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b Lina, UMR C.N.R.S. 6241, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
c Centre INRIA Rennes Bretagne Atlantique, IRISA, campus de Beaulieu, F - 35 042 Rennes

Cedex, France

LINA, Université de Nantes – 2, rue de la Houssinière – BP 9220 8 – 44322 NANTES CEDEX 3
Tél. : 02 51 12 58 00 – Fax. : 02 51 12 58 12 – http ://www.sciences.univ-nantes.fr/lina/

logoLINA.eps
logoUnivNantes.eps
logoEMN.eps
logoCNRS.eps


Jamil Ahmada, Jérémie Bourdonb,c, Damien Eveillardb, Jonathan Fromentina,
Olivier Rouxa, Christine Sinoquetb

Qualitative modelling and analysis of gene regula-
tory networks: application to the adaptation of Es-
cherichia colibacterium to carbon availability
32 p.

Les rapports de recherche du Laboratoire d’Informatique deNantes-Atlantique
sont disponibles aux formats PostScript® et PDF® à l’URL :
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regulatory networks: application to the

adaptation of Escherichia colibacterium to
carbon availability

Jamil Ahmada, Jérémie Bourdonb,c, Damien Eveillardb,
Jonathan Fromentina, Olivier Rouxa, Christine Sinoquetb

Abstract

Attempts to model Gene Regulatory Networks (GRNs) have yielded very different approaches. Among
others, variants of Thomas’s asynchronous boolean approach have been proposed, to better fit the dy-
namics of biological systems: notably, genes were allowed to reach different discrete expression levels,
depending on the states of other genes, called the regulators: thus, activations and inhibitions are trig-
gered conditionally on the proper expression levels of these regulators. In contrast, some fine-grained
propositions have focused on the molecular level as modelling the evolution of biological compound con-
centrations through differential equation systems. Both approaches are limited. The first one leads to an
oversimplification of the system, whereas the second is incapable to tackle largeGRNs. In this context,
hybrid paradigms, that mix discrete and continuous features underlying distinct biological properties,
achieve significant advances for investigating biologicalproperties. One of these hybrid formalisms pro-
poses to focus, within aGRN abstraction, on the time delay to pass from a gene expressionlevel to the
next. Until now, no research work has been carried out, whichattempts to benefit from the modelling of
a GRN by differential equations, converting it into a multi-valued logical formalism of Thomas, with the
aim of performing biological applications. The present research work fills this gap by describing a whole
pipelined process which supervises the following stages: (i) model conversion from a Piece-wise Affine
Differential Equation (PADE) modelization scheme into a discrete model with attractors(and generation
of the corresponune pour la journée portes ouvertes de PolyTech ?ding dynamical graph), (ii) on the basis
of probabilistic criteria, extraction of subgraphs of interest from the former dynamical graph, (iii) con-
version of the subgraphs into Parametric Linear Hybrid Automata, (iv) analysis of dynamical properties
(e.g. cyclic behaviours) using hybrid model-checking techniques. The present work is the outcome of a
methodological investigation launched to cope with theGRN responsible for the reaction ofEscherichia
coli bacterium to carbon starvation. As expected, we retrieve a remarkable cycle already exhibited by a
previous analysis of thePADE model. Above all, hybrid model-checking enables us to discover additional
insightful results, whose interpretations are in accordance with biological evidences.





Foreword

Due to their equally important complementary contributions, the authors would emphasize that
the order chosen for the author list is the alphabetical order.

Introduction

A Gene Regulatory Network (GRN) is a collection of macromolecular compounds such asDNA

and proteins, which functionally interact with each other in a cell. Some proteins, the transcrip-
tion factors (TFs), serve only to activate genes and are therefore the main players in regulatory
networks or cascades. By binding to the promoter region in the regulatory region of other genes,
TFs turn the latter on, initiating the production of another protein, and so on. SomeTFs are
inhibitory. These interactions thereby govern the rates atwhich genes in the network are tran-
scribed into mRNA...

In the simplest cases - that is when interactions do not involve more than two compounds at
a time -, aGRN is typically described as a simple directed graph whose vertices are the compo-
nents (for illustration, see Figure2 (a)). The existence of a labelled directed edge between a pair
of genes symbolizes an activation (+) or an inhibition (-) exerted by a gene over another gene
through a protein production; besides, the label also mentions the expression level of the regula-
tor gene for which the regulation (activation or inhibition) is triggered. Note that a non-inhibiting
status is equivalent to an activating status, and symmetrically. Besides, a gene may contribute
to activate another gene, together with other co-activators. A gene may also be the co-inhibitor
of another gene. More generally, the co-regulation of a given gene is likely to involve activa-
tors as well as inhibitors. Since regulation is triggered depending on gene expression levels, the
regulation of a given gene may involve various sets of co-regulator genes throughout the whole
biological system’s life. Hereafter, such set of genes willbe called aresourcefor the regulated
gene. In summary, given the current activating or inhibiting statuses of potentially co-regulating
genes, aGRN determines the expression level of the gene under regulation, itself a potential
regulator for other genes. In this regulatory context, investigating the respective behaviours of
genes remains a key question.

Various models ofGRNs have been developed to capture the behaviour of the system be-
ing modeled, and infer dynamical properties (see de (Jong, 2002) for a review). The following
modelling techniques used include Boolean networks (Kauffman, 1993), Petri nets (Chaouiya,
2007), Bayesian networks (Harteminket al., 2001; Yuet al., 2002), graphical Gaussian mod-
els (Markowetzet al., 2005), Stochastic (Golightlyet al., 2006) and Process Calculi (Kuttler
et al., 2006). The most realistic dynamical models lie on differential equation systems dealing
with protein productions that activate or repress genes. However, such modelling is not im-
plementable for realistic biological systems, due to many unknown parameters. Thus, various
alternative modelling approaches were proposed. Discretizing protein concentration by thresh-
olds quickly appeared as an attractive lead. Henceforth, wewill indifferently refer to protein
concentration levels or gene expression thresholds. Two categories of approaches implement
such a discretized approximation. On the one hand, qualitative methods based on Piecewise-
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Affine Differential Equations (PADEs) showed relevant enough to overcome the lack of quanti-
tative data on kinetic parameters and molecular concentrations and to fit biologists’expectations
(Glasset al., 1973; Snoussi, 1989; de Jonget al., 2004; Battet al., 2005). On the other hand, an
approach first proposed by Thomas combines discretization (both in terms of gene expression
levels and time) with the attractor concept (Thomaset al., 1990; Thomas, 1991; Snoussiet al.,
1993; Thomaset al., 1995). The definition of this concept will be briefly recalled in the sequel.
Time is viewed as proceeding in discrete steps. At each instant t, the current expression levels
of theGRN’s genes determine the genes’attractors, which are the thresholds towards which the
genes’expression levels tend to evolve and which will therefore be assigned to genes at instant
t + 1.

However, some processes, and among them, gene transcription, involve many biochemical
reactions or may be delayed until the appropriate moleculesare available, which can take time
due to possible low concentrations of the latter in the cell.Now, the discrete model with attrac-
tors originally proposed implements instantaneous variations of the thresholds. In an ideal model
based on discretization, transitions between expression level thresholds would be modelled as
sigmoidal functions of the time. Due to unknown tuning parameters, this model is generally not
implementable for realistic biological systems. An approximated model has thus been designed
to cope with delays; it implements linear variations between genes’thresholds.

In this report, we tackle the problem of describing a realistic GRN through the approach of
Thomas, extended with delays. The ultimate aim is identifying essential features of the dynam-
ical behaviour of theGRN studied, using model-checking techniques. As a case study example,
we analyse theGRN of the nutritional stress response inEscherichia colibacterium. Though this
GRN has been widely studied, the relation between the growth ofE. coli and the availability of
carbon source is still little understood.

In our approach, the discrete model is built from a formerly publishedPADE model (Ropers,
2006), thus benefitting from its parameter tuning. Besides,as the set of global states obtained as
well as the transition graph are huge, our work is also novel in that it copes with this difficulty,
implementing a complementary probabilistic approach: thelatter is used to highlight subgraphs
showing characterized states. Then, any such subgraph can be converted into a hybrid model
with delays, for the purpose of behavioural property inference. Model-checking tools can be
used to analyse these hybrid models.

We first describe the method implementing the conversion of aPiecewise-Affine Differen-
tial Equation model into a discrete model with attractors (Section 2). Nevertheless, the dis-
crete model of a largeGRN is not easily tractable for property inference implementedthrough
model-checking techniques. Therefore, in Section3, a method dedicated to the extraction of
subgraphs of interest in the dynamical graph is proposed. This process is performed on the basis
of a probabilistic rationale and identifies subgraphs characterized with remarkable states. Then,
Section4 focuses on the integration of delays into the discrete model, leading to an hybrid sys-
tem. Throughout our exposition, the simplicist regulationsystem for bacteriumPseudomonas
aeruginosa’s mucus production will be used for illustration. The outcome of our methodolog-
ical approach is the processing scheme depicted in Figure1. In Section5, we apply the whole
pipelined process in the case of the response ofEscherichia colibacterium to carbon availability.
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Therein, we present and discuss insightful results obtained for this realistic case, originally the
instigator case for the pipelined process design.

1 Conversion of aPADE model into a model with attractors

1.1 PADE model

We first recall how the concentration evolution of a protein regulated by aGRN can be modelled
through a Piece-wise Affine Differential Equation (Snoussi, 1989; de Jonget al., 2001). PADE

modelling relies on discretization: for each proteini, its concentration is known to evolve within
a domain discretized into an ordered set of thresholdsθ1, θ2...

Definition 1 (Evolution of protein concentration)
Typically, the evolution of concentrationxi with time is expressed as:ẋi = fi(x)− γixi, 1 ≤
i ≤ n, xi ≥ 0,
wherex = (x1, . . . , xn) is a vector ofn protein concentrations. The equation above relates the
concentration modification ratėxi to a synthesis rate,fi(x), and a degradation rate,γixi.

Functionsfi express the dependence ofxi upon the concentrations of other constituents
present in the cell. Such functions are derived from basic principles of chemical kinetics, in-
cluding for example Michaelis-Menten enzymatic kinetics.

Notation 1 (Resource set)
In the following,R(i) will denote the set of all resources likely to regulate genei. A resource for
genei is itself a set of genes (possibly inclusing genei) involved in the co-regulation of genei.

Definition 2 (Description of regulation)
fi(x) expresses the synthesis rate of componenti as a function of the concentrations of regulator
genes inith gene’s resources:
fi(x) = ki +

∑

r∈R(i) kir bir(x), ki ∈ R+∗, kir ∈ R+, bir ∈ {0, 1},
whereki andkir are kinetic parameters.

Switching the boolean parameterbir(x) to 1 means that the corresponding resourcer is
active, that is each generj belonging to the resource setr is either an activator or a non-inhibitor
for genei, depending on its concentrationxrj

. Switchingbir(x) from 0 to 1 and symmetrically
relies on the satisfaction of constraints by the concentrations relative to the genes belonging to
resource setr. In a discrete framework, such constraints are expressed through concentration
thresholds.

Before we may further explain how entitiesbir describe regulator contributions, we need
detail the concept of discretization. Such concentration thresholds aforecited are defined as
follows:

Definition 3 (Discrete concentration thresholds)
θjα denotes one of the thresholds between which the continuous variable xj is likely to evolve.
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Figure 1: The pipelined process designed for the analysis oflargeGRNs.

For genej characterized byτj thresholds, the following ordered relation is verified:0 < θj1 <
θj2 < · · · < θjτj

.

Any such set of thresholds defines a set of domains, further called local states, traversed by the
system under study, when considering only genej. More generally, this system evolves through
global states, which refer to all possible combinations of local states associated with the genes
in the system. Such previous concepts establish the notion of discrete dynamics of the system.

Then, thebir(x) terms in Definition 2.2 will be tailored as functions of entities defined as
follows:

ahmad_et_al_figure_1_pipeline_process_research_report.eps
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Definition 4 (Step function)
Givenrj, a regulator gene belonging to resourcer, and one of itsτj thresholdsθrjα

,

s+(xrj
, θrjα

) =

{

1, if xrj
≥ θrjα

0, if xrj
< θrjα

s−(xrj
, θrjα

) = 1 − s+(xrj
, θrjα

).

Finally, any co-regulation involving the genes of a resource setr may be modelled adapting
bir as a combination of various step functionss+ ands−. The following grammar enumerates
all possible combinations:

bir ::= comb
comb ::= s+ | s− | 1 − comb | comb comb.

Through thebir coefficients, the activation or inhibition sigmoidal functions are approxi-
mated into piece-wise linear functions.

For a didactic exposition, we will illustrate the various concepts used throughout this article
with the simpleGRN involved in the mucus production of bacteriumP. aeruginosa. Figure2 (b)
presents thePADE model corresponding to theGRN described in Figure2 (a).

u v(2,+)

(1,+)

(1,−) 0 1 2

0

1

u

v

(a) (b) (c)

Figure 2: Regulation of the mucus production forP. aeruginosabacterium (a) labelledGRN;
(b) Piece-wise Affine Differential Equation model (PADE); (c) asynchronous discrete model. (a)
The directed edgeu → v labelled with(1,+) means thatu activatesv as soon asu’s expression
level reaches the threshold value of1. The directed edgev → u labelled with(1,−) indicates
that the inhibition ofu by v is triggered as soon asv’s expression level is1. Note the positive
feedback loop foru.

1.2 Discrete model with attractors

In the abstract semi-qualitative model of Thomas, each geneexpression variation domain is
discretized using appropriate thresholds. The knowledge of all such gene thresholds is the pre-
requisite for building the graph whose dynamical behaviours will be studied. Global states are
directly inferred identifying all valid threshold combinations. In particular, biological knowl-
edge allows discarding global states which do not exist: forexample, antagonist components

ahmad_et_al_figure_2_a_pseudomonas_regulatory_network.eps
ahmad_et_al_figure_2_b_diff_equations_pseudomonas.eps
ahmad_et_al_figure_2_c_pseudomonas_regulatory_network_transitions_mode_async.eps
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can not show simultaneously high (resp. low) expression levels or concentrations. Once the
valid global states of the dynamical graph are identified, its transitions have to be inferred. In
the model inspired from that proposed by Thomas, the dynamical aspect is modelled through
the attractor concept.

Definition 5 (Attractor)
In a given global states, a geneu is associated to a specific attractor value, representing the
expression level towards which this gene will tend to evolve, starting fromsu, its expression
level in global states. The evolution of geneu depends upon one or more other genes, together
defining the resource setr(u, s) for u in global states. Therefore, the attractor value of geneu,
Ku,r(u,s), is related tou’s resource.

Table1 recapitulates the three possible evolution tendencies forgeneu.

su < Ku,r(u,s) The expression level ofu tends to increase.
su = Ku,r(u,s) The expression level ofu is steady.
su > Ku,r(u,s) The expression level ofu tends to diminish.

Table 1: Determination of the tendency for geneu, depending on its expression levelsu and its
attractor valueKu,r(u,s), in global states. r(u, s) denotes the resource set of geneu, in global
states.

Knowing these tendencies for all genes and for all global states is the key to infer the tran-
sitions of the dynamical graph. Central to any modelling paradigm using discretization is the
concept of qualitative focal point.

Definition 6 (Qualitative focal point)
In global states, with each geneu of the system evolving towards its attractor valueKu,r(u,s),
the qualitative focal point is defined as the vector (Ku1,r(u1,s), · · · ,Kun,r(un,s)). Any focal point
is uniquely associated with an abstract region in the discretized hypercube of dimensionn, where
each dimension describes local state traversing for one of then genes of the system.

A most difficult task remains in tuning attractor values: usually, instanciating attractor values
for a given global state is an under-constrained problem. Biological knowledge together with
Snoussi constraints prohibit some instanciations (Snoussi constraints specify that the addition
of supplementary activating (resp. inhibiting) resourcesfor a given gene obligatorily leads to
the increase (resp. decrease) of its attractor value). Table 2 shows a possible instanciation for
the GRN illustrated in Figure2 (a). In the asynchronous model, best consonant with biological
reality, a change of state is only allowed for at most one genealong each transition. As a result,
if a global states is its own successor, it is a steady global state whereas it possessesp successors
if tendency to evolve is detected forp genes. Figure2 (c) provides the asynchronous description
derived from the tendencies of Table2.
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u v attractor foru attractor forv tendency forv tendency foru
0 0 Ku,{v} = 2 Kv,{} = 0 ր →

0 1 Ku,{} = 0 Kv,{} = 0 → ց

1 0 Ku,{v} = 2 Kv,{u} = 1 ր ր

1 1 Ku,{} = 0 Kv,{u} = 1 ց →

2 0 Ku,{u,v} = 2 Kv,{u} = 1 → ր

2 1 Ku,{u} = 2 Kv,{u} = 1 → →

an instanciated model:
Ku,{} = 0, Ku,{v} = 2, Ku,{u,v} = 2, Kv,{} = 0, Kv,{u} = 1

Table 2: A possible instanciation of attractors, for theGRN of Figure2 (a). We explain the third
line relative to global state(su = 1, sv = 0): sincev is not inhibitingu (sv < 1), v activates
u as its only resource;u being in state1, a consistent instanciation forKu,{v} is thus the value
of 2; the condition is required foru’s activation ofv (su ≥ 1) and a coherent value forKv,{u} is
therefore1. In conclusion, both gene expressions tend to increase.

1.3 Model conversion

The key to the conversion of aPADE model into a discrete model with attractors relies on the
quasi-straightforward determination of such attractors from the differential equations, as well
as a facility to instanciate them through the set of constraints associated with these equations.
Indeed, the qualitative focal point of Thomas’s formalism coincides with the abstract region (in
the hypercube of dimensionn) containing the steady state for thePADE system.

Proposition 1 (Conversion rule)
Referring to thePADE related to genei (definitions 2.1 and 2.2 combined),ẋi = ki+

∑

r∈R(i) kir bir(x)−
γixi, 1 ≤ i ≤ n, xi ≥ 0, bir ∈ {0, 1}, we obtain the attractor value of genei in global
states whenẋi is equal to0 (steady state) andbi,r(i,s)(x) is switched to1 due to the activating
regulation of resourcer(i, s) :

Ki,r(i,s) = Di(
ki +

∑

r∈R(i)∩r(i,s) kir

γi
),

where the discretization functionDi converts the ratio into one of theτi θiα thresholds associated
with genei.

Example 1

When applied to the case of P. aeruginosa’s mucus productionregulation (see Table3),
the conversion process exploits constraints relative to thresholds ((3) to (4)) as well as kinetic
parameters ((5) to (8)).
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(1) u̇ = ku + kuv s−(v, θ1v) + kuu s+(u, θ2u) − γu u

(2) v̇ = kv + kvu s+(u, θ1u) − γv v

(3) 0 ≤ θ1u < θ2u ≤ maxu

(4) 0 ≤ θ1v ≤ maxv

(5) 0 ≤ ku

γu
≤ θ1u

(6) θ2u ≤ ku+kuv

γu
+ ku+kuu

γu
+ ku+kuv+kuu

γu
≤ maxu

(7) 0 ≤ kv

γv
≤ θ1v

(8) θ1v ≤ kv+kvu

γv
≤ maxv

(9) Ku,{} = Du(ku

γu
)

(10) Ku,{u} = Du(ku+kuu

γu
)

(11) Ku,{v} = Du(ku+kuv

γu
)

(12) Ku,{u,v} = Du(ku+kuu+kuv

γu
)

(13) Kv,{} = Dv(
kv

γv
)

(14) Kv,{u} = Dv(
kv+kvu

γv
)

Table 3: Identification of resources and tuning of attractors from thePADE of Figure2 (b). At-
tractors are easily identified from equations (1) and (2): inaddition toKu,{v},Ku,{u} andKv,{u},
attractors corresponding to the absence of resource areKu,{} andKv,{}. Moreover, attractor
Ku,{u,v} has to be created. It follows from equations (3) to (8) and from Snoussi constraints (
Ku,{} ≤ Ku,{v} ≤ Ku,{u, v}, Ku,{} ≤ Ku,{u} ≤ Ku,{u,v} andKv,{} ≤ Kv,{u}) that one of the
possible instanciations is the one deduced in Table2. Du andDv are discretization functions
used to convert ratios into the appropriate concentration thresholds.
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2 Extraction of subgraphs of interest

We implemented a coloration method designed to highlight the most interesting states of the
dynamical graph. This method relies on a probabilistic rationale.

Turning the dynamical state graph initialy obtained into a Markov chain is straightforward.
For each transition originating from a given global statei (1 ≤ i ≤ N ), a probability is computed
as the inverse of the outter degree of statei. Formerly, the transition matrixM of the Markov
chain associated to the dynamical graph denotedG = (V,E) satisfies

∀i, j ∈ V,Mj,i =
[[i → j ∈ E]]

#{k, i → k ∈ E}
,

where[[B]] = 1 if propertyB is true and 0 otherwise (Iverson’s notation) and#{k, i → k ∈ E}
is the outter degree of statei.

Next, we define the steady-state probabilityP⋆ as

P⋆ = lim
ℓ→∞

1

N

ℓ
∑

i=0

M iF,

whereF is the vector of initial probabilities (in the sequel, this vector is set asFi = 1/|V |,
1 ≤ i ≤ N .). Here, the sum ensures the convergence to a unique probability distribution, even
in the case of a non irreducible or periodic Markov chain.

We use the steady-state probabilityP⋆ to highlight vertices inG (i.e. the global states of
the dynamical graph). Relying on steady-state probabilities is justified by their being closely
related to the number of times the different states are traversed in infinite random trajectories.
Consequently, the higher is such a probability, the more important would be the associated state,
with regard to the system’s behaviour.

As infinite trajectories do not make sense in a biological context, it is more relevant instead
to focus on finite trajectories. We define the vectorPℓ of ℓ-finite state probabilities to be

Pℓ =
1

ℓ

ℓ
∑

i=0

M iF,

whereF is the vector of initial probabilities.

Theℓ-finite state probabilityPℓ[i] is proportional to the mean number of times a given state
i is traversed.

Notice that we thus provide a way to colorize the dynamical state graph by assigning to
each statei a colour value proportional toPℓ[i]. For long trajectories, whenℓ is approximately
the number of states in the graph, the states supposedly mostcrucial to the biological system’s
behaviour are emphasized. In an automated approach, we use vectorPℓ to prune the dynamical
graph by extracting the induced subgraphs composed of states i such thatPℓ[i] > 2/N . Each
subgraph identified consists of states reached at most twicein long trajectories. In the case of
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E. coli response to carbon deprivation, this cut off threshold of2/N ensures that the subgraphs
obtained are tractable for any further analysis.

3 Extending the discrete model paradigm with delays: the hybrid
model

3.1 Clocks and delays

The evolution of the expression of a given gene is a continuous non-linear process (see Figure3).
This fact is not taken into account in the discrete modellingformalism of Thomas, where gene
expression evolves from one level to another level in a discrete fashion (see Figure3 (b)). In the
field of biological modelling, paradigms have been proposedto simulate continuous temporal
evolution (Bernotet al., 2004; Adelaı̈deet al., 2004; Siebertet al., 2006). The refinement
of discrete modelling by a more enhanced formalism of hybridmodelling has been proposed
(Ahmadet al., 2007), in which the sigmoid-like evolution is no more approximated by a discrete
step but by a piece-wise linear curve instead (Figure3 (c)). Since we now consider that thedelay
needed for a gene to evolve from expression levela to a+ 1 or a− 1 is not null, we have to deal
with additional concepts, namelytime intervalsandclocks.

Figure 3: A sigmoid relation (a) and its discrete (b) and piece-wise linear (c) approximations.

The widely-spread timed automaton formalism provides a formal framework to describe
hybrid systems (Aluret al., 1994). In this framework, any global state of the system modeled is
described by a discrete spacial location (in our case, the vector of current gene expression values)
and a vector of continuous variables, called clocks. Any geneu is associated to a clock (denoted
hu). Evolving synchronously with time, clock intervals therefore superimpose a representation
of continuous system’s dynamics on the already defined discrete dynamics. The clocks act as
transition guards and are reset to0 when the system passes from one discrete location to another
one. The more general class of Linear Hybrid Automata (LHA ) is the appropriate framework
allowing the definition of time interval associated to a clock (Henzingeret al., 1995). For any
clock, its current value measures the time elapsed since themost recent change occurred for the
system, in the discrete space of gene expressions. Thus, if the system consists ofn genes, an
LHA formalism superimposes a temporal hypercube of dimensionn to the discrete global state
space. For illustration, in dimension2, a global state is now associated to a rectangular temporal
region bounded by four delays (see Figure4). The delay for geneu to increase up to next discrete

ahmad_et_al_figure_3_three_curves.ps
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level is a real parameter depending onu’s current discrete state (du
+ > 0); symmetricaly, the

delay to decrease down to next discrete level is| du
− | (du

− < 0).

(2,0)(0,0)

(1,1)

h
x=

d
x

h
x=

d
x

y=0,hy=0

hy=dy

hy=dy

(1,0)

1
0 1
0

10

10

+

+
−

−

y

x

x=
1

,h
x=

0

0

hx<0
hy>0

Figure 4: Hybrid model - temporal regions and delays -. Here,global state(x, y) = (1, 0) is
associated to delaysdx

+
10, dx

−
10, dy

+
10 anddy

−
10.

To model time elapsing, we use a subclass of theLHA formalism, which associates to each
geneu a clock rate,ḣu, in the restricted set{−1, 0, 1}. Rates−1, 0 and1 respectively signify
that gene expression level is decreasing, staying at the same level or increasing. Any clock rate
ḣu related to geneu indicates the evolution tendency for this gene, with respect to the current
global state. Prior to any analysis of the dynamical behaviour of the modeled system, each such
clock rate must be tuned. In contrast with the asynchronous discrete model of Thomas, tuning
the clock rates now requires looking several steps ahead in the dynamical graph, in order to
capture the whole actual tendency. For instance, in Figure2 (c), if one confines to a depth of2
to examine next transitions, when starting from state(0, 1), asu decreases andv increases,ḣu

andḣv are respectively set to1 and−1 (see (Ahmadet al., 2007) for details).

Delays being considered as parameters, such a model will be called a Parametric Linear
Hybrid Automaton (PLHA) in the sequel. Now all concepts have been unformally introduced
and illustrated, next subsection will rigorously definePLHAs together with their semantics.

3.2 Parametric Linear Hybrid Automata

We remind the reader that derivativeẋ denotes the evolution rate for protein concentrationx
while ḣx is the evolution rate of the clockhx associated with variablex.

Notation 2
LetX andP be respectively a set of real variables and a set of parameters. Anatomic constraint

ahmad_et_al_figure_4_temporal_region_and_delay.eps
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is a formula of the formx ⊲⊳ c, for x ∈ X, c ∈ Q∪P and⊲⊳∈ {<,≤,≥, >}. We denoteC(X,P )
the set ofconstraintsover a set of variablesX and parametersP , which consists of conjunctions
of atomic constraints. Given a constraintg, we letV(g) be the set of variables that appear ing.
We letC=(X,P ) (resp. C≤(X,P ), C≥(X,P )) be the set of constraints using only= (resp.≤,
≥).

Definition 7 (PLHA)
A PLHA is a tuple(L, ℓ0,X, P,E, Inv, Dif ) defined as follows:

• L is a finite set of locations

• ℓ0 ∈ L is the initial location

• P is a finite set of delay parameters

• X is a finite set of clocks

• E ⊆ L× C=(X,P ) × 2X ×L is a finite set ofedges, e = (ℓ, g,R, ℓ′) ∈ E represents an
edge from locationℓ to locationℓ′, associated with the guardg and the reset setR ⊆ X
(we require thatV(g) ⊆ R)

• Inv : L → C≤(X,P ) ∪ C≥(X,P ) assigns an invariant to any location

• Dif : L × X → {−1, 0, 1} maps each pair(ℓ, x) to an evolution rate.

The semantics of aPLHA is a timed transition system. It is defined according to the time
domainT. We letT∗ = T \ {0}.

Definition 8 (Semantics of aPLHA)
Let γ be a valuation for the parametersP . The(T, γ)–semantics of a parametricLHA H =
(L, ℓ0,X, P,E, Inv, Dif) is defined as a timed transition systemSH = (S, s0, T,→) where: (1)
S = {(ℓ, ν) | ℓ ∈ L and ν |= Inv(ℓ)}; (2) s0 = (ℓ0, ν0) with ν0(x) = 0 for everyx ∈ X; (3)
the relation→⊆ S × T × S is defined fort ∈ T as:

• discrete transitions:(ℓ, ν)
0
→ (ℓ′, ν ′) iff ∃(ℓ, g,R, ℓ′) ∈ E such thatγ(ν) = true, ν ′(x) =

0 if x ∈ R andν ′(x) = ν(x) if x /∈ R.

• continuous transitions: Fort ∈ T∗, (ℓ, ν)
t
→ (ℓ′, ν ′) iff ℓ′ = ℓ, ν ′(x) = ν(x)+Dif(ℓ, x)×

t, and for everyt′ ∈ [0, t], (ν(x) + Dif(ℓ, x) × t′) |= Inv(ℓ).

The semantics of aPLHA implements two types of transitions: discrete and continuous.
Invariants and guards are constraints set on subsets of clocks. Invariants specify the conditions
under which the system is allowed to stay in the current state, while time elapses. Adiscrete
transition is an instantaneous transition that occurs between two discrete locations. It is fired
when the associated guard is satisfied.Continuous transitionsaccount for elapsing of time in
a discrete location until the associated invariant condition is no more satisfied. A continuous
transition allows the updating of the clocks in any time interval [0, t], according to the evolution
rates specified for the clocks and provided that the invariant conditions are still verified. We
refer the reader to appendix1 for the formal definition of the semantics ofPLHAs.



17

Example 2 (PLHA)
The Parametric Linear Hybrid Automaton of the example of P. aeruginosa (see Figure2) is

shown in Figure5. Here, the delays are represented by the notationdα
i,ℓ, whereα denotes the

delay sign (+ for activation and− for inhibition) of a genei in a locationℓ. This automaton
has six locations. The locations are labelled with the invariant conditions while the discrete
transitions are labelled with guards and clock resets.
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Figure 5: Hybrid model forP. aeruginosamucus production.

3.3 Automatic symbolic analysis of aPLHA through HyTech model-checker

HyTechis the model-checker chosen in our study (Henzingeret al., 1997). It is adapted to
hybrid systems: it has the ability to manage parameters through synthesizing constraints relative
to these parameters, thus satisfying necessary conditionsfor the existence of the behaviours
analysed.

Definition 9 (Trajectories and cycles)
A trajectory is a sequence of states related by discrete and continuous transitions. A cycle is a
trajectory that starts in a given location and returns to this same location further on.

In the hybrid model of aGRN, we respectively denoteϕ(t) for t ∈ R≥0 andS the sequence
of points of a trajectory and the set of all points in its statespace.

Definition 10 (Invariance kernel)
A trajectoryϕ(t) is viable inS if ϕ(t) ∈ S for all t ≥ 0. A subsetK of S is said to be invariant
if for any pointp ∈ K, a trajectory starting inp is viable inK. An invariance kernelK is the
largest invariant subset ofS.

For illustration, the set of constraints displayed in Table4 characterizes the invariance kernel
of the example relative toP. aeruginosa(see Figure2). For the sake of simplicity, we only deal

ahmad_et_al_figure_5_hyb_automaton.ps
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with few delay parameters, assuming that alldα
ij are equal, whatever the actual value ofj, and

similarly for all dα
ij , whatever the actual value ofi.

d+
x0

+ d−x1
+ d−y1

≤ d+
y0

∧ d+
y0

+ d−x1
≤ d+

x0
+ 2d+

x1
+ d−y1

∧ d−x1
≤ d+

x0
+ d+

y0
+ d−y1

∧ d+
y0

+ d−y1
≤ d+

x0
+ d−x1

∧ d+
x0

+ d−y1
≤ d+

y0
+ d−x1

Table 4: Delay constraints characterizing the invariance kernel ofP. aeruginosa.

4 The pipelined process applied to the analysis of the reaction of E.
coli to carbon availability

We recall the reader that the pipeline process implemented schedules the following tasks: (i) con-
version from aPADE model to a model with attractors, (ii) identification of the corresponding
transition graph, (iii) identification of induced subgraphs of interest in the former graph, imple-
mented through a probabilistic approach, (iv) modelization of subgraphs in the framework of
PLHA formalism, (v) analysis of characterized dynamical behaviours throughHyTech model-
checker. Note that third step actually provides a visualization tool able to point out subgraphs
containing global states of interest.

It must be emphasized that our contribution is the first example of an application of timed-
model checking techniques on the case ofE. coli regulation related to carbon availability. Indeed,
the former works relative to thisGRN did not take into account the concept of delays (Battet al.
2005).

The implementation of the protocol previously described provides multiple significant re-
sults in the case ofE. coli response to carbon availability.

4.1 ThePADE model of the carbon starvation response inEscherichia Coli

The growth of bacterial populations is related to the quantity of nutrients present in their environ-
ment. Nutrient availability entails an exponential increase of the prokaryotic biomass whereas
nutritional stress induces growth deceleration or even growth stop. Thus, bacterial populations
are subject to transitions between two states denoted as exponential and stationary phases re-
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spectively. The switch between these two phases is crucial to bacterial survival and is controlled
by aGRN that integrates various environmental signals.

TheGRN controlling the response to carbon deprivation has been widely studiedE. Coli, in
the past decades. In contrast to most studies focusing on only one or a few components of this
network, Ropers and co-authors’recent contribution implemented the modelling of concentration
evolution for six key global regulators of this network (Roperset al., 2006). This model relates
the behaviours of five genes (crp, cya, fis, gyrAB , topA) and two supplementary ”signals”
such as the carbon starvation information and the quantity of stableRNAs. The reader interested
in details about the biological hypotheses used for describing the genetic interactions is referred
to (Roperset al., 2006).

The PADE model of Ropers and co-workers was shown to fit to typical features describing
the transition between bacterial growth phases. We therefore admit that this model was validated
and we used a slightly simplified version as a starting point to establish a more refined modelling
approach based on attractors and delays. The simplified version of thePADE model adapted from
Ropers and co-workers’model is shown in Table5. Herein, we present the simplified equations
together with their associated constraints. As the variable xrrn corresponding to stableRNAs
had no influence on others variables, it was discarded from our own PADE model. In addition,
we dismissed three thresholds,θ3crp, θ3cya and θ5fis, which appeared to be useless. Thus,
contraints applying toθ3crp now apply toθ2crp; similarly, θ2cya is constrained as wasθ3cya;
finally, parameter inequalities relative to the formerθ5fis now apply toθ4fis.

4.1.1 Conversion of thePADE model relative to E. coli response to nutrient availability
into a discrete model with attractors

Benefitting from a previousPADE modelling ofE. coli response to carbon availability, we are
thus able to skip the tedious task of identifying attractorsab initio. Moreover, the instanciation
is facilitated by the set of constraints associated with thePADE model. Indeed, provided that
we understand how to relate the kinetic parameters and the degradation rate of thePADE system
with attractor values, the instanciation process will be significantly simplified. Table6 focuses
on an excerpt of Ropers and co-authors’model (in its simplified version).

The equation in line (1) models the variation ofxtopA, that is the concentration of topoi-
somerase. For the sake of simplicity, Ropers and co-authorsconsidered that a single promoter
is involved in the expression oftopA gene, whereas there are indeed five promoters involved
in its expression. The expression of this gene is also controlled by antagonistic agents:topA
is activated by a low level offis; in contrast, it is activated by a high level ofgyrAB . Two
different thresholds have been considered in the simplifiedversion,θ1topA andθ2topA. Stim-
ulation of topA promoter by its resource{gyrAB , f is, topA}, where the first gene is activat-
ing and the two others are not inhibiting, entails maximal production oftopA. It follows that
θ2topA <

ktopA

γtopA
< maxtopA.
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u̇s = 0

ẋcrp = k1crp + k2crp s−(xfis, θ2fis) s+(xcya, θ1cya) s+(us, θs) + k3crp s−(xfis, θ1fis) − γcrp xcrp

0 < θ1crp < θ2crp < maxcrp

θ1crp <
k1crp

γcrp
< θ2crp

θ1crp <
k1crp+k2crp

γcrp
< θ2crp

θ2crp <
k1crp+k3crp

γcrp
< maxcrp

θ2crp <
k1crp+k2crp+k3crp

γcrp
< maxcrp

ẋcya = k1cya + k2cya (1 − s+(xcrp, θ2crp) s+(xcya, θ2cya) s+(us, θs)) − γcya xcya

0 < θ1cya < θ2cya < maxcya

θ1cya <
k1cya

γcya
< θ2cya

θ2cya <
k1cya+k2cya

γcya
< maxcya

ẋfis = k1fis (1 − s+(xcrp, θ1crp) s+(xcya, θ1cya) s+(us, θs)) s−(xfis, θ4fis)
+k2fis s+(xgyrAB

, θ1gyrAB
) s−(xtopA, θ2topA) s−(xfis, θ4fis) (1 − s+(xcrp, θ1crp) s+(xcya, θ1cya) s+(us, θs)) − γfisxfis

0 < θ1fis < θ2fis < θ3fis < θ4fis < maxfis

θ1fis <
k1fis

γfis
< θ2fis

θ4fis <
k1fis+k2fis

γfis
< maxfis

ẋgyrAB
= kgyrAB

(1 − s+(xgyrAB
, θ2gyrAB

) s−(xtopA, θ1topA)) s−(xfis, θ3fis) − γgyrAB
xgyrAB

0 < θ1gyrAB
< θ2gyrAB

< maxgyrAB

θ2gyrAB
<

kgyrAB

γgyrAB
< maxgyrAB

ẋtopA = ktopA s+(xgyrAB
, θ2gyrAB

) s−(xtopA, θ1topA) s−(xfis, θ3fis) − γtopA xtopA

0 < θ1topA < θ2topA < maxtopA

θ2topA <
ktopA

γtopA
< maxtopA

Table 5: Equations and associated constraints depicting the simplified model adapted from Rop-
ers and co-authors, to simulate the response to carbon deprivation in Escherichia coli. The
five variables correspond to protein concentrations:xcrp (CRP),xcya (Cya),xfis (Fis),xgyrAB

(GyrAB), xtopA (TopA).

Applying this process to each equation in thePADE system of Table5, we finally obtain a
discrete model with instanciated attractor values. As explained in subsection1.2, the construc-
tion of the dynamical graph is now straightforward. However, as foreseeable for such a complex
GRN asE.coli reponse to nutrient availability, before behavioural property inference may be per-
formed through model-checking techniques, a simplification stage is required. For example, the
dynamical graph corresponding toE. coli response to nutrient availability contains such a high
numberN of vertices (i.e. states) as810.
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(1) ẋtopA = ktopA s+(xgyrAB
, θ2gyrAB

) s−(xtopA, θ1topA) s−(xfis, θ3fis) − γtopA xtopA

(2) 0 < θ1topA < θ2topA < maxtopA

(3) θ2topA <
ktopA

γtopA
< maxtopA

(4) KtopA,{gyrAB ,fis,topA} = DtopA(
ktopA

γtopA
), KtopA,{} = DtopA( 0

γtopA
)

(5) KtopA,{} = 0

(6) θ1topA = 1, θ2topA = 2

(7) KtopA,{gyrAB ,fis,topA} = 2

Table 6: Identification of resources and tuning of attractors for the response to carbone starva-
tion in E. coli. The differential equation of Ropers’model (1) allows the identification of the two
attractors concerned (4).DtopA is a function used to obtain an integer attractor value (discretiza-
tion). AttractorKtopA,{} (5), corresponding to the case when no resource is available, is trivially
instanciated with the value of0; together with conversion rule (3), Ropers’s constraints (2) in-
duce the instanciation of concentration thresholds (6); finally, a value of2 is an instanciation of
KtopA,{gyrAB ,fis,topA} attractor’s value consistent with (3), (4) and (6) constraints.

4.2 The initial dynamical graph

The entire transition graph contains810 global states and3827 transitions. However, the dy-
namics of the exponential phase and that of the stationary phase are to be studied separately.
Indeed, our purpose here is not to focus on transitions switching from one phase to the other
one. The graph describing the dynamics of the stationary phase consists of405 global states
and1523 transitions. The graph corresponding to the exponential phase contains405 states and
1494 transitions. After conversion from thePADE model into a discrete model with attractors,
we dismissed some states known to be never encountered (crp = 0). In this report, we chose
to concentrate on the exponential phase. The reduced graph describing the dynamics of the
exponential phase consists of108 global states.

Incidentally, we checked that some specific properties reported in the literature hold for the
model inferred. For example, thecrp/fis antagonism (crp = 2 and fis = 0) is verified as ex-
pected. Besides, it has been checked thatDNA supercoiling is absent fromevery cyclebelonging
to the graph characterizing the exponential phase:fis = 0 =⇒ topA > gyrAB . Indeed, two
mechanisms were described by Traverset al. to explain how the nucleoid-associated protein FIS
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modulates the topology ofDNA in a growth-phase dependent manner, to counteract excessive
levels of superhelicity (Traverset al., 2001). First, the binding of FIS toDNA constrains nega-
tive superhelicity to low levels; second, a reduction in theexpression and effectiveness ofDNA

gyrase achieves the same result. Conversely, highfis expression levels do themselves require a
high negative superhelical density.

4.3 Extraction of a characterized cycle

When applying the ”coloration” process to the graph relatedto exponential phase, we identify
the subgraph depicted in Figure6. This subgraph is outstandingly dense in states of interest
(i.e. potentially frequently encountered states in long trajectories) and therefore contains several
qualitative cycles, among which we recognize a cycle well-known inE. coli response to carbon
availability:

012100→ 012110 → 012120→ 012220 → 012320→ 012420 → 012410→

012400→ 012300 → 012200→ 012100

(the six values respectively correspond tocrp, cya, fis, gyrAB , topA andrrn). Interestingly,
it happens that this cycle corresponds to the one identified by Ropers and co-workers (Roperset
al., 2006), displayed in Figure7, except that only4 levels are considered forfis.

Moreover,HyTech model-checking techniques enable us to capture this cycle through the
analysis ofinvariance kernelin the hybrid model built for the subgraph of Figure6. As stated
in the study based onPADE modelling (Roperset al., 2006), we show that the system behaviour
is likely to end running into the qualitative cycle aforementioned. At this stage, it is remarkable
that a graph pruning probabilistic process combined with hybrid modelling on the one hand and
PADE modelling on the other hand meet to reveal the very same qualitative cycle.

Before commentating on the results obtained throughHyTech analysis, we have to define
the so-calledfull period (denotedπ(u)) as the sum of all delays for a geneu to pass sequentially
and successively, once through each of all its expression levels.

It should be noticed that the real time for a gene to run along this route (if it actually takes
place) may be greater than the full period since it may include lazy stages,i.e. some time
intervals where there is neither increase nor decrease.

4.3.1 Identification of temporal constraints

Restraining tofis andgyrAB , the cycle aforementioned is merely expressed as
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where symbols+, − and= indicate the evolution tendency for each gene.

The analysis withHyTech provides two kinds of results relative to this peculiar cycle.
On the one hand, constraints are identified, which determinea cyclic behaviour (inequalities
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Figure 6: A subgraph showing cycles in the exponential phase, for E. coli bacterium. The global
states are represented in the same manner as in Figure5. The five values respectively correspond
to crp, cya, fis, gyrAB , andtopA. The states of Ropers and co-workers’cycle are highlighted
as dark rectangles.

ahmad_et_al_figure_6_exponential_phase_cycle.eps
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Figure 7: Qualitative cycle ofE. Coli associated with the series of phases denoted
Q107
s

, Q109
s

, Q69
s

, Q71
s

, Q49
s

, Q51
s

, Q39
s

, Q41
s

, Q49
s

, Q43
s

, Q53
s

, Q95
s

, Q105
s

© (Ropers, 2006).

registered (1) to (3), in Table7). On the other hand, we exhibit a relation between the lengthL
of this cycle and the delays associated with genes (equalities 4 (a) and 4 (b), in Table7).

4.3.2 Interpretation and relevance with regard to biological evidences

• First, it follows directly from (3) thatπ(gyrAB) ≤ π(fis).

This inequality is explained by the fact that there exists a phase in the cycle wheregyrAB

is lazy (i.e. it stays at the same expression level). This may be observed in the phase
−
4

=
0 of the cycle, corresponding to the stateQ41

s
in figure7. Thus, the qualitative cycle in

which E. coli bacterium is involved during the exponential phase following a carbon sup-
ply is possible whengyrAB qualitative period is smaller than that offis: therefore, the
path of transitions through minimum to maximum qualitativestate and back is traversed
faster forgyrAB than forfis. This remark implies that a slight increase ofgyrAB ’s pe-
riod might not allow the bacterium to stay in the exponentialphase. gyrAB is closely
related toDNA supercoiling. Therefore, slowing down thegyrAB cycle running would
entail diminishingDNA supercoiling reactivity. Independent studies have shown the great

ahmad_et_al_figure_7_ropers_cycle.ps
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d+
fis1

+ d+
fis2

+ d+
fis3

+ |d−fis3
| + |d−fis2

| ≤ d+
gyrAB0

+ d+
gyrAB1

+ |d−gyrAB2
|

d+
gyrAB0

+ d+
gyrAB0

≤ d+
fis1

+ |d−fis2
| + |d−fis3

|

d+
gyrAB0

+ d+
gyrAB1

+ |d−gyrAB2
| + |d−gyrAB1

| ≤ d+
fis1

+ d+
fis2

+ d+
fis3

+ |d−fis4
| + |d−fis3

| + |d−fis2
|

L = d+
fis1

+ d+
fis2

+ d+
fis3

+ |d−fis4
| + |d−fis3

| + |d−fis2
|

L = d+
gyrAB0

+ d+
fis1

+ d+
fis2

+ d+
fis3

+ |d−fis4
|.

Table 7: Identification of temporal constraints associatedwith the existence of the cycle high-
lighted in Figure6.

impact of theDNA-superhelicity on the bacterial gene activity (see (Hatfield et al., 2002))
for a review). Basal expressions of genes are low when chromosomal superhelical den-
sity is low, and conversely. Because of the necessity to react to environmental variation
for survival, low bacterial activity acts as a trigger for switching to the stationary phase.
This remark confirms the temporal constraint mentioned above as a biological insight. D.
Ropers and co-workers depicted this qualitative cycle as anunexpected result. However,
our investigation of temporal properties associated with this cycle points out insights that
are relevant with biological evidences aboutDNA supercoiling.

• Second, we deduce from (4) (a) thatL = π(fis) (and henceL ≥ π(gyrAB).)

Thus, we are able to prove that the cycle length is exactly thefull period of fis. This
result is consistent with the fact that there is no lazy phasefor fis. Moreover, this obser-
vation implies thatfis plays the major role in the qualitative cycle in which the bacterium
is kept during the exponential phase. Therefore, an experimental calibration offis tem-
poral properties might shed light on this bacterial model. Furthermore, point ii. shows
that the reactivity ofDNA supercoiling mentioned above is related to the delay taken by
fis to complete its qualitative period. Again, the temporal properties deduced from the
qualitative model reinforce the biological relevance of the model.

• Finally, (4) (a) and (4) (b) entail thatd+
gyrAB1

= |d−fis3
| + |d−fis2

|.

Equality (iii) indicates that, in the sequenceQ43
s

− Q53
s

− Q95
s

of figure 7, while fis de-
creases from level3 to level1 (within the time delay|d−fis3

| + |d−fis2
|), in the same time,

gyrAB increases from level0 to level 1 (within the delayd+
gyrAB0

), which means that,

in the Q105
s

phase,gyrAB should be at level1, as it is in phaseQ107
s

. This property is
particularly hard to verify by experimental means. However, the nice consequence of this
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observation is that the so-called “Qualitative cycle” of D.Ropers in Figure7 is actually a
cycle. In this case, analyzing the temporal properties associated with the qualitative model
reinforces previous computational investigations.

5 Conclusion

In this document, we have presented a complete process devoted to infer behavioural properties
of realisticGRNs. As a conclusion to former research works, some of the co-authors concluded
that hybrid modelling including linear delays as an approximation constitutes a valuable refine-
ment with respect to the initial model of Thomas (Ahmadet al., 2007). It was announced that
the modelization of aGRN related toE. coli was under investigation at the same time. The work
reported here dealt with the methodological analysis led totackle the case ofE. coli’s response
to carbon starvation, in particular.

As predictable, the difficulties encountered during our study lied in the high dimension of
the associated discrete dynamical graph. A first trick consisted in benefitting from the tuning of a
former published model, itself settled on solid biologicalgrounds, to avoid tedious identification
of resource sets and facilitate the instanciation of attractor values. On theE. coli benchmark, we
have shown that it is possible to convert aPADE model into a model with attractors. Then, a graph
coloration method based on probabilistic reasoning allowed us to focus on subgraphs dense in
presumed states of interest. Applying such a coloration method to provide subgraphs tractable
by such model-checkers asHyTech might be an attractive solution to tackle the analysis of
largeGRNs.

As a remarkable result, not only did the coloration method described point out a cycle al-
ready reported in biological literature, model-checking performed on the hybrid model also
captured this cycle. Besides, our approach allowed to refinethe temporal constraints that are
necessary to reach particular qualitative transitions, such those of interest observed by Ropers
and collaborators. Thus, beyond simple verification performance, interesting relations between
delays have been inferred through our formalism. They enable further investigations that lead on
to future experiments or novel biological insights about the mechanisms responsible for specific
dynamical behaviours.

Finally, the methodological investigation conducted onE. colisystem constitutes a first valu-
able contribution to show the relevance of pipelining different methods to tackle large biological
system analysis.
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Abstract

Attempts to model Gene Regulatory Networks (GRNs) have yielded very different approaches. Among
others, variants of Thomas’s asynchronous boolean approach have been proposed, to better fit the dy-
namics of biological systems: notably, genes were allowed to reach different discrete expression levels,
depending on the states of other genes, called the regulators: thus, activations and inhibitions are trig-
gered conditionally on the proper expression levels of these regulators. In contrast, some fine-grained
propositions have focused on the molecular level as modelling the evolution of biological compound con-
centrations through differential equation systems. Both approaches are limited. The first one leads to an
oversimplification of the system, whereas the second is incapable to tackle largeGRNs. In this context,
hybrid paradigms, that mix discrete and continuous features underlying distinct biological properties,
achieve significant advances for investigating biologicalproperties. One of these hybrid formalisms pro-
poses to focus, within aGRN abstraction, on the time delay to pass from a gene expressionlevel to the
next. Until now, no research work has been carried out, whichattempts to benefit from the modelling of
a GRN by differential equations, converting it into a multi-valued logical formalism of Thomas, with the
aim of performing biological applications. The present research work fills this gap by describing a whole
pipelined process which supervises the following stages: (i) model conversion from a Piece-wise Affine
Differential Equation (PADE) modelization scheme into a discrete model with attractors(and generation
of the corresponune pour la journée portes ouvertes de PolyTech ?ding dynamical graph), (ii) on the basis
of probabilistic criteria, extraction of subgraphs of interest from the former dynamical graph, (iii) con-
version of the subgraphs into Parametric Linear Hybrid Automata, (iv) analysis of dynamical properties
(e.g. cyclic behaviours) using hybrid model-checking techniques. The present work is the outcome of a
methodological investigation launched to cope with theGRN responsible for the reaction ofEscherichia
coli bacterium to carbon starvation. As expected, we retrieve a remarkable cycle already exhibited by a
previous analysis of thePADE model. Above all, hybrid model-checking enables us to discover additional
insightful results, whose interpretations are in accordance with biological evidences.
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