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Geodesic Remeshing Using Front Propagation
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Laurent Cohen dohen@ceremade . dauphine.fr)
CEREMADE, Universé Paris Dauphine, UMR CNRS 7534

Abstract. In this paper, we propose a complete framework for 3D gegnmetrdeling and processing
that uses only fast geodesic computations. The basic hgildiock for these techniques is a novel
greedy algorithm to perform a uniform or adaptive remeshoh@ triangulated surface. Our other
contributions include a parameterization scheme basedagreéntric coordinates, an intrinsic algo-
rithm for computing geodesic centroidal tessellations, afast and robust method to flatten a genus-0
surface patch. On large meshes (more than 500,000 vertimedpchniques speed up computation by
over one order of magnitude in comparison to classical remgsand parameterization methods. Our
methods are easy to implement and do not need multileve¢sote handle complex models that may
contain poorly shaped triangles.

To appear in International Journal of Computer Vision, Spkcssue on Variational and Level Set
methods.

Keywords: Remeshing, geodesic computation, fast marching algoyithesh segmentation, surface
parameterization, texture mapping, deformable models.
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Figure 1.Remeshing of a 3D model using increasing weight for the spasation.



1. Introduction

The applications of 3D geometry processing abound nowaddysy range from

finite element computation to computer graphics, includialying all kinds of sur-

face reconstruction problems. The most common represemtait 3D objects is the
triangle mesh, and the need for fast algorithms to handke Kimd of geometry is

obvious. Classical 3D triangulated manifold processingho@s$ have several well
known shortcomings: mainly, their high complexity when ldeawith large meshes,
and their numerical instabilities.

To overcome these difficulties, we propose a geometry psaugpipeline that
relies onintrinsic information of the surface and not on its underlying trialagjon.
Borrowing from well established ideas in different fieldsc{urding image processing,
perceptual learning, and finite element remeshing) we deetalprocess very large
meshes efficiently.

1.1. O/ERVIEW

In section 2 we introduce some concepts we use in our geodesiputations. This
includes basic facts and some contributions about the Fastivhg algorithm and
\Voronoi diagrams on surfaces.

In section 3 we will expose a greedy algorithm for manifolthping and remesh-
ing, which iteratively adds points to find a mesh that has éoumi or adaptive distri-
bution of vertices on the surface.

In section 4 we will expose two applications of our geodeaiogling strategy: the
construction of a geodesic centroidal tesselation, andtdl&tening scheme.

In section 5 we will show the whole pipeline in action, and Be& we can texture
large meshes faster than current techniques would otheadlsv. We will then give
a complete study of the timings of each part of our algoritimtiuding a comparison
with classical methods.

1.2. RELATED WORK

Geodesic Computations Distances computation on manifolds is a complex topic,
and a lot of algorithms have been proposed sucl€lasnand Han shortest path
method (Chen and Hahn, 1990) which is of quadratic compldkitpmelandSethiars
Fast Marchingalgorithm (Kimmel and Sethian, 1998) allows finding numaiticthe
geodesic distance from a given point on the manifoldd{nlog(n)) in the number

of vertices. They deduce minimal geodesics between twangdaents. Some direct
applications of geodesic computations on manifolds haes Ipeoposed, such as in
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(Kimmel and Sethian, 2000), which applies the Fast Marclalygprithm to obtain
Voronoi diagramandoffset curve®n a manifold.

Surface Remeshing Huge 3D datasets often arise from surfaces reconstructed
in medical imaging for exemple. This reconstruction task ba performed using
algorithms from algorithmic geometry, e.g. (Delingett®892) or deformable models
see (Mclnerney and Terzopoulos, 1996; Osher and Para@i08).2r'hese 3D models
can also be acquired from multiple stereo views, e.g. (F887), or other industrial
applications. These algorithms often produce meshes wdlhga amount of redun-
dant vertices, and triangulations with poor quality. THusse meshes must undergo

a remeshing process.

Remeshing methods roughly fall into two categories:

e Isotropic remeshinga surface density of points is defined, and the algorithastri
to position the new vertices to match this density. For eXentipe algorithm of
TerzopoulogindVasilescyTerzopoulos and Vasilescu, 1992) uses dynamic models
to perform the remeshing. Remeshing is also a basic task icoti@uter graphics
community, and (Surazhsky et al., 2003) have proposed @&guwe based on local
parameterization.

¢ Anisotropic remeshinghe algorithm takes into account the principal directiohs
the surface to align locally the newly created triangles/@ndectangles. Finite
element methods make heavy use of such remeshing algor{tkomert, 2002).
The algorithm proposed in (Alliez et al., 2003) uses lineswivature to build a
guad-dominant mesh.

The importance of using geodesic information to performa teimeshing task is em-

phasized in (Sifri et al., 2003).

Ideas similar to our greedy solution for sampling a manifskeke section 3.1) have
been used with success in other fields such as computer \(sdomponent group-
ing, (Cohen, 2001)), halftoning (void-and-cluster, (Uhely, 1993)) and remeshing
(Delaunay refinement, (Ruppert, 1995)).

2. Geodesic-Based Building Blocks

2.1. FAST MARCHING ALGORITHM

The classical Fast Marching algorithm is presented in (8et1999), and a similar
algorithm was also proposed in (Tsitsiklis, 1995). Thisoaillpm is used intensively
in computer vision, for instance it has been applied to sgladal minimization
problems for deformable models (Cohen and Kimmel, 1997).
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This algorithm is formulated as follows. Suppose we arergaenetricP(s)ds on
some manifold¥” such that? > 0. If we have two pointp, x; € ., the weighted
geodesic distance betwergandx; is defined as

dix0) = min( [ IV ORI ) &

wherey is a piecewise regular curve wiil{0) = Xp andy(1) = x;. WhenP = 1, the
integral in (1) corresponds to the length of the cupandd is the classical geodesic
distance. To compute the distance funciibfx) = d(xg, X) with an accurate and fast
algorithm, this minimization can be reformulated as fokowhe level set curvé; &
{x\ U(x) =t} propagates following the evolution equatiéﬁ(x) = ﬁﬁ;, where
ny is the exterior unit vector normal to the curvexaand the functiot satisfies the
nonlinearEikonalequation:

IBU (3)]| = P(x). )

The functionF = 1/P > 0 can be interpreted as the propagation speed of the#ont
The Fast Marching algorithm on an orthogonal grid makes @is@ apwind finite
difference scheme to compute the valuef U at a given poink; j of a grid:

max(u—U (Xi—l,j)> u-Uu (Xi+17j)’0)2
+maxu—U(xj_1), u—U(x j+1),0)% = h?P(x j)%.

This is a second order equation that is solved as detailegkéonple in (Cohen, 2001).
An optimal ordering of the grid points is chosen so that theltomputation only
takesO(NIlog(N)), whereN is the number of points.

In (Kimmel and Sethian, 1998), a generalization to an abjttriangulation is
proposed. This allows performing front propagations onaamgulated manifold, and
computing geodesic distances with a fast and accurate@goiThe only issue arises
when the triangulation contains obtuse angles. The nualestheme presented above
is not monotone anymore, which can lead to numerical inktiai To solve this
problem, we follow (Kimmel and Sethian, 1998) who proposéutafold” the trian-
gles in a zone where we are sure that the update step will Worget more accurate
geodesic distance on meshes of bad quality, one can use biglee approximations,
e.g. (Manay and Yezzi, 2003), which can be extended to tulatigns using a local
unfolding of each 1-ring. Figure 2 shows the calculation géadesic path computed
using a gradient descent of the distance function.

2.2. EXTRACTION OF VORONOIREGIONS

It is possible to start several fronts from poidts, ..., xn} and make them evolve
together, as shown on figure 3. The areas shown on the suriabe aght define the
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Figure 2. Front Propagation (on the left), level sets of the distanoetion and geodesic paths (on the
right).

Figure 3. Progression of the fronts, Voronoi diagram, and result@sge¢llation.

Voronoi diagramof the starting points, namely the tessellation into thearsy for
ie{l,...,n}

ViZ (xe.Z\Vj#i, dxx)>dxx)}.

To accurately compute the boundaries of the Voronoi regiesallow an overlap
of the front on one vertex. Suppose a frardrrives at a vertex; with time arrivalt?
and another fronb arrives at a vertex, (connected taq) with timetg. Allowing an

overlap of the fronts, we record the time arritilof a at vy, andti’ of batvy. Then
dg—dd-+db—db

the two fronts meet atl — A )vy + Avp whereA = i
17 Y1

3. Isotropic Remeshing of a Triangulation

We proposed recently (P&yand Cohen, 2003) a new method for sampling a 3D mesh

that follows a farthest point strategy based on the weigtitetdnce obtained through
Fast Marching on the initial triangulation. This is relatedhe method introduced in
(Cohen, 2001). A similar approach was proposed indeperndant simultaneously
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in (Moenning and Dodgson, 2003). It follows tFerthest pointstrategy, introduced
with success for image processing in (Eldar et al., 1997 yaladed to the remeshing
procedure of (Chew, 1993).

Our approach iteratively adds new vertices based on theegeondistance on the
surface. The result of the algorithm gives a set of vertiagfoumly distributed on
the surface according to the geodesic distance. Takingaictount a local density of
vertices will be done in sections 3.3 and 3.4.

3.1. A GREEDY ALGORITHM FORUNIFORMLY SAMPLING A MANIFOLD

We now describe how to automatically build an evenly spa@#dos points on a
triangulated surface. A first poiri is chosen at random on the mesh and its geodesic
distance mapJ; computed by fast marching. A more elaborate choice consists
replacing this random point by the point with maximum dis&ifrom it.

Then we assume we have already computed a set of p&ints{xs,..., X},
together withU,, the geodesic distance map &. To add a new poink,;, we
simply select a point on the manifold that is furthest awanfrS,, meaning that
it has maximal value afJ,. To compute the new distance midp, 1, we use the fact
thatUp,.1 = min(Up, Uy, ), where we have notddy , the distance map t&,1. So
we simply need to updatd, by starting a front fromx, 1 (using the Fast Marching
algorithm exposed in section 2) and to confine it on the{getUy,, (X) < Un(X)}.
This assures that the whole remeshing process roughly ksssharO(Nlog(N)?)
operations.

At each iteration, the new poin 1 needs not to be a vertex of the original mesh.
It can be positioned accurately by interpolating the distamap. To be more precise,
it happens most often that the point with maximum distandedated in a triangle
where three different fronts meet. We simply compute therggction of each pair of
fronts along each edge as it is described in section 2.2. Wecthoose fok,, 1 the
center of mass of the three intersection points.

We choose to stop the algorithm either when the last addett ggi; satisfies
Un(Xnt1) < 0, whered is a given threshold, or when a given number of points have
been distributed. Figure 4 shows the first steps of our algoron a square surface.

3.2. CALCULATION OF THE GEODESIC TRIANGLES

Once we have found the complete §gf, we must determine which vertices to link
together to obtain our new triangulatio# which is built incrementally during the
algorithm. To that end, during the point distribution preseve keep track cfaddle
points(see (Cohen, 2001)), which are verticethat satisfy these two criterions:



Second point

First point

Third point __f

e When the value ob) (v) is set by the Fast Marching algorithm, two fronts coming
from different base points; andx; must meet for thdirst time atv (see (Cohen,
2001)).

¢ Adding edgelx;, x;] to the new triangulatiorZ” must keep the triangulation valid
(e.g. the edge must have at most two adjacent faces).

The set of saddle points tells us which vertiogsindx; should be linked together

to obtain a valid triangulatior”. Note that when we update a distance mip1,

a previously found saddle poimtcan disappear (i¥ is reached by the front coming

from x,11), and of course new saddle points can be created.

Figure 5 shows progressive remeshing of the bunny and thédDivorder to
have a valid triangulation, the sampling of the manifold traes dense enough (for
example 100 points is not enough to capture the geometryeoddins of the bunny).
A theoretical proof of the validity of geodesic Delaunayatmgulation can be found
in (Leibon and Letscher, 2000), and more precise bound onuhgber of points is
derived in (Onishi and Itoh, 2003). Note that our algorithorks with manifolds with
boundaries, of arbitrary genus, and with multiple conndctamponents.

20 points later

Figure 4. An overview of our greedy algorithm.

3.3. ADAPTIVE REMESHING

In the algorithm presented in sections 3.1 and 3.2, thedrprapagate at a constant
speed which results in uniformly spaced mesh. To introdeceesadaptivity in the
sampling performed by this algorithm, we use a speed funétie- 1/P (which is the
right hand side of the Eikonal equation) that is not constanbss the surface. Figure
6 shows the progressive sampling of a square surface uspega $unction with two
different values. The colors show the level sets of the distdunctiorJ to the set of
selected points.

Since vertices are added at maximal values of the geodesihigd distance, the
resulting mesh will be dense in regions with smalerand in regions with highgf
the mesh will be sparse. This is due to the fact that the dlguordistributes points
in such a way that their weighted geodesic distances to herghare almost equal.
The geodesic distance to vertices in a region with higherevaf P is thus smaller.
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Figure 5. Geodesic remeshing with an increasing number of points.
F=1

Second point

First point

Third point 100 points later

Figure 6. Iterative insertion of points in a square.

FunctionF can reflect the need of the user to refine some specific regibhsnere
vertices.
To illustrate our approach, we give an example of a mesh médafrom range

scanning. A picturé of the model can be mapped onto the 3D mesh. Using a function

F of the formF (x) = Wd(l(x))l
regions with high variations in intensity. On figure 1, one sae a 3D head remeshed
with variousu ranging fromu = 0 (uniform) tou = 20/ max(|grad(l (x))|) (highly
adaptive).

, Wherep is a user-defined constant, one can refine
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Figure 7. Curvature-repulsive versus curvature-attractive samg@nd remeshing.

3.4. QURVATURE-BASED REMESHING

The local density of vertices can also reflect some geonatojerties of the surface.
The most natural choice is to adapt the mesh in order to be ifinergions where
the local curvature is larger. The evaluation of the cumeatansor is a vast topic. We
used a robust construction proposed recently in (Cohemé&tand Morvan, 2003).
Let us denote byr(x) = |A1| +|A2| the total curvature at a given poirtof the
surface, wherd; are the eigenvalues of the second fundamental form. We ¢am in
duce two speed functiorg (x) = 1+ £1(x) andFz(x) = er(x) whereg andu are
two user-defined parameters. Figure 7 (a) shows that by éisinagion F;, we avoid
putting more vertices in regions of the surface with highvaturre. The speed function
F1 can be interpreted as an “edge repulsive” function. On therdtand, functiori,
could be called “edge attractive” function, since it for¢ee sampling to put more
vertices in region with high curvature such as mesh cornedsealges. Figure 7 (b)
shows that this speed function leads to very good resulthéremeshing of a surface
with sharp features, which is obviously not the case for #xgé repulsive” speed

function (figure 7 (a)).

4. Applicationsto Mesh Parameterization, Segmentation and Flattening

4.1. MESHPARAMETERIZATION

In (Peyg and Cohen, 2003) we proposed a simple scheme to parameteedeitrary
triangulated manifold using a coarse triangulation as dassain. This coarse version
of the mesh is built using our geodesic remeshing. The paeaipation on each
corresponding geodesic triangle of the original mesh ik With a geodesic extension
of the barycentric coordinates that makes use of Heron flamu



Figure 8. Different steps in mesh parameterization: from left to tighiginal mesh, automatic de-
termination of basis points, determination of associatetalinay triangulation, calculation of the
corresponding geodesic triangles, parameterizationgatation, semi-regular remeshing.

The resulting parameterization is smooth on each triangllieedbase domain, and
only continuous across the geodesic edges (much more commghod have to be
used to get globally smooth parameterization, see (Khoddoet al., 2003)). It can
be used to build a semi-regular mesh, as shown on figure 8, amdpde relaxation
scheme can be used to regularize vertices location nearoilvedhries of geodesic
triangles (see (Lee et al., 1998)).

4.2. MESHSEGMENTATION USING CENTROIDAL TESSELLATION

In (Peyé and Cohen, 2004b) we have proposed an automatic mesh satjorent
method very well adapted to the tessellation of a complexifolanin elementary
domains topologically equivalent to a disk. In this methioel inesh is cut into regions
that best satisfy the following properties:

(C1) Boundaries of the regions agree with sharp features dutface.

(C2) Regions are as compact as possible (the ratio area/peristould be large),
enclosing equal areas.

The goal of the algorithm is to build a segmentatigh= | ; Vi of a triangulated
manifold.”. TheV; will be the Voronoi regions associated with a given set ohmi
{v1,...,Vn}. Initially, these points are chosen using the samplingrétlyo of section
3.1. Then a geodesic extension of Lloyd algorithm will refihne location of they;
so that they agree with the geodesic center of mass of eanMgFigure 9 shows
some iterations of the Lloyd relaxation scheme, and we plaageodesic bee-hive
segmentation. At each iteration, the center of mass of esgibir is computed using
a gradient descent of the energy

Ei(w) = /X . d(x, w)2ds.

where &is the area element on the surface drid the geodesic distance.

In order to force the boundaries of the regidfigo follow the discontinuities of
the surface, we use the “edge attractive” speed fundtgw) defined in section 3.4.
This will allow us to “freeze” the front in regions with highuovature. This way the
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0 iteration

3 iterations

Figure 9. Lloyd iterations on various models.

Figure 10. Segmentation of two complex models.

resulting Voronoi regions will have boundaries alignedhwsharp features of the
surface, and condition (C1) will be satisfied. Figure 10 shtvessegmentation we
obtain on complex models. In the close-up we can see thatethbaundaries try to
follow the edges of the mesh whenever it is possible.

Following the ideas of the section 3.3, we can use a texturetifon to modulate
the speed function. The resulting segmentation can takeartount both the texture
intensity and the curvature information, according to teerwvill. Figure 11 shows
the segmentation of a texture computed directly on thedtiated mesh (which can
have arbitrary topology). The “segmented function” on tlgétis the speed function
represented on the 2D parameter space together with thelhoes of the Voronoi
cells.
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Original Speed function Segmented Segmented function

Figure 11. Segmentation of a textured head.

4.3. FAST GEODESICFLATTENING

In (Peygé and Cohen, 2004a) we have proposed a method for flatteniramngutated
manifold. This method is very fast and in contrast to tradi@l methods (see (Floater
et al., 2002) for a complete survey, and (Gu and Yau, 2003dikovsky et al., 2003)
for more complex and global schemes), it does not requirsedhgion of a large and
ill-conditioned linear system.

Recently, some nonlinear algorithms for dimensionalityuctsbn have appeared
in the community of perceptual manifold learning. The mostable arelsoMap
(Tenenbaum et al., 2000) ahdcally Linear EmbeddingLLE) (Roweis and Saul,
2000).

The multidimensional scaling approach to flattening of éigan et al., 2002) is
closely related to IsoMap. In order to speed-up the comjuntand to achieve a
local control over the flattening, we have extended the iakELE approach to the
geodesic setting. Our procedure can be used to flatten a setalf points (chosen
using the greedy procedure presented in section 3.1). Weetktend the mapping to
the whole mesh using a Nysin integral relation, as already proposed in (Bengio
et al., 2003). Figure 13 shows the extension of the flattefiogn this small set
of points and the influence of the number of points. We can tismthe resulting
mapping to perform texture mapping, see figure 13.
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5 base points

10 base points

20 base points

100 base points

Figure 12. Flattening: influence of the number of base points. The waignodel is shown on the left

of figure 13
Flatten

Figure 13. From left to right, the original model, texture on the flagdrdomain, and on the 3D mesh.

Texture

Map

Table I. Average and standard deviation of the angle digidh

David (Fig.5)Feline (Fig.10)Bunny (Fig.5]Fandisk (Fig.10)
(700k vert)| (50kvert) | (35kvert) | (6500 vert.)
Original 54" (E£87)] 60 (7)) [ 59 *6) 57 (*8")
Remeshing (10% #vert$)58 (£ 27) [60.5 & 257) 61 (£4") 50" (*4")
Remeshing (30% #vert$)59 (2 )| 61 *27) |60 (+357)] 59 *3")

Uniform remeshing To show the improvement of the quality of the mesh that our
uniform remeshing algorithm can bring, we report in tabled average angle of the

5. Resultsand Discussion

triangulation together with the standard deviation of thgla repartition.

Adaptive remeshing To study the behavior of our isotropic remeshing as an ap-
proximation procedure, we measure the mean-square Hdulsance between the
original mesh and a coarse version produced by our methodal¥decompare the
distortion result of our scheme with another greedy prooedhe progressive mesh
(Hoppe, 1996). On the left of figure 14 one can see the deagasithe error with

the number of vertices, and on the right a display of the looabf the error. This

clearly shows the strength of our scheme for models withpsteatures.
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100 vertices 300 vertices 300 vertices

Error High

| Uniform

RMS (% bounding box diag)

Adaptive

Low

[ ;- Texture

& AN %%/,

Figure 15. Texturing of the feline model.
Flatten

Figure 16. An overview of our pipeline. The mesh is first segmented usingeighted geodesic
centroidal tessellation. Each resulting patch is theneftettl using the Geodesic LLE procedure. At
last, we can perform texture mapping on each base domain.

Texturing of a Complex Model On figures 15 and 16 one can see the whole pipeline
in action. This includes first a centroidal tessellationhaf mesh, then the extraction
and flattening of each cell, and lastly the texturing of thededo

Computation Times Table 1l shows the complexity of the algorithms mentioned
in the paper. The constaAtis the number of steps in the gradient descent for the
localization of the intrinsic center of mass, which is ab&ut 8 for 10k vertices. The
constanB represent the number of base points, which is 100 in our. {€ts clearly
shows the speed up that Geodesic LLE can bring over globdladstsuch as (Zigel-
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Table Il. Complexity of the algorithms
| [[F. MarchingGreedy samplind. Lloyd iter] Zigelman02Z2][Geodesic LLE

Complexity nlog(n) nlog(n)® Anlog(n) [Bnlog(n) +B?| nlog(n) + B?
Times (10K vert. 2s 10s 6s 55s 28s

man et al., 2002). On a mesh of 700k vertices, the whole pipdlie. segmentation,
sampling and flattening) takes 740s for Geodesic LLE, 13@0he classical method
of (Desbrun et al., 2002) and several hours for (Zigelmarn. e2@02).

Our future works include a theoretical study of the qualityh@ embedding given
by our algorithms. We also would like to analyze experimiiynthe quality of the
whole pipeline. A good way of evaluating the efficiency oflsacscheme is to use its
output to perform mesh compression. The mesh atlas prowgedr algorithm is an
ideal pre-processing step for performing wavelet tramsfor parameter space, in a
fashion similar to (Sander et al., 2003).

6. Conclusion

We have described a complete pipeline for 3D mesh re-sag)#gmentation and
flattening. The main tool that allows to have a fast algorithitme fast marching on a
triangulated mesh, together with some improvements wedaddle introduced a fast
algorihtm for remeshing of a surface with a uniform or adagptistribution. This is

based on iteratively choosing the farthest point accortiing weighted distance on
the surface. The first stage of the pipeline is the segmentafi the mesh into a set
of genus-0 patches. Our contribution there includes a gegod&tension of the Lloyd
algorithm that is able to construct a geodesic centroicsgddkation. This iterative
algorithm takes into account curvature information of theface and is very well

suited to building a set of base domains for mesh flattenitng Jecond stage of
our pipeline is a geodesic flattening procedure. We intredug geodesic version
of Locally Linear Embedding that is able to perform fast catapions on a given

set of points, and to extend the embedding to the rest of thehnmea transparent
manner. The resulting flattening is smooth and achievesieatéstrade-off between
conservation of angle and area.
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