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Abstract. In this paper, we propose a complete framework for 3D geometry modeling and processing
that uses only fast geodesic computations. The basic building block for these techniques is a novel
greedy algorithm to perform a uniform or adaptive remeshingof a triangulated surface. Our other
contributions include a parameterization scheme based on barycentric coordinates, an intrinsic algo-
rithm for computing geodesic centroidal tessellations, and a fast and robust method to flatten a genus-0
surface patch. On large meshes (more than 500,000 vertices), our techniques speed up computation by
over one order of magnitude in comparison to classical remeshing and parameterization methods. Our
methods are easy to implement and do not need multilevel solvers to handle complex models that may
contain poorly shaped triangles.

To appear in International Journal of Computer Vision, Special issue on Variational and Level Set
methods.

Keywords: Remeshing, geodesic computation, fast marching algorithm, mesh segmentation, surface
parameterization, texture mapping, deformable models.
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Figure 1.Remeshing of a 3D model using increasing weight for the speedfunction.
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1. Introduction

The applications of 3D geometry processing abound nowadays. They range from
finite element computation to computer graphics, includingsolving all kinds of sur-
face reconstruction problems. The most common representation of 3D objects is the
triangle mesh, and the need for fast algorithms to handle this kind of geometry is
obvious. Classical 3D triangulated manifold processing methods have several well
known shortcomings: mainly, their high complexity when dealing with large meshes,
and their numerical instabilities.

To overcome these difficulties, we propose a geometry processing pipeline that
relies onintrinsic information of the surface and not on its underlying triangulation.
Borrowing from well established ideas in different fields (including image processing,
perceptual learning, and finite element remeshing) we are able to process very large
meshes efficiently.

1.1. OVERVIEW

In section 2 we introduce some concepts we use in our geodesiccomputations. This
includes basic facts and some contributions about the Fast Marching algorithm and
Voronoi diagrams on surfaces.

In section 3 we will expose a greedy algorithm for manifold sampling and remesh-
ing, which iteratively adds points to find a mesh that has a uniform or adaptive distri-
bution of vertices on the surface.

In section 4 we will expose two applications of our geodesic sampling strategy: the
construction of a geodesic centroidal tesselation, and a fast flattening scheme.

In section 5 we will show the whole pipeline in action, and seehow we can texture
large meshes faster than current techniques would otherwise allow. We will then give
a complete study of the timings of each part of our algorithm,including a comparison
with classical methods.

1.2. RELATED WORK

Geodesic Computations. Distances computation on manifolds is a complex topic,
and a lot of algorithms have been proposed such asChenand Han shortest path
method (Chen and Hahn, 1990) which is of quadratic complexity. KimmelandSethian’s
Fast Marchingalgorithm (Kimmel and Sethian, 1998) allows finding numerically the
geodesic distance from a given point on the manifold, inO(nlog(n)) in the number
of vertices. They deduce minimal geodesics between two given points. Some direct
applications of geodesic computations on manifolds have been proposed, such as in
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(Kimmel and Sethian, 2000), which applies the Fast Marchingalgorithm to obtain
Voronoi diagramandoffset curveson a manifold.

Surface Remeshing. Huge 3D datasets often arise from surfaces reconstructed
in medical imaging for exemple. This reconstruction task can be performed using
algorithms from algorithmic geometry, e.g. (Delingette, 1999) or deformable models
see (McInerney and Terzopoulos, 1996; Osher and Paragios, 2003). These 3D models
can also be acquired from multiple stereo views, e.g. (Fua, 1997), or other industrial
applications. These algorithms often produce meshes with alarge amount of redun-
dant vertices, and triangulations with poor quality. Thus these meshes must undergo
a remeshing process.

Remeshing methods roughly fall into two categories:

• Isotropic remeshing: a surface density of points is defined, and the algorithm tries
to position the new vertices to match this density. For example the algorithm of
TerzopoulosandVasilescu(Terzopoulos and Vasilescu, 1992) uses dynamic models
to perform the remeshing. Remeshing is also a basic task in thecomputer graphics
community, and (Surazhsky et al., 2003) have proposed a procedure based on local
parameterization.

• Anisotropic remeshing: the algorithm takes into account the principal directionsof
the surface to align locally the newly created triangles and/or rectangles. Finite
element methods make heavy use of such remeshing algorithms(Kunert, 2002).
The algorithm proposed in (Alliez et al., 2003) uses lines ofcurvature to build a
quad-dominant mesh.

The importance of using geodesic information to perform this remeshing task is em-
phasized in (Sifri et al., 2003).

Ideas similar to our greedy solution for sampling a manifold(see section 3.1) have
been used with success in other fields such as computer vision(component group-
ing, (Cohen, 2001)), halftoning (void-and-cluster, (Ulichney, 1993)) and remeshing
(Delaunay refinement, (Ruppert, 1995)).

2. Geodesic-Based Building Blocks

2.1. FAST MARCHING ALGORITHM

The classical Fast Marching algorithm is presented in (Sethian, 1999), and a similar
algorithm was also proposed in (Tsitsiklis, 1995). This algorithm is used intensively
in computer vision, for instance it has been applied to solveglobal minimization
problems for deformable models (Cohen and Kimmel, 1997).
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This algorithm is formulated as follows. Suppose we are given a metricP(s)ds on
some manifoldS such thatP > 0. If we have two pointsx0, x1 ∈ S , the weighted
geodesic distance betweenx0 andx1 is defined as

d(x0, x1)
def.
= min

γ

(

∫ 1

0
||γ ′(t)||P(γ(t))dt

)

, (1)

whereγ is a piecewise regular curve withγ(0) = x0 andγ(1) = x1. WhenP = 1, the
integral in (1) corresponds to the length of the curveγ andd is the classical geodesic
distance. To compute the distance functionU(x)

def.
= d(x0, x) with an accurate and fast

algorithm, this minimization can be reformulated as follows. The level set curveCt
def.
=

{x \U(x) = t} propagates following the evolution equation∂Ct
∂ t (x) = 1

P(x)
−→nx, where

−→nx is the exterior unit vector normal to the curve atx, and the functionU satisfies the
nonlinearEikonalequation:

||∇U(x)|| = P(x). (2)

The functionF = 1/P> 0 can be interpreted as the propagation speed of the frontCt .
The Fast Marching algorithm on an orthogonal grid makes use of an upwind finite

difference scheme to compute the valueu of U at a given pointxi, j of a grid:

max(u−U(xi−1, j), u−U(xi+1, j),0)2

+ max(u−U(xi, j−1), u−U(xi, j+1),0)2 = h2P(xi, j)
2.

This is a second order equation that is solved as detailed forexample in (Cohen, 2001).
An optimal ordering of the grid points is chosen so that the whole computation only
takesO(N log(N)), whereN is the number of points.

In (Kimmel and Sethian, 1998), a generalization to an arbitrary triangulation is
proposed. This allows performing front propagations on a triangulated manifold, and
computing geodesic distances with a fast and accurate algorithm. The only issue arises
when the triangulation contains obtuse angles. The numerical scheme presented above
is not monotone anymore, which can lead to numerical instabilities. To solve this
problem, we follow (Kimmel and Sethian, 1998) who propose to“unfold” the trian-
gles in a zone where we are sure that the update step will work.To get more accurate
geodesic distance on meshes of bad quality, one can use higher order approximations,
e.g. (Manay and Yezzi, 2003), which can be extended to triangulations using a local
unfolding of each 1-ring. Figure 2 shows the calculation of ageodesic path computed
using a gradient descent of the distance function.

2.2. EXTRACTION OF VORONOI REGIONS

It is possible to start several fronts from points{x1, . . . , xn} and make them evolve
together, as shown on figure 3. The areas shown on the surface on the right define the
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Figure 2. Front Propagation (on the left), level sets of the distance function and geodesic paths (on the
right).

Figure 3. Progression of the fronts, Voronoi diagram, and resulting tessellation.

Voronoi diagramof the starting points, namely the tessellation into the regions, for
i ∈ {1, . . . , n}

Vi
def.
= {x∈ S \ ∀ j 6= i, d(x, x j) > d(x, xi)}.

To accurately compute the boundaries of the Voronoi regions, we allow an overlap
of the front on one vertex. Suppose a fronta arrives at a vertexv1 with time arrivalta

1
and another frontb arrives at a vertexv2 (connected tov1) with time tb

2. Allowing an
overlap of the fronts, we record the time arrivalta

2 of a at v2, andtb
1 of b at v1. Then

the two fronts meet at(1−λ )v1 +λv2 whereλ =
da

2−da
1+db

1−db
2

db
1−da

1
.

3. Isotropic Remeshing of a Triangulation

We proposed recently (Peyré and Cohen, 2003) a new method for sampling a 3D mesh
that follows a farthest point strategy based on the weighteddistance obtained through
Fast Marching on the initial triangulation. This is relatedto the method introduced in
(Cohen, 2001). A similar approach was proposed independently and simultaneously
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in (Moenning and Dodgson, 2003). It follows thefarthest pointstrategy, introduced
with success for image processing in (Eldar et al., 1997) andrelated to the remeshing
procedure of (Chew, 1993).

Our approach iteratively adds new vertices based on the geodesic distance on the
surface. The result of the algorithm gives a set of vertices uniformly distributed on
the surface according to the geodesic distance. Taking intoaccount a local density of
vertices will be done in sections 3.3 and 3.4.

3.1. A GREEDY ALGORITHM FOR UNIFORMLY SAMPLING A MANIFOLD

We now describe how to automatically build an evenly spaced set of points on a
triangulated surface. A first pointx1 is chosen at random on the mesh and its geodesic
distance mapU1 computed by fast marching. A more elaborate choice consistsin
replacing this random point by the point with maximum distance from it.

Then we assume we have already computed a set of pointsSn = {x1, . . . , xn},
together withUn the geodesic distance map toSn. To add a new pointxn+1, we
simply select a point on the manifold that is furthest away from Sn, meaning that
it has maximal value ofUn. To compute the new distance mapUn+1, we use the fact
thatUn+1 = min(Un, Uxn+1), where we have notedUxn+1 the distance map toxn+1. So
we simply need to updateUn by starting a front fromxn+1 (using the Fast Marching
algorithm exposed in section 2) and to confine it on the set{x ; Uxn+1(x) 6 Un(x)}.
This assures that the whole remeshing process roughly takesless thanO(N log(N)2)

operations.
At each iteration, the new pointxn+1 needs not to be a vertex of the original mesh.

It can be positioned accurately by interpolating the distance map. To be more precise,
it happens most often that the point with maximum distance islocated in a triangle
where three different fronts meet. We simply compute the intersection of each pair of
fronts along each edge as it is described in section 2.2. We then choose forxn+1 the
center of mass of the three intersection points.

We choose to stop the algorithm either when the last added point xn+1 satisfies
Un(xn+1) 6 δ , whereδ is a given threshold, or when a given number of points have
been distributed. Figure 4 shows the first steps of our algorithm on a square surface.

3.2. CALCULATION OF THE GEODESIC TRIANGLES

Once we have found the complete setSn0, we must determine which vertices to link
together to obtain our new triangulationT which is built incrementally during the
algorithm. To that end, during the point distribution process we keep track ofsaddle
points(see (Cohen, 2001)), which are verticesv that satisfy these two criterions:
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First point

Second point

20 points laterThird point

Figure 4. An overview of our greedy algorithm.

• When the value ofU(v) is set by the Fast Marching algorithm, two fronts coming
from different base pointsxi andx j must meet for thefirst time atv (see (Cohen,
2001)).

• Adding edge[xi, x j ] to the new triangulationT must keep the triangulation valid
(e.g. the edge must have at most two adjacent faces).

The set of saddle points tells us which verticesxi andx j should be linked together
to obtain a valid triangulationT . Note that when we update a distance mapUn+1,
a previously found saddle pointv can disappear (ifv is reached by the front coming
from xn+1), and of course new saddle points can be created.

Figure 5 shows progressive remeshing of the bunny and the David. In order to
have a valid triangulation, the sampling of the manifold must be dense enough (for
example 100 points is not enough to capture the geometry of the ears of the bunny).
A theoretical proof of the validity of geodesic Delaunay triangulation can be found
in (Leibon and Letscher, 2000), and more precise bound on thenumber of points is
derived in (Onishi and Itoh, 2003). Note that our algorithm works with manifolds with
boundaries, of arbitrary genus, and with multiple connected components.

3.3. ADAPTIVE REMESHING

In the algorithm presented in sections 3.1 and 3.2, the fronts propagate at a constant
speed which results in uniformly spaced mesh. To introduce some adaptivity in the
sampling performed by this algorithm, we use a speed function F = 1/P (which is the
right hand side of the Eikonal equation) that is not constantacross the surface. Figure
6 shows the progressive sampling of a square surface using a speed function with two
different values. The colors show the level sets of the distance functionU to the set of
selected points.

Since vertices are added at maximal values of the geodesic weighted distance, the
resulting mesh will be dense in regions with smallerF , and in regions with higherF
the mesh will be sparse. This is due to the fact that the algorithm distributes points
in such a way that their weighted geodesic distances to neighbors are almost equal.
The geodesic distance to vertices in a region with higher value of P is thus smaller.
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100 points 800 points 1,500 points300 points

1,000 points300 points 5,000 points 20,000 points

Figure 5. Geodesic remeshing with an increasing number of points.

First point

Second point

100 points laterThird point

F=1
F=5

Figure 6. Iterative insertion of points in a square.

FunctionF can reflect the need of the user to refine some specific regions with more
vertices.

To illustrate our approach, we give an example of a mesh obtained from range
scanning. A pictureI of the model can be mapped onto the 3D mesh. Using a function
F of the formF(x) = 1

1+µ |grad(I(x))| , whereµ is a user-defined constant, one can refine
regions with high variations in intensity. On figure 1, one can see a 3D head remeshed
with variousµ ranging fromµ = 0 (uniform) toµ = 20/max(|grad(I(x))|) (highly
adaptive).
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(a) Speed F1 (b) Speed F2

Figure 7. Curvature-repulsive versus curvature-attractive sampling and remeshing.

3.4. CURVATURE-BASED REMESHING

The local density of vertices can also reflect some geometricproperties of the surface.
The most natural choice is to adapt the mesh in order to be finerin regions where
the local curvature is larger. The evaluation of the curvature tensor is a vast topic. We
used a robust construction proposed recently in (Cohen-Steiner and Morvan, 2003).

Let us denote byτ(x)
def.
= |λ1|+ |λ2| the total curvature at a given pointx of the

surface, whereλi are the eigenvalues of the second fundamental form. We can intro-
duce two speed functionsF1(x)

def.
= 1+ ετ(x) andF2(x)

def.
= 1

1+µτ(x) , whereε andµ are
two user-defined parameters. Figure 7 (a) shows that by usingfunctionF1, we avoid
putting more vertices in regions of the surface with high curvature. The speed function
F1 can be interpreted as an “edge repulsive” function. On the other hand, functionF2

could be called “edge attractive” function, since it forcesthe sampling to put more
vertices in region with high curvature such as mesh corners and edges. Figure 7 (b)
shows that this speed function leads to very good results forthe remeshing of a surface
with sharp features, which is obviously not the case for the “edge repulsive” speed
function (figure 7 (a)).

4. Applications to Mesh Parameterization, Segmentation and Flattening

4.1. MESH PARAMETERIZATION

In (Peyŕe and Cohen, 2003) we proposed a simple scheme to parameterizean arbitrary
triangulated manifold using a coarse triangulation as basedomain. This coarse version
of the mesh is built using our geodesic remeshing. The parameterization on each
corresponding geodesic triangle of the original mesh is built with a geodesic extension
of the barycentric coordinates that makes use of Heron formula.
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Figure 8. Different steps in mesh parameterization: from left to right original mesh, automatic de-
termination of basis points, determination of associated Delaunay triangulation, calculation of the
corresponding geodesic triangles, parameterization interpolation, semi-regular remeshing.

The resulting parameterization is smooth on each triangle of the base domain, and
only continuous across the geodesic edges (much more complex method have to be
used to get globally smooth parameterization, see (Khodakovsky et al., 2003)). It can
be used to build a semi-regular mesh, as shown on figure 8, and asimple relaxation
scheme can be used to regularize vertices location near the boundaries of geodesic
triangles (see (Lee et al., 1998)).

4.2. MESH SEGMENTATION USING CENTROIDAL TESSELLATION

In (Peyŕe and Cohen, 2004b) we have proposed an automatic mesh segmentation
method very well adapted to the tessellation of a complex manifold in elementary
domains topologically equivalent to a disk. In this method the mesh is cut into regions
that best satisfy the following properties:
(C1) Boundaries of the regions agree with sharp features of thesurface.
(C2) Regions are as compact as possible (the ratio area/perimeter should be large),
enclosing equal areas.

The goal of the algorithm is to build a segmentationS =
⋃n

i=1Vi of a triangulated
manifoldS . TheVi will be the Voronoi regions associated with a given set of points
{v1, . . . ,vn}. Initially, these points are chosen using the sampling algorithm of section
3.1. Then a geodesic extension of Lloyd algorithm will refinethe location of thevi

so that they agree with the geodesic center of mass of each region Vi. Figure 9 shows
some iterations of the Lloyd relaxation scheme, and we obtain a geodesic bee-hive
segmentation. At each iteration, the center of mass of each region is computed using
a gradient descent of the energy

Ei(w)
def.
=

∫

x∈Vi

d(x, w)2ds.

where ds is the area element on the surface andd is the geodesic distance.
In order to force the boundaries of the regionsVi to follow the discontinuities of

the surface, we use the “edge attractive” speed functionF2(v) defined in section 3.4.
This will allow us to “freeze” the front in regions with high curvature. This way the
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Figure 9. Lloyd iterations on various models.

Figure 10. Segmentation of two complex models.

resulting Voronoi regions will have boundaries aligned with sharp features of the
surface, and condition (C1) will be satisfied. Figure 10 showsthe segmentation we
obtain on complex models. In the close-up we can see that the cell boundaries try to
follow the edges of the mesh whenever it is possible.

Following the ideas of the section 3.3, we can use a texture function to modulate
the speed function. The resulting segmentation can take into account both the texture
intensity and the curvature information, according to the user will. Figure 11 shows
the segmentation of a texture computed directly on the triangulated mesh (which can
have arbitrary topology). The “segmented function” on the right is the speed function
represented on the 2D parameter space together with the boundaries of the Voronoi
cells.
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Original Speed function Segmented Segmented function

Figure 11. Segmentation of a textured head.

4.3. FAST GEODESICFLATTENING

In (Peyŕe and Cohen, 2004a) we have proposed a method for flattening a triangulated
manifold. This method is very fast and in contrast to traditional methods (see (Floater
et al., 2002) for a complete survey, and (Gu and Yau, 2003; Khodakovsky et al., 2003)
for more complex and global schemes), it does not require thesolution of a large and
ill-conditioned linear system.

Recently, some nonlinear algorithms for dimensionality reduction have appeared
in the community of perceptual manifold learning. The most notable areIsoMap
(Tenenbaum et al., 2000) andLocally Linear Embedding(LLE) (Roweis and Saul,
2000).

The multidimensional scaling approach to flattening of (Zigelman et al., 2002) is
closely related to IsoMap. In order to speed-up the computation and to achieve a
local control over the flattening, we have extended the classical LLE approach to the
geodesic setting. Our procedure can be used to flatten a smallset of points (chosen
using the greedy procedure presented in section 3.1). We then extend the mapping to
the whole mesh using a Nyström integral relation, as already proposed in (Bengio
et al., 2003). Figure 13 shows the extension of the flatteningfrom this small set
of points and the influence of the number of points. We can thenuse the resulting
mapping to perform texture mapping, see figure 13.
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5 base points 10 base points 20 base points 100 base points

Figure 12. Flattening: influence of the number of base points. The original model is shown on the left
of figure 13

Flatten MapTexture

Figure 13. From left to right, the original model, texture on the flattened domain, and on the 3D mesh.

Table I. Average and standard deviation of the angle distribution
David (Fig.5) Feline (Fig.10)Bunny (Fig.5)Fandisk (Fig.10)
(700k vert.) (50k vert.) (35k vert.) (6500 vert.)

Original 54 ˚ (± 8 ˚ ) 60 ˚ (± 7 ˚ ) 59 ˚ (± 6 ˚ ) 57 ˚ (± 8 ˚ )
Remeshing (10% #verts)58 ˚ (± 2 ˚ ) 60.5 ˚ (± 2.5 ˚ ) 61 ˚ (± 4 ˚ ) 59 ˚ (± 4 ˚ )
Remeshing (30% #verts)59 ˚ (± 2 ˚ ) 61 ˚ (± 2 ˚ ) 60 ˚ (± 3.5 ˚ ) 59 ˚ (± 3 ˚ )

5. Results and Discussion

Uniform remeshing. To show the improvement of the quality of the mesh that our
uniform remeshing algorithm can bring, we report in table I the average angle of the
triangulation together with the standard deviation of the angle repartition.

Adaptive remeshing. To study the behavior of our isotropic remeshing as an ap-
proximation procedure, we measure the mean-square Hausdorf distance between the
original mesh and a coarse version produced by our method. Wealso compare the
distortion result of our scheme with another greedy procedure, the progressive mesh
(Hoppe, 1996). On the left of figure 14 one can see the decreasing of the error with
the number of vertices, and on the right a display of the location of the error. This
clearly shows the strength of our scheme for models with sharp features.
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Figure 14. Remeshing error. Left: distorsion curve, right: graphic display of the location of the error.

Flatten

Texture

Figure 15. Texturing of the feline model.

Flatten Texture MapSegment

Figure 16. An overview of our pipeline. The mesh is first segmented usinga weighted geodesic
centroidal tessellation. Each resulting patch is then flattened using the Geodesic LLE procedure. At
last, we can perform texture mapping on each base domain.

Texturing of a Complex Model. On figures 15 and 16 one can see the whole pipeline
in action. This includes first a centroidal tessellation of the mesh, then the extraction
and flattening of each cell, and lastly the texturing of the model.

Computation Times. Table II shows the complexity of the algorithms mentioned
in the paper. The constantA is the number of steps in the gradient descent for the
localization of the intrinsic center of mass, which is aboutA= 8 for 10k vertices. The
constantB represent the number of base points, which is 100 in our tests. This clearly
shows the speed up that Geodesic LLE can bring over global methods such as (Zigel-
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Table II. Complexity of the algorithms
F. MarchingGreedy sampling1 Lloyd iter. Zigelman02 Geodesic LLE

Complexity nlog(n) nlog(n)2 Anlog(n) Bnlog(n)+B3 nlog(n)+B2

Times (10k vert.) 2s 10s 6s 55s 28s

man et al., 2002). On a mesh of 700k vertices, the whole pipeline (i.e. segmentation,
sampling and flattening) takes 740s for Geodesic LLE, 1320s for the classical method
of (Desbrun et al., 2002) and several hours for (Zigelman et al., 2002).

Our future works include a theoretical study of the quality of the embedding given
by our algorithms. We also would like to analyze experimentally the quality of the
whole pipeline. A good way of evaluating the efficiency of such a scheme is to use its
output to perform mesh compression. The mesh atlas providedby our algorithm is an
ideal pre-processing step for performing wavelet transform in parameter space, in a
fashion similar to (Sander et al., 2003).

6. Conclusion

We have described a complete pipeline for 3D mesh re-sampling, segmentation and
flattening. The main tool that allows to have a fast algorithmis the fast marching on a
triangulated mesh, together with some improvements we added. We introduced a fast
algorihtm for remeshing of a surface with a uniform or adaptive distribution. This is
based on iteratively choosing the farthest point accordingto a weighted distance on
the surface. The first stage of the pipeline is the segmentation of the mesh into a set
of genus-0 patches. Our contribution there includes a geodesic extension of the Lloyd
algorithm that is able to construct a geodesic centroidal tessellation. This iterative
algorithm takes into account curvature information of the surface and is very well
suited to building a set of base domains for mesh flattening. The second stage of
our pipeline is a geodesic flattening procedure. We introduced a geodesic version
of Locally Linear Embedding that is able to perform fast computations on a given
set of points, and to extend the embedding to the rest of the mesh in a transparent
manner. The resulting flattening is smooth and achieves a desirable trade-off between
conservation of angle and area.
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