t is small. A simple fix consists in replacing Etv

f by a
regularized functional such as

Etv,η
f (g) =

∑

p∈M
(η2 +

∑

q

|(Gg)(p, q)|2)1/2

for a small enough η. A more accurate approach solves the discrete optimization problem with the
help of the graph-cut algorithm [29].

In this paper we propose to solve the non-linear problem (5.2) using an iterative scheme
derived from Chambole’s algorithm [13] originally designed to solve the classical Rudin-Osher-
Fatermi flow [45]. The algorithm iteratively computes gradient fields θk = (θk(p))p, where each
θk(p) is a vector in R

n. The algorithm initially set

∀ p ∈ M, θ0(p) = 0 ∈ R
n

and iterates

∀ p ∈ M, θk+1(p) =
θk(p) − ηg(p)

1 + η||g(p)|| where g = G(GTθk − f̃/t).

One can then prove [13] that if η is small enough,

f̃ − tGTθk k→+∞−→ f tv
t .

The non-linear regularization (5.2) is more involved to solve numerically than the quadratic regu-
larization (5.1). This is due not only to the non-quadratic and non-smooth nature of Etv

f but also

the the high dimensionality of Gg ∈ ℓ2(M×M). If one uses the k-nearest neighbor approximation
Gk of G, equation (2.9), the dimension of the range of Gk is reduced to kn, which is simpler to
handle. The next section proposes alternative non-linear regularizations that involve the ℓ0 and ℓ1

norms over a transformed domain of dimension n, which can be solved with a fast thresholding.

6. Thresholding in a Manifold Spectral Basis. Instead of using a PDE flow or a vari-
ational minimization, an alternative for the computation of estimators is to use thresholding in
orthogonal bases as explained in section 3.3. One can use the manifold spectral basis defined in
section 2.3 to define these thresholding estimators.

These thresholding operators are mentioned originally in [50] without a detailed study. The
authors of [50] do not go further in the analysis of such estimators and exploit the heat flow (4.3) for
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image processing purpose. We detail here this construction and give in the next section numerical
evidences of its efficiency.

The spectral orthogonal basis (uω)ω of ℓ2(M) is computed using the Laplacian L0 of the noisy
input f . One then defines

fp
t

def.

=
∑

ω

sp
t (〈f̃ , uω〉)uω ∈ ℓ2(M) (6.1)

for p = 0, 1, where the thresholding operators are defined in equation (3.4).

Numerical computation of the thresholding estimators. The main difficulty in computing the
estimators of equation (6.1) is the need to extract the eigenvectors (uω)ω of the Laplacian matrix
L0. In numerical simulations, the sparse Laplacian Lk

0 defined in equation (2.11) is used. The
sparsity of the operator makes the use of an inverse power method convenient for the progressive
extraction of eigenvectors, see [2]. This allows to build estimators for images of approximately
n = 100 × 100 pixels. For larger images, one can apply the estimator to overlapping sub-blocks
extracted from the noisy image.

Connexion with manifold BV. As explained in equation (3.5), the soft thresholding estimator
f1

t minimizes the variational problem

f1
t = argmin

g∈ℓ2(M)

1

2
||f̃ − g||2 + t

∑

ω

|〈g, uω〉|

This is related to the manifold total variation regularization introduced in equation (5.2), that
uses the ℓ1 norm of the gradient. A notable difference is that the scale parameter t of the TV-
regularization is not directly related to the noise level |ε| that corrupts f . In contrast, the threshold
t of the estimator f1

t is set proportionally to |ε| and t = 3|ε| works well in practice.
Contrary to the soft thresholding estimator f1

t , the hard thresholding f0
t in a spectral basis has

no equivalent in the manifold total variation regularization. This thresholding enforces the strict
sparsity of the decomposition of f on the adapted basis (uω)ω.

7. Numerical Results. In our numerical experiments, we have compared the various esti-
mators proposed in this article, in both their semi-local and non-local versions. This includes:

Non-iterative smoothing, section 4.1, which corresponds to the bilateral filter [51] for the semi-
local kernel and to non-local means [8] for the non-local kernel.

Heat diffusion, section 4.2, which corresponds to the diffusion maps framework [50].

Time-denpendant heat diffusion, section 4.3.

Quadratic regularization, 5.1, which is closely related to the work of [30].

ℓ1 regularization, section 5.2, with the normalized gradient G as defined in equation (2.5).

ℓ1 regularization, with the un-normalized gradient G̃ as defined in equation (2.7), which is equiv-
alent to the non-local total-variation [29].

Hard and soft thresholding in the manifold spectral basis, which is the new class of estimators
introduced in section 6.

Hard thresholding in a 7/9 translation invariant wavelet basis, see [37].

The efficiency of an estimator f̄ = ft is measured using the PSNR of the recovery error

R(f̄)
def.

= −20 log2(||f̄ − f0||/||f0||∞)

expressed in dB. This efficiency is measured for various noise levels |ε|, which is reported as the
noisy PSNR R(f).

For all of these estimators, the semi-local parameter λ of equation (1.3), the width of the
patches τ of equation (1.5), the scale σ of the weights in equation (2.1) and the scale/threshold
t of the estimators ft are determined in an oracle manner in order to minimize ||f0 − ft||. This
leads to a fair comparison between all the estimators, although in practice determining t is easier
for thresholding denoisers since t ≈ 3|ε|. In order to speed-up the computation, all the algorithms
use sparse approximate gradient Gk and laplacian Lk

0 as introduced in equations (2.9) and (2.11).
The number of nearest neighbors is set to k = 30 in all the experiments.
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Fig. 7.1. Recovery error R(f̄) of local, semi-local and non-local estimators f̄ for a natural image and a texture
for various noise levels R(f).

7.1. Numerical Comparison of the Denoising Methods. The numerical results compare
the various algorithms in denoising situations with various noise levels. The tests are done on two
images of 256× 256 pixels, the first one (figure 7.1, left) contains smooth areas, edges and parallel
stripes and the second one (figure 7.1, right) is a purely oscillating texture with complex patterns.

Comparison of the local and non-local kernels. In order to study the advantages of using non-
local computation over the more classical local and semi-local settings, we compare the denoising
efficiency of the heat diffusion, exposed in section 4.2. Figure 7.1 shows a graphical comparison
of the evolution of the recovery error R(f̄) with the noise level. We also report the results of the
wavelet estimator, which constitutes a good benchmark. Figure 7.2 shows a visual comparison
of the denoising methods for a noisy PSNR of 18.3dB. It is clear from these experiments that
non-local methods tend to outperform both semi-local filterings and wavelet denoising. On more
structured textures with periodic patterns such as the one on figure 7.4, the non-local technics
perform even better. The time dependent heat flow, introduced in section 4.3, does not seem to
improve over a fixed manifold flow (such as the manifold heat equation). It is an open question to
further understand the behavior of such a highly non-linear flow on images.

Comparison of the non-local denoising algorithms. Figure 7.3 compares the efficiency of the
non-local denoising methods using the recovery error R(f̄). It shows that the estimators based on
non-local graphs behave similarly, with a slight improvement for the threshold-based estimators.
We note that in all the tests, the soft thresholding consistently performed better than the hard
thresholding estimator.

Figure 7.4 shows a visual comparison of the denoising methods for a noisy PSNR of 18.3dB.
One can notice the importance of normalizing the gradient operator as done in the estimator
introduced in 5.2. The regularization with the un-normalized gradient tends to perform poorly
over uniform areas where lots of patches share similar values and thus high values of D(x) are
expected. On this example, the thresholding operators give superior results and in particular the
soft thresholding outperforms the non-local TV flow by 0.3dB. One should not however draw final
conclusion from this image containing highly repetitive patterns. On more complex textures such
as the one depicted on figure 7.3, right, both methods give similar results.

Overall Comparison and Numerical complexity. These experiments tend to support the follow-
ing conclusions:

Non-local methods gives superior results than semi-local ones in particular over repetitive pat-
terns.

Iterative non-local algorithms (like heat-diffusion, section 4.2, or quadratic regularization, section
5.1) bring some improvement over non-iterated methods like non-local means (section 4.1) and
wavelet thresholding [37].

Non-linear regularization like non-local TV (section 5.2) is slightly superior to quadratic regu-
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Original Noisy (18.3dB) Wavelets (21.14dB)

Local (20.33dB) Semi-local (21.39dB) Non-local (21.76dB)

Fig. 7.2. Visual comparison of local, semi-local and non-local estimators for a noisy PSNR of 18.3dB.
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Fig. 7.3. Risk R(f̄) of several estimators f̄ for a natural image and a texture for various noise levels R(f).

larization.

Non-linear soft thresholding (section 6) is similar or better than non-local TV.

It is however important to note that all of these improvements come with an important computa-
tional overhead.

Iterative methods such as the manifold heat diffusion, section 4.2, require typically of the
order of 20 iterations to give satisfactory results and non-linear regularization such as manifold
BV, section 5.2, requires even more iterations. Thus, These methods are much slower than a single
filtering with non-local means.

A major bottleneck of the spectral thresholding described in section 6 with respect to the
other approaches is the need to extract eigenvectors from the Laplacian operator. This can be
somehow alleviated by applying the method to overlapping sub-blocks in the image and using
sparse operators, as detailed in section 6. The main advantage of thresholding over PDE and
regularization methods of sections 4 and 5 is that it does not require to finely tune a stopping time
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Original Noisy (18.3dB)

Heat (23.37dB) Quadratic (23.22dB) Hard (23.89dB)

TV Un-Norm. (21.72dB) TV norm. (23.87dB) Soft (24.16dB)

Fig. 7.4. Risk R(f̄) of several estimators f̄ for a natural image and a texture for various noise levels R(f).
The soft and hard thresholding are applied over the non-local manifold spectral basis.

or a regularization parameter t.

7.2. Non-linear Approximation. To further understand the superiority of the non-local
denoising process, we exploit the connexion between non-linear estimation and approximation in
an orthogonal basis. This property of orthogonal decomposition is used extensively to obtain
minimax optimality results for thresholding estimators, see [24]. Here we also exploit this feature
of the spectral estimator to explore the behavior of non-local approximations and estimations.

M -terms approximation. The non-linear approximation of an image f with M coefficients in
an orthogonal basis {uω}ω is written as

fM
def.

=
∑

|〈f, uω〉|>T

〈f, uω〉uω with M
def.

= Card {ω \ |〈f, uω〉| > T} ,

The approximation error is then:

||f − fM ||2 =
∑

|〈f, uω〉|6T

|〈f, uω〉|2.

One wishes to use a basis {uω}ω that gives the best representation of data f drawn from an image
ensemble f ∈ Θ ⊂ ℓ2(Λ). Optimizing the representation is then equivalent to maximizing the
decay of the error ||f − fM ||2 when M increases, for all f ∈ Θ. Asymptotically, one looks for bases
{uω}ω such that ||f − fM ||2 = O(M−α) for the largest possible α.
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Non-linear estimation and approximation. Donoho and Johnstone [24] proved that if the

threshold is set to T
def.

= |ε|
√

2 log(n) then the decay of the average risk E(||f0 − f̄ ||2) is linked
to the decay of the non-linear approximation in the basis {uω}ω. More precisely they show that

||f0 − f0
M ||2 6 C1 M−α =⇒ E(||f0 − f̄ ||2) 6 C2 |ε|

2α

α+1 . (7.1)

where C1 and C2 are constants that depend only on f0. This result is valid only for a fixed basis
that does not depend on the noisy input f .

Extension to orthogonal dictionaries. Results similar to (7.1) can be proved for dictionaries of
orthogonal bases such as the wavelet and cosine packets [17] or the bandlets [35]. Such a dictionary
is written in abstract form as D = {B(λ)}λ∈Γ where λ is a parameter that specifies the orthogonal
basis B(λ) of R

n one wants to use to process a given function. In practice, one looks for a best
basis B(λ⋆) in order to denoise or compress some input f . This is usually done by minimizing some
Lagrangian cost function [17] that enforces both good approximation in B(λ⋆) and sparsity of the
expansion in B(λ⋆). In order for the equivalence (7.1) between estimation and approximation to
hold in this more general setting, one needs to have a control over the total number of basis vectors
in the dictionary D. Although the total number of bases #Γ might grow exponentially with the
dimension n, the total number of vectors has to grow only in a polynomial manner, i.e.

#
⋃

λ∈Γ

B(λ) 6 Cnβ (7.2)

for some constants C and β, see [34, 25] for studies of denoising in a dictionary of orthogonal bases.
The spectral bases constructed in section 2.3 also form a dictionary D = {B(M)}M∈Γ of

orthogonal bases, where each M is a discrete manifold (either non-local or semi-local). In practice,
it is difficult to control the number of such graphs #Γ for a set of natural images. This number
can be very large if one does not enforce strong constraints on the regularity of typical images,
but the averaging implied by the width τ of the patch somehow alleviates this problem. Taking
large patches is implicitly adding a strong regularization to the computation of the graph which
avoids over-fitting and leads to good denoising performance. Our construction of adaptive non-
local dictionaries thus does not come with constraint such as (7.2) but it is an important avenue
for future work to explore the theoretical behavior of these estimators on realistic image models
such as those considered below.

Theoretical bounds on non-linear approximation. Equation (7.1) shows that assessing the qual-
ity of the estimation process f 7→ f̄ for the different kinds of orthogonal bases amounts to quantify
the decay of the approximation error ||f − fM ||2 for the images ensembles one would like to study.

For uniformly smooth images, both Fourier and wavelet bases behave similarly and the approx-
imation error for a Cα image satisfies ||f − fM ||2 = O(M−α). Since the semi-local and non-local
basis vectors are in fact very similar to the Fourier vectors in this case, all the approximations
behave similarly.

A good model for images with regular edges is composed of images that are Cα outside a set
of Cα edge curves, see [22]. This is close to the cartoon image model considered in section 1.3.
For this ensemble of geometric images, the Fourier expansion behaves baddly because of the
presence of step discontinuities and satisfies ||f − fM ||2 = O(M−1/2). In contrast, the wavelet
expansion is able to make use of the bounded total variation of such a function and its error
satisfies ||f − fM ||2 = O(M−1), see [37]. This is however sub-optimal and other bases such as
wedgelets [22], curvelets [10] and bandlets [35, 39] are able to improve this approximation rate
by exploiting the regularity of edge curves. One might expect that non-local adapted bases also
capture this asymptotic decay of the error, thus providing an optimal tool to denoise cartoon
images.

A simple model for turbulent textures is an oscillating function with locally parallel level sets.
Such a function can be written as f(x) = cos(Φ(x)) where Φ is a slowly varying phase function,
see [20]. For this ensemble of locally parallel textures, the wavelets expansion fails to capture
the oscillating regularity. Oscillating atoms such as the wave atoms [20] are able to capture such
a behavior and enjoy a better approximation rate. Non-local processing methods also seems to
perform well on these locally parallel textures, as shown on figure 7.2.
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For more complex images ensembles containing textures, there is no available scheme with prov-
able approximation rate. Non-local denoising algorithms seems however to process efficiency
several kinds of repetitive texture patterns [8].

In the following we perform a numerical estimation of the approximation rate in order to have
information on the relative efficiency of processing methods.

Numerical estimation of the approximation error. Although our non-local dictionary of spectral
bases does not satisfy the polynomial grow (7.1), we use the approximation error ||f − fM || as a
measure of the efficiency of this adaptive estimation scheme. In order to have a fair comparison, the
non-local bases are computed from a noisy image f + ε. The noise level |ε|2 is set to n−1||f − fM ||2
where fM is the M -terms approximation of f in the wavelet basis.

Figure 7.5 shows the approximation error ||f − fM ||2 of f in various orthogonal bases. It is
important to remember that the adapted basis for the semi-local and non-local Laplacians are
estimated from a noisy observation f + ε and not from the original image f that is not available
in a denoising scenario. One can see that the non-local approximation is consistently better than
the other approximation schemes. This reveals the superiority of non-local denoising methods to
process images whose structures are not well captured by classical expansions such as Fourier or
wavelets. Note however that both the semi-local and the non-local expansions are not suitable for
applications to image compression since the adapted basis {uω}ω is not available for the decoder.

log
2
( f − fM )

M200

0

-4

4

40 60

Semi-local

Non-local

Local

Wavelets

Fig. 7.5. Left: original image f . Right: error decay log2(||f − fM ||) of the approximation fM of f with M

coefficients (expressed in % of the total number of coefficients) in various orthogonal bases.

Conclusion. This article reviewed several recent approaches to image estimation using a
regularizer computed on a discrete manifold. This allows one to consider both local, semi-local and
non-local methods in an unifying framework. The spectral bases associated to the Laplacians on
these discrete manifolds define adaptive orthogonal decompositions that are exploited to build non-
linear thresholding operators. The numerical experiments show that this new class of estimators
performs at least as good as state of the art diffusions and regularizations on non-local graphs. It
also enables an exploration of semi-local and non-local methods using approximation in adaptive
orthogonal bases.
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