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regulatory networks: application to the
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carbon availability

Jamil Ahmad?, Jerémie Bourdort:¢, Damien Eveillard®,
Jonathan Fromentin?, Olivier Roux?, Christine Sinoquet

Abstract

Attempts to model Gene Regulatory Networksr{is) have yielded very different approaches. Among
others, variants of Thomas’s asynchronous boolean appioaee been proposed, to better fit the dy-
namics of biological systems: notably, genes were allowagach different discrete expression levels,
depending on the states of other genes, called the regsildtars, activations and inhibitions are trig-
gered conditionally on the proper expression levels ofdahregulators. In contrast, some fine-grained
propositions have focused on the molecular level as maodgtie evolution of biological compound con-
centrations through differential equation systems. Bgipraaches are limited. The first one leads to an
oversimplification of the system, whereas the second ispioke to tackle largeRrNs. In this context,
hybrid paradigms, that mix discrete and continuous featuraderlying distinct biological properties,
achieve significant advances for investigating biologiraberties. One of these hybrid formalisms pro-
poses to focus, within &RN abstraction, on the time delay to pass from a gene expreksiehto the
next. Until now, no research work has been carried out, wattdgmpts to benefit from the modelling of
a GRN by differential equations, converting it into a multi-vatiilogical formalism of Thomas, with the
aim of performing biological applications. The presenteaesh work fills this gap by describing a whole
pipelined process which supervises the following stagg¢sngdel conversion from a Piece-wise Affine
Differential Equation PADE) modelization scheme into a discrete model with attractansl generation
of the corresponune pour la journée portes ouvertes dd@aty?ding dynamical graph), (i) on the basis
of probabilistic criteria, extraction of subgraphs of @&t from the former dynamical graph, (iii) con-
version of the subgraphs into Parametric Linear Hybrid Adta, (iv) analysis of dynamical properties
(e.g. cyclic behaviours) using hybrid model-checking technijuehe present work is the outcome of a
methodological investigation launched to cope with & responsible for the reaction &scherichia
coli bacterium to carbon starvation. As expected, we retrievaraarkable cycle already exhibited by a
previous analysis of theaDe model. Above all, hybrid model-checking enables us to discadditional
insightful results, whose interpretations are in accocgamith biological evidences.






Foreword

Due to their equally important complementary contribusiotine authors would emphasize that
the order chosen for the author list is the alphabeticalrorde

Introduction

A Gene Regulatory NetworlGRN) is a collection of macromolecular compounds sucibas
and proteins, which functionally interact with each othreaicell. Some proteins, the transcrip-
tion factors {Fs), serve only to activate genes and are therefore the majyengl in regulatory
networks or cascades. By binding to the promoter regiondmélulatory region of other genes,
TFs turn the latter on, initiating the production of anotheotpmn, and so on. Somers are
inhibitory. These interactions thereby govern the rateshath genes in the network are tran-
scribed into nRNA...

In the simplest cases - that is when interactions do notwevoiore than two compounds at
atime -, aGRN is typically described as a simple directed graph whosécesrare the compo-
nents (for illustration, see Figug(a)). The existence of a labelled directed edge betweerra pai
of genes symbolizes an activation (+) or an inhibition (red by a gene over another gene
through a protein production; besides, the label also raestihe expression level of the regula-
tor gene for which the regulation (activation or inhibit)aatriggered. Note that a non-inhibiting
status is equivalent to an activating status, and symnadifricBesides, a gene may contribute
to activate another gene, together with other co-actigatArgene may also be the co-inhibitor
of another gene. More generally, the co-regulation of argiyene is likely to involve activa-
tors as well as inhibitors. Since regulation is triggeredead@ling on gene expression levels, the
regulation of a given gene may involve various sets of caleggr genes throughout the whole
biological system'’s life. Hereafter, such set of genes balicalled aesourcefor the regulated
gene. In summary, given the current activating or inhibitatatuses of potentially co-regulating
genes, aGRN determines the expression level of the gene under regujatiself a potential
regulator for other genes. In this regulatory context, $tigating the respective behaviours of
genes remains a key question.

Various models ofcRNs have been developed to capture the behaviour of the system b
ing modeled, and infer dynamical properties (see de (JOb@R)2for a review). The following
modelling techniques used include Boolean networks (Kaarff, 1993), Petri nets (Chaouiya,
2007), Bayesian networks (Hartemiek al., 2001; Yuet al, 2002), graphical Gaussian mod-
els (Markowetzet al,, 2005), Stochastic (Golightlgt al, 2006) and Process Calculi (Kuttler
et al, 2006). The most realistic dynamical models lie on difféiedrequation systems dealing
with protein productions that activate or repress geneswener, such modelling is not im-
plementable for realistic biological systems, due to mamgnown parameters. Thus, various
alternative modelling approaches were proposed. Digangtiprotein concentration by thresh-
olds quickly appeared as an attractive lead. Henceforthwilléndifferently refer to protein
concentration levels or gene expression thresholds. Twegodes of approaches implement
such a discretized approximation. On the one hand, queditatethods based on Piecewise-



Affine Differential EquationsKADES) showed relevant enough to overcome the lack of quanti-
tative data on kinetic parameters and molecular concémisatind to fit biologists’expectations
(Glasset al., 1973; Snoussi, 1989; de Joapgal, 2004; Battet al., 2005). On the other hand, an
approach first proposed by Thomas combines discretizatioth (n terms of gene expression
levels and time) with the attractor concept (Thoreaal,, 1990; Thomas, 1991; Snousdial.,
1993; Thomaet al, 1995). The definition of this concept will be briefly recdllim the sequel.
Time is viewed as proceeding in discrete steps. At eachrinstdéhe current expression levels
of the GRN's genes determine the genedtractors which are the thresholds towards which the
genes’expression levels tend to evolve and which will tfoeeebe assigned to genes at instant
t+1.

However, some processes, and among them, gene transgyriiptiolve many biochemical
reactions or may be delayed until the appropriate moleadesvailable, which can take time
due to possible low concentrations of the latter in the détiw, the discrete model with attrac-
tors originally proposed implements instantaneous variatof the thresholds. In an ideal model
based on discretization, transitions between expressimi thresholds would be modelled as
sigmoidal functions of the time. Due to unknown tuning paggers, this model is generally not
implementable for realistic biological systems. An apjimmeted model has thus been designed
to cope with delays; it implements linear variations betwgenes’'thresholds.

In this report, we tackle the problem of describing a reialisrRN through the approach of
Thomas, extended with delays. The ultimate aim is idemtifyeéssential features of the dynam-
ical behaviour of thesrN studied, using model-checking techniques. As a case siaiype,
we analyse theRrN of the nutritional stress responselscherichia colbacterium. Though this
GRN has been widely studied, the relation between the growta @bli and the availability of
carbon source is still little understood.

In our approach, the discrete model is built from a formetiplfshedPADE model (Ropers,
2006), thus benefitting from its parameter tuning. Besidsshe set of global states obtained as
well as the transition graph are huge, our work is also novéat it copes with this difficulty,
implementing a complementary probabilistic approach:ldkter is used to highlight subgraphs
showing characterized states. Then, any such subgrapheceonerted into a hybrid model
with delays, for the purpose of behavioural property infieee Model-checking tools can be
used to analyse these hybrid models.

We first describe the method implementing the conversion Ritaewise-Affine Differen-
tial Equation model into a discrete model with attractorecti®n 2). Nevertheless, the dis-
crete model of a largeRrN is not easily tractable for property inference implementadugh
model-checking techniques. Therefore, in Secipm method dedicated to the extraction of
subgraphs of interest in the dynamical graph is proposeis. prbcess is performed on the basis
of a probabilistic rationale and identifies subgraphs dtarezed with remarkable states. Then,
Section4 focuses on the integration of delays into the discrete madeldling to an hybrid sys-
tem. Throughout our exposition, the simplicist regulatiystem for bacteriunPseudomonas
aeruginos& mucus production will be used for illustration. The outw of our methodolog-
ical approach is the processing scheme depicted in Fiuhe Section5, we apply the whole
pipelined process in the case of the respondescherichia colbacterium to carbon availability.



Therein, we present and discuss insightful results obddioethis realistic case, originally the
instigator case for the pipelined process design.

1 Conversion of aPADE model into a model with attractors

1.1 PADE model

We first recall how the concentration evolution of a proteigulated by &RN can be modelled
through a Piece-wise Affine Differential Equation (Snou48i89; de Jongt al, 2001). PADE
modelling relies on discretization: for each protéiits concentration is known to evolve within
a domain discretized into an ordered set of threshé{ds,...

Definition 1 (Evolution of protein concentration)

Typically, the evolution of concentratian with time is expressed as; = fi(z) — vz, 1<
1<n, x; >0,

wherez = (z1,...,xy) iS a vector ofn protein concentrations. The equation above relates the
concentration modification rate; to a synthesis ratef;(z), and a degradation ratey; z;.

Functions f; express the dependence mf upon the concentrations of other constituents
present in the cell. Such functions are derived from basitciples of chemical kinetics, in-
cluding for example Michaelis-Menten enzymatic kinetics.

Notation 1 (Resource set)
In the following,R(7) will denote the set of all resources likely to regulate gént resource for
genei is itself a set of genes (possibly inclusing géniavolved in the co-regulation of gerie

Definition 2 (Description of regulation)

fi(z) expresses the synthesis rate of componasta function of the concentrations of regulator
genes in'" gene’s resources:

fz(.%') =k; + ZT‘GR(i) ki bir(.%'), k; € R+*, ki € RJr, bir € {O, 1},

wherek; andk;,. are kinetic parameters.

Switching the boolean parametgr.(x) to 1 means that the corresponding resourcis
active, that is each geng belonging to the resource seis either an activator or a non-inhibitor
for genei, depending on its concentratian, . Switchingb;,(x) from 0 to 1 and symmetrically
relies on the satisfaction of constraints by the conceaotratrelative to the genes belonging to
resource set. In a discrete framework, such constraints are expressedgh concentration
thresholds.

Before we may further explain how entitiég. describe regulator contributions, we need
detail the concept of discretization. Such concentratlmedholds aforecited are defined as
follows:

Definition 3 (Discrete concentration thresholds)
6;, denotes one of the thresholds between which the continuwigbhe = is likely to evolve.



I Genetic Regulatory Network (GRN) I

Piece-wise Affine Differential Equation model (PADE)

model conversion

| Discrete model with attractors I
q generation of transitiong

| Dynamical graph I

extraction of subgraphs of interest

conversion of subgraphs into PLHAsS

Parametric Linear Hybrid Automata

model-checking

I Properties relative to dynamical behaviour of the GRN I

Figure 1: The pipelined process designed for the analydesrgé GRNS.

For genej characterized by-; thresholds, the following ordered relation is verifigtl< 6;, <
(9j2 <0 <K HjTj.

Any such set of thresholds defines a set of domains, furthleddacal states, traversed by the
system under study, when considering only gerdore generally, this system evolves through
global states, which refer to all possible combinationsoafdl states associated with the genes
in the system. Such previous concepts establish the ndtitisavete dynamics of the system.

Then, theb;,(x) terms in Definition 2.2 will be tailored as functions of eiatit defined as
follows:


ahmad_et_al_figure_1_pipeline_process_research_report.eps

Definition 4 (Step function)
Givenr;, a regulator gene belonging to resourcgand one of its; thresholds,., ,

1, >0,
3+($rj,9rja) — ’ Zf w?“] = "Tin
0, if @ <O,

s (Tr;,0p, ) =1~ S+(£UT].,9T].Q).

Finally, any co-regulation involving the genes of a resewetr may be modelled adapting
b;» as a combination of various step functiosis ands—. The following grammar enumerates
all possible combinations:

bir = comb
comb = st |s" | 1—comb|combcomb.
Through theb;, coefficients, the activation or inhibition sigmoidal fuincts are approxi-
mated into piece-wise linear functions.

For a didactic exposition, we will illustrate the variousicepts used throughout this article
with the simpleGRN involved in the mucus production of bacteridPnaeruginosaFigure2 (b)
presents theaDE model corresponding to therRN described in Figure (a).

\Y

(1,4)
u=Kky,+ky,s(v,0,) + ky,s*(u,0,) -y,u 1 I 3
(2,+)Cu \V; v=k,+kys(u0,)-Y¥V i T T
0
1-) 0 1 >
(@) (b) (©)

Figure 2: Regulation of the mucus production faraeruginosabacterium (a) labelled&RN;
(b) Piece-wise Affine Differential Equation modekDE); (c) asynchronous discrete model. (a)
The directed edge — v labelled with(1, +) means that: activatesy as soon ag’s expression
level reaches the threshold valuelofThe directed edge — « labelled with(1, —) indicates
that the inhibition ofu by v is triggered as soon ass expression level i§. Note the positive
feedback loop fou:.

1.2 Discrete model with attractors

In the abstract semi-qualitative model of Thomas, each @gpeession variation domain is
discretized using appropriate thresholds. The knowledgd#l such gene thresholds is the pre-
requisite for building the graph whose dynamical behadawitl be studied. Global states are
directly inferred identifying all valid threshold combiti@ns. In particular, biological knowl-

edge allows discarding global states which do not exist:ef@mple, antagonist components


ahmad_et_al_figure_2_a_pseudomonas_regulatory_network.eps
ahmad_et_al_figure_2_b_diff_equations_pseudomonas.eps
ahmad_et_al_figure_2_c_pseudomonas_regulatory_network_transitions_mode_async.eps
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can not show simultaneously high (resp. low) expressiorldewr concentrations. Once the
valid global states of the dynamical graph are identifiezlfriinsitions have to be inferred. In
the model inspired from that proposed by Thomas, the dyrelnaigpect is modelled through
the attractor concept.

Definition 5 (Attractor)

In a given global states, a geneu is associated to a specific attractor value, representirgy th
expression level towards which this gene will tend to evadtarting froms,,, its expression
level in global states. The evolution of gene depends upon one or more other genes, together
defining the resource setu, s) for « in global states. Therefore, the attractor value of gene
Ku.r(u,s), IS related tou’s resource.

Tablel recapitulates the three possible evolution tendenciegdoeu.

su < Kyrw,s) The expression level of tends to increase
su = Kyuyrw,;s) Theexpression level of is steady.
su > Ky r,;s) The expression level of tends to diminish.

Table 1: Determination of the tendency for genalepending on its expression levgland its
attractor valueC,, , in global states. r(u, s) denotes the resource set of genen global
states.

(u,s)

Knowing these tendencies for all genes and for all globaéste the key to infer the tran-
sitions of the dynamical graph. Central to any modellingadazm using discretization is the
concept of qualitative focal point.

Definition 6 (Qualitative focal point)

In global states, with each gene: of the system evolving towards its attractor valig,.(, ),

the qualitative focal point is defined as the vectr,( - (u, ), -+ » Ku, r(un,s))- ANy focal point
is uniquely associated with an abstract region in the dizesl hypercube of dimensienwhere
each dimension describes local state traversing for onb@ftgenes of the system.

A most difficult task remains in tuning attractor values: alfy instanciating attractor values
for a given global state is an under-constrained problenoloBical knowledge together with
Snoussi constraints prohibit some instanciations (Smagsstraints specify that the addition
of supplementary activating (resp. inhibiting) resourfresa given gene obligatorily leads to
the increase (resp. decrease) of its attractor value).eabhows a possible instanciation for
the GrN illustrated in Figure2 (a). In the asynchronous model, best consonant with bicébgi
reality, a change of state is only allowed for at most one gdémeg each transition. As a result,
if a global states is its own successor, it is a steady global state whereassgsses successors
if tendency to evolve is detected fpigenes. Figur@ (c) provides the asynchronous description
derived from the tendencies of Talile
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w v | attractor foru | attractor forv | tendency forn | tendency for
0 0 ,Cu,{v} = 2 /C%{} = 0 / —
0 1 ,Cu,{} = 0 /C%{} = 0 — AN
1 0 ICU,{U} = 2 ICU,{u} =1 /! /!
1 1 Kju’{} = 0 K:U’{u} = 1 N\ —
2 0 ]Cu,{u,v} = 2 ICU,{U} =1 - /
2 1 Icu,{u} = 2 ICU,{U} = 1 — —
an instanciated model:
Kugp =0 Kufoy =2 Kuguwy =2 Koy =0, Koy = 1

Table 2: A possible instanciation of attractors, for ¢rn of Figure?2 (a). We explain the third
line relative to global statés, = 1, s, = 0): sincew is not inhibitingu (s, < 1), v activates
u as its only resourcey being in statel, a consistent instanciation fét, ;. is thus the value
of 2; the condition is required fou’s activation ofv (s, > 1) and a coherent value fé, ,, is
thereforel. In conclusion, both gene expressions tend to increase.

1.3 Model conversion

The key to the conversion of @ADE model into a discrete model with attractors relies on the
quasi-straightforward determination of such attractoosnf the differential equations, as well
as a facility to instanciate them through the set of constsaassociated with these equations.
Indeed, the qualitative focal point of Thomas’s formalisoincides with the abstract region (in
the hypercube of dimensian) containing the steady state for theDE system.

Proposition 1 (Conversion rule)

Referring to theeADE related to gené (definitions 2.1 and 2.2 combined), = kﬁZreR(i) ki bip(z)—
vizi, 1<i<n, =z >0, b € {0,1}, we obtain the attractor value of getién global
states whenz; is equal to0 (steady state) and; ,.; ) () is switched tal due to the activating
regulation of resource (i, s) :

ki + 2 rer@)nr,s) Fir

]Ci,r(i,s) = -@Z( i

),

where the discretization functian; converts the ratio into one of the 0, , thresholds associated
with genei.

Example 1

When applied to the case of P. aeruginosa’s mucus producégulation (see Tablg),
the conversion process exploits constraints relative tedolds ((3) to (4)) as well as kinetic
parameters ((5) to (8)).
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(1)
(@)
3)
(4)

(5)
(6)
(7)
(8)

(9)

(10)
(11)
(12)
(13)

(14)

U =ky + ky, s~ (v,01y) + Ky, sT(u,02,) — Yy u
0 =ky+ ky, sT(u,01,) — v
0 <01, <02, <mazx,

0 <01, < max,

u =

Jrkuu <
Y Y Y S Ay,

Yu

ku+ku,
,Cu,{v} = @u(T)

,Cu,{u,v} = -@U(Wiz—’—kuv)
,Cv,{} = '@U(%)

’Cv,{u} = @v(kv—’—kv“ )

Yv

Table 3: Identification of resources and tuning of attracfoom thepADE of Figure2 (b). At-
tractors are easily identified from equations (1) and (2gddition to/C,, 1y, Ky, () @NAIKC, fu},
attractors corresponding to the absence of resourc&are and C,, 1,
Ku,tuvy has to be created. It follows from equations (3) to (8) andhfi®noussi constraints (
,Cu,{} < ’Cu,{v} < ’Cu,{u, ne ICU,{} < ,Cu,{u} < ’Cu,{u,v} andlcu{} < /va{u}) that one of the

possible instanciations is the one deduced in Tabl&/,, and &, are discretization functions

used to convert ratios into the appropriate concentratiogsholds.

. Moreover, attractor
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2 Extraction of subgraphs of interest

We implemented a coloration method designed to highlightrtfost interesting states of the
dynamical graph. This method relies on a probabilisticoradle.

Turning the dynamical state graph initialy obtained into arkbv chain is straightforward.
For each transition originating from a given global state < i < V), a probability is computed
as the inverse of the outter degree of stat€ormerly, the transition matriX/ of the Markov
chain associated to the dynamical graph denéted (V, E) satisfies

-  li-jer
VI eV M = T ke By

where[B] = 1 if property B is true and 0 otherwise (Iverson’s notation) ga¢k, i — k € E}
is the outter degree of state

Next, we define the steady-state probabilityas

_ZETONZMZ

where F' is the vector of initial probabilities (in the sequel, thisctor is set ag; = 1/|V]|,
1 <i < N.). Here, the sum ensures the convergence to a unique plibbdistribution, even
in the case of a non irreducible or periodic Markov chain.

We use the steady-state probability to highlight vertices inG (i.e. the global states of
the dynamical graph). Relying on steady-state probadslits justified by their being closely
related to the number of times the different states are itsadein infinite random trajectories.
Consequently, the higher is such a probability, the moreitamt would be the associated state,
with regard to the system’s behaviour.

As infinite trajectories do not make sense in a biologicaltexi it is more relevant instead
to focus on finite trajectories. We define the ved@bof ¢-finite state probabilities to be

whereF' is the vector of initial probabilities.

The (-finite state probability?’[i] is proportional to the mean number of times a given state
i is traversed.

Notice that we thus provide a way to colorize the dynamicatesgraph by assigning to
each staté a colour value proportional t8‘[i]. For long trajectories, whehis approximately
the number of states in the graph, the states supposedlyamuzsal to the biological system’s
behaviour are emphasized. In an automated approach, wecseR® to prune the dynamical
graph by extracting the induced subgraphs composed ofstatech thatP‘[i] > 2/N. Each
subgraph identified consists of states reached at most twiomg trajectories. In the case of
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E. coliresponse to carbon deprivation, this cut off threshold/@f ensures that the subgraphs
obtained are tractable for any further analysis.

3 Extending the discrete model paradigm with delays: the hyhd
model

3.1 Clocks and delays

The evolution of the expression of a given gene is a contigunaun-linear process (see Fig®)e
This fact is not taken into account in the discrete modelforgnalism of Thomas, where gene
expression evolves from one level to another level in a disdashion (see Figufe(b)). In the
field of biological modelling, paradigms have been propasedsimulate continuous temporal
evolution (Bernotet al, 2004; Adelaideet al, 2004; Sieberet al, 2006). The refinement
of discrete modelling by a more enhanced formalism of hybmimtielling has been proposed
(Ahmadet al.,, 2007), in which the sigmoid-like evolution is no more appneated by a discrete
step but by a piece-wise linear curve instead (Fi@u®). Since we now consider that tdelay
needed for a gene to evolve from expression levela + 1 or e — 1 is not null, we have to deal
with additional concepts, namelyne intervalsandclocks

(a) (b) (c)

Figure 3: A sigmoid relation (a) and its discrete (b) and giadse linear (c) approximations.

The widely-spread timed automaton formalism provides a#@drframework to describe
hybrid systems (Aluet al,, 1994). In this framework, any global state of the system efextlis
described by a discrete spacial location (in our case, tti@ref current gene expression values)
and a vector of continuous variables, called clocks. Anyegeis associated to a clock (denoted
h.). Evolving synchronously with time, clock intervals thine: superimpose a representation
of continuous system’s dynamics on the already definedetisatynamics. The clocks act as
transition guards and are resedtavhen the system passes from one discrete location to another
one. The more general class of Linear Hybrid Automataa() is the appropriate framework
allowing the definition of time interval associated to a &l¢klenzingeret al,, 1995). For any
clock, its current value measures the time elapsed sincamdisé recent change occurred for the
system, in the discrete space of gene expressions. Thie #ystem consists ef genes, an
LHA formalism superimposes a temporal hypercube of dimensitmthe discrete global state
space. For illustration, in dimensi@a global state is now associated to a rectangular temporal
region bounded by four delays (see FigdyeThe delay for gene to increase up to next discrete


ahmad_et_al_figure_3_three_curves.ps
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level is a real parameter depending @ current discrete statel(" > 0); symmetricaly, the
delay to decrease down to next discrete levelds™ | (d,~ < 0).

y L1

hy=dy
00) | h¥sg (1,0) (2,0)
0 y=0,hy=0
x hy=dy

| ? + o

¥ £ 5

L5 x

= < -

Figure 4: Hybrid model - temporal regions and delays -. Hglebal state(z,y) = (1,0) is
associated to delays.,, d. 1, d,f, andd, ;.

To model time elapsing, we use a subclass ofithe formalism, which associates to each
geneu a clock rate/,, in the restricted sef—1,0,1}. Rates—1, 0 and1 respectively signify
that gene expression level is decreasing, staying at the kaml or increasing. Any clock rate
h., related to gene: indicates the evolution tendency for this gene, with respethe current
global state. Prior to any analysis of the dynamical behavid the modeled system, each such
clock rate must be tuned. In contrast with the asynchron@@ate model of Thomas, tuning
the clock rates now requires looking several steps ahealdeiynamical graph, in order to
capture the whole actual tendency. For instance, in Figye?, if one confines to a depth af
to examine next transitions, when starting from stéte ), asu decreases anﬂincreaseshu
andh, are respectively set tband—1 (see (Ahmackt al., 2007) for details).

Delays being considered as parameters, such a model wilalkedca Parametric Linear
Hybrid Automaton pLHA) in the sequel. Now all concepts have been unformally intced
and illustrated, next subsection will rigorously defieHAs together with their semantics.

3.2 Parametric Linear Hybrid Automata

We remind the reader that derivativedenotes the evolution rate for protein concentration
while i, is the evolution rate of the clodk, associated with variable.

Notation 2
Let X and P be respectively a set of real variables and a set of parareefenatomic constraint
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is a formula of the form: < ¢, forz € X, c € QUP and € {<, <,>,>}. We denot€ (X, P)
the set ofconstraintover a set of variableX and parameterd?, which consists of conjunctions
of atomic constraints. Given a constraiptwe letV(g) be the set of variables that appeargn
We letC= (X, P) (resp.C=(X, P), C=(X, P)) be the set of constraints using onty(resp. <,
>).

Definition 7 (PLHA)
APLHA is atuple(L, ¢y, X, P, E, Inv, Dif ) defined as follows:

* L is afinite set of locations

e (o € L is the initial location

P is afinite set of delay parameters

X is afinite set of clocks

E C LxC=(X,P)x 2% x Lis afinite set ofedgese = (£, g, R,¢') € E represents an
edge from locatiorf to location#’, associated with the guargland the reset sek C X
(we require that’(g) C R)

s Inv: L — CS(X, P)UCZ(X, P) assigns an invariant to any location
* Dif : L x X — {—1,0,1} maps each paif/, z) to an evolution rate.

The semantics of aLHA is a timed transition system. It is defined according to theeti
domainT. We letT* = T \ {0}.

Definition 8 (Semantics of aPLHA)

Let v be a valuation for the paramete®. The(T,~y)-semantics of a parametriciA H =
(L, 4y, X, P, E,Inv, Dif) is defined as a timed transition systéin = (S, so, T, —) where: (1)
S={(v)|te Landv = Inv({)}; (2) so = (Yo, vp) With vy(x) = 0 for everyz € X; (3)
the relation— C S x T x S is defined fort € T as:

« discrete transitions{/, v) RN (') iff 3(¢, 9, R, ¢') € E suchthaty(v) = true, V' (z) =
0ifx € Randv/(z) = v(z) ifz ¢ R.

* continuous transitions: For € T*, (¢, v) L (W V)iff ¢ =4,V (x) = v(z)+Dif(£, x) x
t, and for everyt’ € [0,¢], (v(z) + Dif(¢,z) x t') = Inv(£).

The semantics of &LHA implements two types of transitions: discrete and contisuo
Invariants and guards are constraints set on subsets d&scltovariants specify the conditions
under which the system is allowed to stay in the current staltéle time elapses. Aliscrete
transition is an instantaneous transition that occurs between tweeatéstocations. It is fired
when the associated guard is satisfi€bntinuous transitionsiccount for elapsing of time in
a discrete location until the associated invariant coodiis no more satisfied. A continuous
transition allows the updating of the clocks in any time i [0, ¢], according to the evolution
rates specified for the clocks and provided that the invaiGanditions are still verified. We
refer the reader to appendixfor the formal definition of the semantics BEHAS.
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Example 2 (PLHA)
The Parametric Linear Hybrid Automaton of the example ofdPuginosa (see Figur@) is

shown in Figures. Here, the delays are represented by the notatiypy wherea denotes the
delay sign § for activation and— for inhibition) of a genei in a location¢. This automaton
has six locations. The locations are labelled with the imsalr conditions while the discrete
transitions are labelled with guards and clock resets.

(0,1) - (1,1) (2,1)

h,==d

- u u,(1,1) r -

+

h, < dy1) A hy, > dv,((),l) /1 > hy > dy(1,1)A by > dy(1,1)
. . ut

hy =-1,hy =] hy =0, hy =0

hy==d} 3 )

hy<—20

(2,0)

(0,0)

t+ __gt +
h,==d h, < dL+t,(1,0) Ahy gt hy==dy (1.0) - hy, < ;20

+ + =
hy, < di,(0,0) A hy < dv,(0,0) u==%,(0,0) . w(1,0)
N . hy~—0

hy =1,h, =] hy =1, h, =1 iy =—0 hy =0, hy =

Figure 5: Hybrid model foP. aeruginosamucus production.

3.3 Automatic symbolic analysis of &°LHA through HyTech model-checker

HyTechis the model-checker chosen in our study (Henzirgteal, 1997). It is adapted to
hybrid systems: it has the ability to manage parametersitiirgynthesizing constraints relative
to these parameters, thus satisfying necessary conditiorihe existence of the behaviours

analysed.

Definition 9 (Trajectories and cycles)
A trajectory is a sequence of states related by discrete antirmuous transitions. A cycle is a

trajectory that starts in a given location and returns tostlsiame location further on.

In the hybrid model of &RN, we respectively denotg(t) for ¢t € R>( andS the sequence
of points of a trajectory and the set of all points in its stgiace.

Definition 10 (Invariance kernel)
A trajectoryp(t) is viable inS if ¢(t) € Sfor allt > 0. A subseti{ of S is said to be invariant

if for any pointp € K, a trajectory starting inp is viable in K. Aninvariance kerneK is the
largest invariant subset .

For illustration, the set of constraints displayed in Tabtdaracterizes the invariance kernel
of the example relative tB. aeruginosgsee Figure?). For the sake of simplicity, we only deal
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with few delay parameters, assuming thatdgjlare equal, whatever the actual valuejptnd

similarly for all d%, whatever the actual value of

df +dy, +d, <df,
ANdf +dy <dio+2df +dy
Ndy, < df+df +dy,
ANdf +dy, < df+dy

Ny +dy, < dj +d,

Table 4: Delay constraints characterizing the invariareraéd ofP. aeruginosa

4 The pipelined process applied to the analysis of the reactn of E.
coli to carbon availability

We recall the reader that the pipeline process implemerteetisiles the following tasks: (i) con-
version from aPADE model to a model with attractors, (ii) identification of theresponding
transition graph, (iii) identification of induced subgraptf interest in the former graph, imple-
mented through a probabilistic approach, (iv) modelizatid subgraphs in the framework of
PLHA formalism, (v) analysis of characterized dynamical betwang throughH yTech model-
checker. Note that third step actually provides a visutibpatool able to point out subgraphs
containing global states of interest.

It must be emphasized that our contribution is the first exarnpan application of timed-
model checking techniques on the cask ofoli regulation related to carbon availability. Indeed,
the former works relative to thisrRN did not take into account the concept of delays (Batil.
2005).

The implementation of the protocol previously describedvjates multiple significant re-
sults in the case dE. coli response to carbon availability.

4.1 ThePADE model of the carbon starvation response irEscherichia Coli

The growth of bacterial populations is related to the quafinutrients present in their environ-

ment. Nutrient availability entails an exponential inaeaf the prokaryotic biomass whereas
nutritional stress induces growth deceleration or evewtjratop. Thus, bacterial populations
are subject to transitions between two states denoted amential and stationary phases re-
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spectively. The switch between these two phases is cruckadterial survival and is controlled
by aGRN that integrates various environmental signals.

The GRN controlling the response to carbon deprivation has beerlwitudiedE. Coli, in
the past decades. In contrast to most studies focusing grooel or a few components of this
network, Ropers and co-authors’recent contribution immaieted the modelling of concentration
evolution for six key global regulators of this network (Ropet al, 2006). This model relates
the behaviours of five genesrp, cya, fis, gyrap, topA) and two supplementary "signals”
such as the carbon starvation information and the quartigyablerRNAS. The reader interested
in details about the biological hypotheses used for desgrithe genetic interactions is referred
to (Roperset al., 2006).

The PADE model of Ropers and co-workers was shown to fit to typicalufiest describing
the transition between bacterial growth phases. We therefdmit that this model was validated
and we used a slightly simplified version as a starting poiestablish a more refined modelling
approach based on attractors and delays. The simplifietbraesbthePADE model adapted from
Ropers and co-workers’'model is shown in TabldHerein, we present the simplified equations
together with their associated constraints. As the vegiabl,, corresponding to stableNnAs
had no influence on others variables, it was discarded franowa PADE model. In addition,
we dismissed three thresholdss.,,, 03.,, and05;;,, which appeared to be useless. Thus,
contraints applying t@3.,, now apply tof2.,,; similarly, 62.,, is constrained as wak.,,;
finally, parameter inequalities relative to the formiéy;, now apply t0f4 ;.

4.1.1 Conversion of therADE model relative to E. coli response to nutrient availability
into a discrete model with attractors

Benefitting from a previousADE modelling of E. coli response to carbon availability, we are
thus able to skip the tedious task of identifying attractdvsnitio. Moreover, the instanciation
is facilitated by the set of constraints associated withfkee model. Indeed, provided that
we understand how to relate the kinetic parameters and tradigtion rate of theADE system
with attractor values, the instanciation process will lgicantly simplified. Tables focuses
on an excerpt of Ropers and co-authors’model (in its sinaglifiersion).

The equation in line (1) models the variation @f,, 4, that is the concentration of topoi-
somerase. For the sake of simplicity, Ropers and co-autwrsidered that a single promoter
is involved in the expression abpA gene, whereas there are indeed five promoters involved
in its expression. The expression of this gene is also clerdrdy antagonistic agentgop A
is activated by a low level ofis; in contrast, it is activated by a high level gfr 4. Two
different thresholds have been considered in the simplifezdion,61;,,4 and#2,,4. Stim-
ulation of topA promoter by its resourcégyrag, fis,topA}, where the first gene is activat-
ing and tflle two others are not inhibiting, entails maximaldorction oftopA. It follows that

topA
Y

92topA < Yeopa < MATtopA-
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s =0

icrp = klcrp + kQCTp 5_(-Tfis~, 02fzs) 3+(Icya7 alcya) st (u57 95) + kgcrp 5_(xfisv elfzs) — Yerp Lerp
0 < Olerp < 024 < MaZerp

01cp < 71;1”: < 02y
Olerp < klrf/ﬂ < 020rp
02crp < Flerpthery <m

02crp <

Yerp - MZerp
Elerptk2erp+k3erp

Yerp < MaZerp

i‘cya = klcya + k2cya (1 - 5+(xcrp7 020rp) 5+(mcya7 02cya) S+(u57 05)) — Yeya Teya
0 < 0leya < 020yq < MaATeyq
Oleya < Hva < 62,

Yeya
02 < kleyatk2eya
cya

Yopa < M@Teya

‘Lfls = klfzs (l - S+(xcrp7 elcv’p) 3+(xcyn.7 91(:;1;{1.) S+(u37 99)) s (:Cfi& 94f19)
+k2fzs 3+(xgyrAB7 Olgyr'AB) 3_(ItopA7 €2tapA) S_(Ifisa 04f15) (1 - 5+(Icr'ps elcr'p) 5+(1'cya7 elcya) S+(usv 95)) — Vfis fis
0< 01]"2'5 < 92]%5 < 93fis < 04fis < Mmazyg;s
klyis
Olfis < Tfu < 92fis
Bl pist+h2pis

041%5 < Vtis

< Maz s

_ (o - (245 .

Fgyrap = Kgyrap (1= 8T (Tgyrans 020yran) 8~ (Ttopa, Oltopa)) s~ (% is, 03 pis) — Voyrap Toyrap
0 <Olgyrap < 02gyrsp < MATgyryp

9yrAB
Yoyrap

02gyrap < < MaTgyr,p

itopA = ktopA 8+(IgyrABv ezgyrAB) S_(ItOpAa eltop/-\) 5_(xfi57 93fis) — VtopA TtopA
0< altopA < 02topA < MaTtopA

Ktopa
02t0pa < BN < MaTiopA

Table 5: Equations and associated constraints depictagitiplified model adapted from Rop-
ers and co-authors, to simulate the response to carbonvatgni in Escherichia coli The
five variables correspond to protein concentrations;, (CRP),z.y, (Cya),z s (FIS), Tgyr.p
(GyrAB)! TtopA (TOpA)

Applying this process to each equation in #reDE system of Tablé, we finally obtain a
discrete model with instanciated attractor values. Asairpd in subsectiof.2, the construc-
tion of the dynamical graph is now straightforward. Howeearforeseeable for such a complex
GRN asE.colireponse to nutrient availability, before behavioural grtypinference may be per-
formed through model-checking techniques, a simplificasitage is required. For example, the
dynamical graph corresponding Eo coli response to nutrient availability contains such a high
numberN of vertices {.e. states) as810.
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(1) i'to;oA = ktopA 3+ (wgyrABv QQQyTAB) s (wtOpAv eltopA) Si(wfim 93fzs) — YtopA TtopA

(2) 0< HltopA < 92top,4 < MaTtopA

(3) 02pa < < MATopA

(4) ]CtOPA?{gyTAB,ﬁytopA} ‘@t"p"‘(% A) Kiopa,gy = ‘@tOPA(%(?pA)
(5) ]CtopA,{} =0
(6) HltopA = 1> 92topA =2

7 K —2

tOPAy{gyTAB ,%,tOPA}

Table 6: Identification of resources and tuning of attracfor the response to carbone starva-
tion in E. coli. The differential equation of Ropers’model (1) allows tteritification of the two
attractors concerned (4%, 4 is a function used to obtain an integer attractor value (disa-
tion). AttractoriCy,, 4,1} (5), corresponding to the case when no resource is avaiiatitévially
instanciated with the value o together with conversion rule (3), Ropers’s constrai@sirf-
duce the instanciation of concentration thresholds (6gllfina value of2 is an instanciation of

ICtOp A {gyran.fistopA} attractor’s value consistent with (3), (4) and (6) constisi

4.2 The initial dynamical graph

The entire transition graph contaif$0 global states an@827 transitions. However, the dy-
namics of the exponential phase and that of the stationaagephre to be studied separately.
Indeed, our purpose here is not to focus on transitions kimigcfrom one phase to the other
one. The graph describing the dynamics of the stationargeplansists of05 global states
and1523 transitions. The graph corresponding to the exponentias@ltontaind05 states and
1494 transitions. After conversion from theaDE model into a discrete model with attractors,
we dismissed some states known to be never encountergd= 0). In this report, we chose
to concentrate on the exponential phase. The reduced gesuilning the dynamics of the
exponential phase consistsidf8 global states.

Incidentally, we checked that some specific propertiesrtedan the literature hold for the
model inferred. For example, thep/ fis antagonismdrp = 2 and fis = 0) is verified as ex-
pected. Besides, it has been checked bt supercoiling is absent fromvery cyclédelonging
to the graph characterizing the exponential phgse:= 0 — topA > gyrap. Indeed, two
mechanisms were described by Trawetral. to explain how the nucleoid-associated protein FIS
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modulates the topology @fNA in a growth-phase dependent manner, to counteract exeessiv
levels of superhelicity (Traverst al, 2001). First, the binding of FIS tbNA constrains nega-
tive superhelicity to low levels; second, a reduction ingitpression and effectivenessmfia
gyrase achieves the same result. Conversely, fiiglexpression levels do themselves require a
high negative superhelical density.

4.3 Extraction of a characterized cycle

When applying the "coloration” process to the graph reldtedxponential phase, we identify
the subgraph depicted in Figue This subgraph is outstandingly dense in states of interest
(i.e. potentially frequently encountered states in longeittorie9 and therefore contains several
qualitative cycles, among which we recognize a cycle welivitn inE. coli response to carbon
availability:

012100 — 012110 — 012120 — 012220 — 012320 — 012420 — 012410 —

012400 — 012300 — 012200 — 012100
(the six values respectively correspondct®, cya, fis, gyrag, topA andrrn). Interestingly,
it happens that this cycle corresponds to the one identifjeRldpers and co-workers (Ropats
al., 2006), displayed in Figuré, except that only levels are considered fgfis.

Moreover, HyT ech model-checking techniques enable us to capture this chobeigh the
analysis ofinvariance kernein the hybrid model built for the subgraph of Figuse As stated
in the study based arnDE modelling (Ropert al,, 2006), we show that the system behaviour
is likely to end running into the qualitative cycle aforertiened. At this stage, it is remarkable
that a graph pruning probabilistic process combined withridymodelling on the one hand and
PADE modelling on the other hand meet to reveal the very sametgtinadi cycle.

Before commentating on the results obtained throBgli ech analysis, we have to define
the so-calledull period (denotedr (u)) as the sum of all delays for a gen¢o pass sequentially
and successively, once through each of all its expressiatsle

It should be noticed that the real time for a gene to run albigyrbute (if it actually takes
place) may be greater than the full period since it may inellaky stagesi.e. some time
intervals where there is neither increase nor decrease.

4.3.1 Identification of temporal constraints

Restraining tofis andgyr g, the cycle aforementioned is merely expressed as

++ ++ += = = -=  ——  —= -+ -4 4+
10—11—12—22—-32—42—-41—-40—30—20—10

where symbolst, — and= indicate the evolution tendency for each gene.

The analysis withHyTech provides two kinds of results relative to this peculiar eycl
On the one hand, constraints are identified, which determingclic behaviour (inequalities
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(1,2,2,0,0)

Figure 6: A subgraph showing cycles in the exponential pHas&. coli bacterium. The global
states are represented in the same manner as in Fgilites five values respectively correspond
to erp, cya, fis, gyrap, andtopA. The states of Ropers and co-workers’cycle are highlighted

as dark rectangles.
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Figure 7: Qualitative cycle ofE. Coli associated with the series of phases
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registered (1) to (3), in Tablé). On the other hand, we exhibit a relation between the legth
of this cycle and the delays associated with genes (eqs#t(a) and 4 (b), in Tabld.

4.3.2

Interpretation and relevance with regard to biologi@l evidences

* First, it follows directly from (3) thatr(gyrap) < w(fis).

This inequality is explained by the fact that there existhase in the cycle whergr 4
is lazy (i.e. it stays at the same expression level). This may be observéiteiphase

40 of the cycle, corresponding to the stafe in figure 7. Thus, the qualitative cycle in
which E. coli bacterium is involved during the exponential phase foltayé carbon sup-
ply is possible whemyr 45 qualitative period is smaller than that ¢fs: therefore, the
path of transitions through minimum to maximum qualitatstate and back is traversed
faster forgyr 4 g than for fis. This remark implies that a slight increasegafr 4g’s pe-
riod might not allow the bacterium to stay in the exponentibhse. gyr4p is closely
related tobNA supercoiling. Therefore, slowing down thhgr 45 cycle running would
entail diminishingbNA supercoiling reactivity. Independent studies have shdwrgteat
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d}Lzsl + dfz52 + dfzsg + |dpg, | + ldp,| < d;ryTABO + d;ryTABl + | dgyrap, |

Qyrany + Ayran, < fisy T ldpi,| + ldp,]

d;—yTABO + d;—yTAB + |d9y7"AB | + |d9y7"AB | < d}rzs + dfzs + deSS + |df134| + |df133| + |d;i32|
L = dp, + dj,, + dpg, + g, |+ ldpg |+ [dg,|

L = d;ryrABO + dfzs1 + dfzs + dfzs ‘dfz&;‘

Table 7: Identification of temporal constraints associatéti the existence of the cycle high-
lighted in Figure6.

impact of thedNA-superhelicity on the bacterial gene activity (see (Hatfetlal., 2002))
for a review). Basal expressions of genes are low when chsomal superhelical den-
sity is low, and conversely. Because of the necessity td teaenvironmental variation
for survival, low bacterial activity acts as a trigger forithing to the stationary phase.
This remark confirms the temporal constraint mentioned afasva biological insight. D.
Ropers and co-workers depicted this qualitative cycle asnaxpected result. However,
our investigation of temporal properties associated Witk ¢ycle points out insights that
are relevant with biological evidences abouta supercoiling.

» Second, we deduce from (4) (a) tHat= =(fis) (and hencd. > w(gyrag).)

Thus, we are able to prove that the cycle length is exacthyfdhgeriod of fis. This
result is consistent with the fact that there is no lazy pliasgis. Moreover, this obser-
vation implies thatfis plays the major role in the qualitative cycle in which thetieaiam
is kept during the exponential phase. Therefore, an exgertah calibration offis tem-
poral properties might shed light on this bacterial modairtttermore, point ii. shows
that the reactivity oDNA supercoiling mentioned above is related to the delay taken b
fis to complete its qualitative period. Again, the temporalpgemies deduced from the
qualitative model reinforce the biological relevance @& thodel.
* Finally, (4) (a) and (4) (b) entail that/ . 45, = |dpis,| + |dpg, -
Equality (iii) indicates that, in the sequen@g® — Q53 — Q2° of figure 7, while fis de-
creases from leved to level1 (within the time delayd, | + [d},,,[), in the same time,
gyr ap increases from leved to level 1 (within the deIaydgyrAB ), which means that,

in the Q1% phase,gyrap should be at level, as it is in phasen;(”. This property is
particularly hard to verify by experimental means. Howetlee nice consequence of this
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observation is that the so-called “Qualitative cycle” ofbpers in Figure is actually a
cycle. In this case, analyzing the temporal propertiescstsal with the qualitative model
reinforces previous computational investigations.

5 Conclusion

In this document, we have presented a complete processedewminfer behavioural properties
of realisticGRNs. As a conclusion to former research works, some of the twesiconcluded
that hybrid modelling including linear delays as an appreation constitutes a valuable refine-
ment with respect to the initial model of Thomas (Ahrretdhl, 2007). It was announced that
the modelization of &RN related toE. coliwas under investigation at the same time. The work
reported here dealt with the methodological analysis laddkle the case dE. coli's response

to carbon starvation, in particular.

As predictable, the difficulties encountered during oudsgtlied in the high dimension of
the associated discrete dynamical graph. A first trick ctediin benefitting from the tuning of a
former published model, itself settled on solid biologigedunds, to avoid tedious identification
of resource sets and facilitate the instanciation of attra@lues. On th&. coli benchmark, we
have shown that it is possible to converaDE model into a model with attractors. Then, a graph
coloration method based on probabilistic reasoning akibugto focus on subgraphs dense in
presumed states of interest. Applying such a coloratiorhatkto provide subgraphs tractable
by such model-checkers d&yTech might be an attractive solution to tackle the analysis of
large GRNs.

As a remarkable result, not only did the coloration methoscdbed point out a cycle al-
ready reported in biological literature, model-checkirgyformed on the hybrid model also
captured this cycle. Besides, our approach allowed to réfiegéemporal constraints that are
necessary to reach particular qualitative transitionshgbose of interest observed by Ropers
and collaborators. Thus, beyond simple verification pentorce, interesting relations between
delays have been inferred through our formalism. They erfaioiher investigations that lead on
to future experiments or novel biological insights abowet tirechanisms responsible for specific
dynamical behaviours.

Finally, the methodological investigation conductedeoroli system constitutes a first valu-
able contribution to show the relevance of pipelining difet methods to tackle large biological
system analysis.
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Abstract

Attempts to model Gene Regulatory Networksr{is) have yielded very different approaches. Among
others, variants of Thomas’s asynchronous boolean apprio@ee been proposed, to better fit the dy-
namics of biological systems: notably, genes were allowegach different discrete expression levels,
depending on the states of other genes, called the regsildtars, activations and inhibitions are trig-
gered conditionally on the proper expression levels ofdhegulators. In contrast, some fine-grained
propositions have focused on the molecular level as maodgtie evolution of biological compound con-
centrations through differential equation systems. Bgipraaches are limited. The first one leads to an
oversimplification of the system, whereas the second ispmiske to tackle largeRrNs. In this context,
hybrid paradigms, that mix discrete and continuous featurederlying distinct biological properties,
achieve significant advances for investigating biologjraberties. One of these hybrid formalisms pro-
poses to focus, within &RN abstraction, on the time delay to pass from a gene expreksiehto the
next. Until now, no research work has been carried out, whitdmpts to benefit from the modelling of
a GRN by differential equations, converting it into a multi-vatlilogical formalism of Thomas, with the
aim of performing biological applications. The preseneash work fills this gap by describing a whole
pipelined process which supervises the following stagg@snddel conversion from a Piece-wise Affine
Differential Equation RADE) modelization scheme into a discrete model with attracfans generation
of the corresponune pour la journée portes ouvertes ddecty?ding dynamical graph), (ii) on the basis
of probabilistic criteria, extraction of subgraphs of @t from the former dynamical graph, (iii) con-
version of the subgraphs into Parametric Linear Hybrid Adta, (iv) analysis of dynamical properties
(e.g. cyclic behaviours) using hybrid model-checking techngjuhe present work is the outcome of a
methodological investigation launched to cope with &N responsible for the reaction &scherichia
coli bacterium to carbon starvation. As expected, we retriewrarkable cycle already exhibited by a
previous analysis of theaDeE model. Above all, hybrid model-checking enables us to discadditional
insightful results, whose interpretations are in accoceanith biological evidences.
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