
HAL Id: hal-00359472
https://hal.science/hal-00359472v1

Preprint submitted on 7 Feb 2009 (v1), last revised 8 Apr 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The optimal shape of a dendrite sealed at both ends
Yannick Privat

To cite this version:

Yannick Privat. The optimal shape of a dendrite sealed at both ends. 2009. �hal-00359472v1�

https://hal.science/hal-00359472v1
https://hal.archives-ouvertes.fr


Will be set by the publisher

THE OPTIMAL SHAPE OF A DENDRITE

SEALED AT BOTH ENDS

Yannick Privat1

Abstract. In this paper, we are interested in the geometric structures which appear in the nature.

We consider the example of a nerve fiber and we suppose that shapes in nature arise in order to

optimize some criterion. Then, we try to solve the problem consisting in searching the shape of a nerve

fiber for a given criterion. The first used criterion represents the attenuation in space of the electrical

message troughout the fiber and seems to be relevant. Our second criterion represents the attenuation

in time of the electrical message and doesn’t provide a realistic shape. We prove that the associated

optimization problem has no solution.

Résumé. Dans cet article, nous nous intéressons aux formes géométriques présentes dans la nature.

Nous considérons l’exemple d’une fibre nerveuse et nous émettons le postulat que les formes dans la

nature sont optimales pour un critère donné. Alors, nous tentons de résoudre le problème consistant

à déterminer la forme optimale de la fibre nerveuse pour un certain critère. Le premier critère utilisé

représente l’attenuation en espace du message électrique à travers la fibre et semble être pertinent. Le

second critère étudié représente l’atténuation dans le temps du message électrique et ne fournit pas une

forme réaliste. En particulier, on démontre que le problème d’optimisation associé n’a pas de solution.

1991 Mathematics Subject Classification. 49K30,49K35,35Q80,35P05.

february 2009.

1. Introduction

1.1. Motivation

The observation of the nature and of the ”perfection” of most of its mechanisms of living beings drives
us to search a principle of optimality which governs those mechanisms. If a mathematical model exists
for describing a biological phenomenon or component of a living being, there is a temptation to quantify the
optimality by finding a functional which leads to the optimality principle.

The confrontation between the computed optimum and the real one leads us to validate or invalidate the model
and/or the choice of the functional. This inverse modeling method consists in finding the mathematical model
starting from observations and their consequences. If the optimal shape obtained thanks to the mathematical
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(e-mail: Yannick.Privat@math.cnrs.fr)



2 TITLE WILL BE SET BY THE PUBLISHER

model is close to the real shape, we have reasons to believe that the full model (equation and functional) is
good. If not, one has to reject it and find another one, or improve it.

This point of view is very close to the idea developed by B. Mauroy, M. Filoche, E.R. Weibel and B. Sapoval
in [11] (see also [12]). In these articles, they studied the compatibility between physical optimization and
physiological robustness in the design of the human bronchial tree.

In this paper, we will consider the example of a dendrite sealed at both ends. Dendrites are the branched
projections of a neuron that act to conduct the electrical stimulation received from other neural cells to the
cell body, or soma, of the neuron from which the dendrites project. Electrical stimulation is transmitted onto
dendrites by upstream neurons via synapses which are located at various points throughout the dendritic arbor.

We want to find the ”optimal” shape which permits the best conduction of an electrical message into the
dendrite. For this, we will consider two criterions : the first criterion is a good measure of the attenuation of
the electrical message in time whereas the second is a good measure of the attenuation of the electrical message
in space. We are consequently lead to solve the problem of the the minimization of these criterions. A similar
study has been lead to find the ”optimal” shape of a dendrite connected to the soma (see [8]). It has been
showed that the cylinder with constant radius is the optimal shape for such a dendrite and for each criterion.
The results, in the case of a dendrite sealed at both ends are not exactly the same. In particular, the cylinder
of constant radius is not an optimum for the first criterion.

1.2. Mathematical model and notations

Let us consider a dendrite sealed at both ends, with a cylindrical symmetry, of length ℓ and radius a(x) at
point x. Passive cable theory describes how voltage changes at a particular location on a dendrite transmit this
electrical signal through a system of converging dendrite segments of different diameters, lengths, and electrical
properties. According to W. Rall, the propagation of an electrical impulse in a dendrite fiber follows a parabolic
p.d.e. (cf [3], [13], [14], [15]):






1
2Ra

∂
∂x

(
a2 ∂v

∂x

)
= a

√
1 + a′2

(
Cm

∂v
∂t

+Gmv
)

(x, t) ∈ (0, ℓ)×]0; +∞[

πa2(0)
Ra

∂v
∂x

(0, t) = −i0(t) t > 0

∂v
∂x

(ℓ, t) = 0 t > 0
v(x, 0) = 0 x ∈ [0, ℓ]

(1)

where Ra denotes the axial resistance (kΩcm), Cm the membrane capacitance (µF/cm2), and Gm the fiber
membrane conductance. We assume that the fiber is initially at rest. We will consider an electrical impulsion
at the beginning of the fiber: i0(t) = δ{t=0} (Dirac measure at t = 0). This modelizes an explosive release of
charge between a nerve cell (neuron) and its surroundings, called action potential.

This equation is convenient to represent the solution v in a spectral basis (φa
n)n≥0 as did S. Cox and J. Raol

in [3]:

v(x, t) =

+∞∑

n=0

ψn(t)φa
n(x) ∀x ∈ [0, ℓ], ∀t > 0 (2)

where φa
n is the n-th eigenfunction associated to the eigenvalue µn:






−(a2φa
n
′)′ = µn(a) a

√
1 + a′2φa

n x ∈ (0, ℓ)

φa
n
′(0) = φa

n
′(ℓ) = 0.

(3)
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Eigenvalues problems with Neumann boundary conditions are well-known. The eigenvalues µn(a) verify 0 =
µ0(a) < µ1(a) < ... < µn(a). That is very usual to normalize the eigenfunctions with the weighted norm:

‖φa
n‖2

a :=

∫ ℓ

0

a(x)
√

1 + a′2(x)φa
n

2(x)dx. (4)

We can now use a classical method of separation of variables to solve (1). The expression of v(x, t) is given in
the following theorem:

Theorem 1.1. Let i0 be a Radon measure. Then, the solution of (1) is given by:

v(x, t) =
1

2πCm

+∞∑

n=0

φa
n(0)φa

n(x)(i0 ∗ e−µ̂nt)(t), (5)

where φa
n denotes the solution of (3) normalized with ‖.‖a, and µ̂n := µn+2RaGm

2RaCm
.

For a proof of this theorem, one can refer to [3].

We will use the following notations throughout the paper:

W 1,∞(0, ℓ) the set of Lipshitz continuous functions defined on the in-
tervall [0, ℓ].

‖.‖∞ norm defined on the space of bounded functions L∞(0, ℓ)
by ‖f‖∞ := inf{C ≥ 0 : |f(x)| ≤ C, a.e. x ∈ [0, ℓ]}.〈

dJ

dν
(ν0), h

〉
Gâteaux-derivative of a functionnal J at point ν0 in direc-
tion h defined by: 〈

dJ

dν
(ν0), h

〉
:= lim

tց0

J(ν0 + t.h) − J(ν0)

t
.

v̂ Laplace transform in time of a function v(x, t).

1.3. The optimization problems

We consider here that i0(t) = δ{t=0}. Hence the expression of the solution v is given by the formula:

v(x, t) =
1

2πCm

+∞∑

n=0

φa
n(0)φa

n(x)e−µ̂nt (6)

where µ̂n is given in theorem 1.1. The main unknown of our problem will be the radial function a(x) (the shape
of the dendrite). Before introducing the optimization problems, let us define the class of functions in which we
will search a(x).

• Let us notice the presence of the term a(x)
√

1 + a′2(x) in equation (1). So the minimal regularity
desired for a(x) is that the derivative a′ of a exists almost everywhere. We consequently choose a in
W 1,∞(0, ℓ).

• The fiber must not collapse. That is why we assume a lower bound a0 for the functions a(x).
• We assume a constraint on the surface area of the fiber, which corresponds to the cost for Nature.

Moreover, fractal-like objects are forbidden in our study. We impose:

∫ ℓ

0

a(x)
√

1 + a′2(x)dx ≤ S, where S is a given constant.
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We will finally search a(x) in the class Aa0,S defined by:

Aa0,S :=

{
a ∈W 1,∞(0, ℓ) : a(x) ≥ a0 and

∫ ℓ

0

a(x)
√

1 + a′2(x)dx ≤ S

}
. (7)

Remark 1.1. We choose S > a0ℓ so that the class Aa0,S be non trivial.

We introduce now the two criterions we will study:

(1) 1st criterion: attenuation in space.
It is interesting to search the optimal shape which attenuates the least possible the average impulse

in time between the beginning and the end of the fiber. Let us define a transfer function T by:

T (a) :=

∫ +∞

0

v(0, t)dt

∫ +∞

0

v(ℓ, t)dt

, (8)

where v denotes the solution of the p.d.e. (1). We will prove that the inequality T (a) ≤ 1 holds in the
class Aa0,S (see section 2.1). To find the profile which produces the smallest attenuation, we are led to
introduce the problem: {

minT
a ∈ Aa0,S

. (9)

(2) 2nd criterion: attenuation in time.
According to the decomposition (6) of the solution v of (1) in a spectral basis, we are led to minimize

the exponential rate of decay in this equation. The asymptotic development of v(x, t) at the second
order when t→ +∞ writes:

v(x, t) ∼
t→+∞

1

2πCm

(φa
0)2(0)e−

Gm
Cm

t +
1

2πCm

φa
1(0)φa

1(x)e−µ̂1t. (10)

Since we are interested in the shape which allows the best conduction of the electric impulse, it seems
natural to look for a function a(x) which minimizes the attenuation in time of the signal. The exponential
rate of decay Gm

Cm
of the first term of the previous development, is obviously independant on the shape

a(x) of the fiber. That is why we are led, to answer this question, to solve the following problem:

{
max(φa

0)
2(0)

a ∈ Aa0,S
. (11)

Nevertheless, let us notice that this eigenfunction associated to the eigenvalue µ0 = 0 is constant. Then,
with regards to the normalization, one has:

φa
0
2(0) =

1
∫ ℓ

0 a(x)
√

1 + a′2(x)dx
≤ 1

S
.

Thus, to solve problem (11), it is sufficient to exhibit an element a in Aa0,S such that the inequality

constraint

∫ ℓ

0

a(x)
√

1 + a′2(x)dx ≤ S is reached (e.g. the constant radius a ≡ S
ℓ
).

Moreover, the solution of the optimization problem (11) is not unique. An other minimizer is given
by:

a(x) :=

√

α2 −
(√

α2 − a2
0 − αx

)2

, with α :=
S

ℓ
.
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Hence, because of the non-uniqueness, the previous radius are not satisfying answers of the biological
associated problem. Then, to complete our answer, one can consider the second term of the asymptotic
development (10) of the voltage v(x, t). The exponential rate of decay of this term is µ̂1 which is clearly
of function of the shape of the fiber. To find the shape which furnishes the smallest attenuation in time
of the signal, and having regard for the first term of the asymptotic development, we will introduce a
new optimization problem: {

minµ1(a)
a ∈ Aa0,S

. (12)

Remark 1.2. Let us keep in mind that µ̂1 := µ1+2RaGm

2RaCm
. Then, the questions of minimizing µ1 or µ̂1

in Aa0,S are equivalent.

In sections 2 and 3, we resolve the optimization problems (9) and (12). More precisely, we use classical methods
of calculus of variations to prove the existence of a minimizer for the transfer function T in the class Aa0,S .
On the contrary, we obtain a non-existence result for the minimization of the first eigenvalue µ1(a) in the class
Aa0,S and we will say some words about the construction of the minimizing sequence. Nevertheless, we are able
to find a relaxed formulation for this problem.

Remark 1.3. In section 3, we will prove in particular that problem (12) is equivalent to the following problem:

{
minµ1(a)

a ∈
{
a ∈W 1,∞(0, ℓ) : a(x) ≥ a0 and

∫ ℓ

0
a(x)

√
1 + a′2(x)dx = S

}
.
.

In other words, we will prove that a minimizing sequence for problem (12) has to achieve the inequality constraint.

Remark 1.4. Problems linking the shape of a domain to the sequence of eigenvalues of Sturm-Liouville operators
are a huge field of research. One can see [7] for a (non-exhaustive) review of such problems.

1.4. A change of variable

Let us now introduce a classical change of variable (used by S. Cox and R. Lipton in [2]):

y =

∫ x

0

dt

a2(t)
.

Let us introduce the following notations:

ℓ1 =

∫ ℓ

0

dt

a2(t)
.

Let us notice that the interval [0, ℓ] becomes [0, ℓ1].

We consider a new unknown ρ defined by ρ(y) := a3(x)
√

1 + a′2(x). ρ will be used in this article as a new
optimization variable, and since a ∈ Aa0,S , the function ρ must lie in the set:

Ra0,S,ℓ1 :=

{
ρ ∈ L∞(0, ℓ1) : a3

0 ≤ ρ(y) and

∫ ℓ1

0

ρ(y)dy ≤ S

}
.

In the different proofs, throughout the paper, we will use too the following subset of L∞(0, ℓ1):

RM
a0,S,ℓ1

:=

{
ρ ∈ L∞(0, ℓ1) : a3

0 ≤ ρ(y) ≤M and

∫ ℓ1

0

ρ(y)dy ≤ S

}
,

for some M > a3
0 and ℓ1 ≤ Sa−3

0 (else, this class would be empty).
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2. Minimisation of the transfer function T (a)

2.1. Rewriting of the criterion T (a) with the Laplace transform

Let us recall that the transfer function T (a) points out the space attenuation of the electrical message between
the beginning and the end of the fiber. We are looking here for the solution of the problem (9), in other words
the optimal shape which minimizes the transfer function T among the elements of Aa0,S. As did S.J. Cox and
J.H. Raol in [3], we will use the Laplace transform in time of function v to rewrite criterion T . The method
used to find a better expression of the criterion is completely inspired by [8], and we refer to this paper for a
proof of the following assertions.

It can be proved by standard semigroups arguments, that the solution v of the p.d.e. (1) belongs to

L2(0, T,H1(0, ℓ)). It follows that the integrals

∫ +∞

0

v(0, t)dt and

∫ +∞

0

v(ℓ, t)dt are well defined for our choice

of i0 and we can consequently define the Laplace transform in time of v (denoted by v̂).
Hence, it is possible to write:

T (a) =
limp→0 v̂(0, p)

limp→0 v̂(ℓ, p)
,

where v̂(., p) is the solution of the following o.d.e.:






1
2Ra

∂
∂x

(
a2 ∂v̂

∂x

)
= a

√
1 + a′2(Cmp+Gm)v̂ (x, p) ∈ (0, ℓ) × (0,+∞)

πa2(0)
Ra

∂v̂
∂x

(0, p) = −1 p ∈ (0,+∞)
∂v̂
∂x

(ℓ, p) = 0 p ∈ (0,+∞).

Let us now use the change of variable introduced in subsection 1.4. The function v̂ becomes w where v̂(x, p) =
w(y, p), for x ∈ (0, ℓ) and y ∈ (0, ℓ1). w is clearly solution of the following o.d.e.:






1
2Ra

∂2w
∂y2 = ρ(Cmp+Gm)w (y, p) ∈ (0, ℓ1) × (0,+∞)

π
Ra

∂w
∂y

(0, p) = −1 p ∈ (0,+∞)
∂w
∂y

(ℓ1, p) = 0 p ∈ (0,+∞).

We let p going to 0 and we conclude that:

T (a) = T1(ρ) :=
w0(0)

w0(ℓ1)
,

where w0(y) := limp→0 w(y, p) for y ∈ [0, ℓ1]. It is easy to see that w0 is solution of the o.d.e.:






d2w0

dy2 = 2RaGmρw0 y ∈ (0, ℓ1)
π

Ra

dw0

dy
(0) = −1

dw0

dy
(ℓ1) = 0.

(13)

Let us notice that we necessary have w0(0) 6= 0, since dw0

dy
(0) < 0. Otherwise, w0 would be negative and concave,

and this is in contradiction with the fact that dw0

dy
(ℓ1) = 0. Then, it is possible to divide each member of (13)

by w0(0). Denoting by w̃0 the function w0/w0(0), it is easy to verify that w̃0 is solution of the following o.d.e.:






d2w̃0

dy2 = 2RaGmρw̃0 y ∈ (0, ℓ1)

w̃0(0) = 1
dw̃0

dy
(ℓ1) = 0.

(14)



TITLE WILL BE SET BY THE PUBLISHER 7

Moreover, the criterion T1 can be rewriting as:

T1(ρ) =
1

w̃0(ℓ1)
.

Let us notice that the well-possedness of this o.d.e. is clear, by Lax-Milgram theorem. Moreover, this gives also
that w̃0 ∈ H2(0, ℓ1).

Finally, one can prove the assertion that we claimed when we defined the criterion T : we have T (a) ≥ 1 for
all a ∈ Aa0,S. That comes from the fact that, thanks to the change of variable, that is possible to associate to
each element of Aa0,S one element of Ra0,S,ℓ1 and from the fact that, thanks to the rewriting of the criterion
T , one has : w̃0(ℓ1) ≤ 1.
Indeed, a direct consequence of equation (14) is the fact that w̃0 > 0 on [0, ℓ1]. Else, w̃0 would change its sign

and its convexity and the situation dw̃0

dy
(ℓ1) = 0 would be impossible.

2.2. The main theorem

The new expression of the criterion T (a) permits us to prove quite easily the existence and the uniqueness
of a solution for the minimization problem (9).

Theorem 2.1. Let a0 and S be two (strictly) positive real numbers.
Problem (9) has a unique solution. Moreover, the minimizer of the transfer function T in the class Aa0,S is the
constant function a ≡ a0.

Let us remind that we are looking for the solution(s) of the problem (9), and that this problem rewrites:






minT1(ρ)

ρ(y) = a3(x)
√

1 + a′2(x), ∀x ∈ [0, ℓ]

where a ∈ Aa0,S and y =
∫ ℓ

0
dt

a2(t) .

(15)

Then, we are driven to solve a new optimization problem:

{
min T1(ρ)
ρ ∈ Ra0,S,ℓ1 .

(16)

Nevertheless, we have to take care. The map Aa0,S −→ Ra0,S

a 7−→ ρ
is not a one-to-one correspondance. The

proof consists consequently in the following steps:

• Solve the new minimization problem (16).
• Verify that the solution of (16) belongs to the image of Aa0,S by the map a 7−→ ρ.

2.3. Proof of theorem (2.1)

The following lemma gives the answer of the first step:

Lemma 2.1. Let M > a3
0 be a real number. Let us consider the optimization problem:

{
min T1(ρ)
ρ ∈ RM

a0,S,ℓ1
.

(17)

The function ρ⋆ defined almost everywhere by ρ⋆ := a3
0 is a solution of the problem (17).
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Proof. Let us consider two functions ρ1 and ρ2, elements of RM
a0,S,ℓ1

, such that ρ1 ≥ ρ2 a.e. in [0, ℓ1]. Let us

denote by w̃1
0 and w̃2

0 the respective solutions of the o.d.e. associated to problem (14), in other words, w̃i
0 is

solution, for i ∈ {1, 2} of the following o.d.e.:






d2w̃i
0

dy2 = 2RaGmρiw̃
i
0 y ∈ (0, ℓ1)

w̃i
0(0) = 1

dw̃i
0

dy
(ℓ1) = 0.

Then, since w̃i
0 > 0 and ρi > 0 on [0, ℓ1], one has:






d2(w̃2

0
−w̃1

0
)

dy2 ≤ 2RaGmρ1(w̃
2
0 − w̃1

0) y ∈ (0, ℓ1)

(w̃2
0 − w̃1

0)(0) = 0
d(w̃2

0
−w̃1

0
)

dy
(ℓ1) = 0.

By comparison principle (see e.g. [6]), w̃2
0 ≥ w̃1

0 on [0, ℓ1].
Consequently, one can write:

∀ρ ∈ RM
a0,S,ℓ1

, T1(ρ) ≥ T1(a
3
0).

The conclusion of the lemma follows. �

Let us now conclude the proof of theorem 2.1.
Considering the result of the lemma 2.1, our problem consists in proving that the minimum ρ⋆ is global. This

is due to the fact that Ra0,S,ℓ1 can be written:

Ra0,S,ℓ1 =
⋃

M>a0

RM
a0,S,ℓ1

.

The problem of the minimization of T1 has a solution on every set RM
a0,S,ℓ1

, since RM
a0,S,ℓ1

is compact for the
L∞ weak-⋆ convergence. This implies that ρ∗ is a global minimizer for T1.

Let us now notice that a∗3
√

1 + a∗′2 = a∗3, almost everywhere. This proves that a∗ := a0 is the unique
global minimizer for the criterion T , since a3

0 is the unique global minimizer for the criterion T1.

3. Minimization of the eigenvalue µ1(a)

Let us recall that we are interested in the minimization of the first non zero eigenvalue µ1(a) of the problem
(3) as stated in (12).

3.1. The main theorem

Theorem 3.1. Let a0 and S be two (strictly) positive real numbers.
Problem (12) has no solution.

Remark 3.1. We are able to exhibit a minimizing sequence (an)n∈N of elements in Aa0,S for criterion µ1(a)
in the sense that an ∈ Aa0,S for all n ∈ N and µ1(an) converges to inf{µ1(a), a ∈ Aa0,S}. In particular, in
the proof of theorem 3.1, we will show that the minimizing sequence (an)n∈N has to verify the two following
conditions:

(1) (an)n∈N converges uniformly to the constant function a0 ;

(2) Let us denote by (bn)n∈N, the sequence of elements of L∞(0, ℓ) defined by: bn = an

√
1 + a′2n . Then,

there exists t ∈ [0, 1] such that (bn)n∈N converges to a0 + (S − a0ℓ)(tδ0 + (1 − t)δℓ) in the sense of
measures, where δ0 and δℓ denote the Dirac measures at x = 0 and x = ℓ.

The construction of such a minimizing sequence (an)n∈N will be done in section 3.4.
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3.2. Variation of the Neumann-eigenvalue

For ρ ∈ RM
a0,S,ℓ1

, we denote by µ(ρ) the first non zero eigenvalue of the problem:






−w′′ = µ(ρ)ρw y ∈ (0, ℓ1)

w′(0) = w′(ℓ) = 0.
(18)

To simplify the notations, µ̇(ρ) will denote the Gâteaux derivative of ρ 7→ µ(ρ) in an admissible given pertur-

bation h, i.e.
〈

dµ
dρ

(ρ), h
〉
.

Lemma 3.1. Let ρ be an element of Ra0,S,ℓ1 and h, be an admissible perturbation. Then,

µ̇(ρ) = −µ(ρ)

∫ ℓ1

0

h(y)w2(y)dy,

where w denotes the normalized eigenfunction associated to µ(ρ), i.e. such that

∫ ℓ1

0

ρ(y)w2(y)dy = 1.

Proof. Using expression (18) and the first order optimality conditions for a min-max point, one can see that w
verifies

〈
dR
dv

(ρ, w), h
〉

= 0, for all admissible perturbation h. It follows that w is solution of the o.d.e.:

{
−w′′ = µ(ρ)ρw y ∈ (0, ℓ1)
w′(0) = w′(ℓ) = 0.

(19)

Let us consider ẇ, the Gâteaux-derivative of w at ρ in direction h. ẇ is solution of the following o.d.e.:

{
−ẇ′′ = µ̇(ρ)ρw + µ(ρ)hw + µ(ρ)ρẇ y ∈ (0, ℓ1)
ẇ′(0) = ẇ′(ℓ) = 0.

(20)

Multiplying equation (19) par ẇ and integrating gives the relation:

∫ ℓ1

0

ẇ′(y)w′(y)dy = µ(ρ)

∫ ℓ1

0

ρ(y)v(y)v̇(y)dy (21)

In the same way, multiplying equation (20) and integrating gives the relation:

−
∫ ℓ1

0

ẇ′(y)w′(y)dy = µ(ρ)

∫ ℓ1

0

ρ(y)v(y)v̇(y)dy (22)

+µ̇(ρ)

∫ ℓ1

0

ρ(y)w(y)ẇ(y)dy + µ(ρ)

∫ ℓ1

0

h(y)w2(y)dy.

The combinaison of (21) and (22) yields:

µ̇(ρ) = − µ(ρ)
∫ ℓ1

0 ρ(y)w2(y)dy

∫ ℓ1

0

h(y)w2(y)dy.

�
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3.3. Proof of theorem 3.1

We will argue by contradiction. Let us suppose the existence of a minimizer a⋆ for problem (12). We consider

ρ⋆, the image of a⋆3
√

1 + a⋆′2 by the change of variable (1.4).
Let us denote by ℓ⋆1, the image of ℓ by this change of variable. Since ρ⋆ is clearly an element of L∞(0, ℓ⋆1) ∩

Ra0,S,ℓ⋆
1
, there exists M⋆ > a3

0 such that ρ⋆ is an element of RM⋆

a0,S,ℓ⋆
1

. Moreover, using an elementary property

of the change of variable and the min-max formulae, one can affirm that the eigenvalue µ1(a
⋆) verifies:

µ1(a
⋆) = min

V subspace of H1(0,ℓ⋆
1
)

of dim 2

max
v∈V

R(ρ⋆, v), where R(ρ, v) :=

∫ ℓ⋆
1

0 v′
2
(y)dy

∫ ℓ⋆
1

0
ρ(y)v2(y)dy

. (23)

Hence, we have µ1(a
⋆) = µ(ρ⋆).

• 1st step: an auxilary problem
For S > 0, ℓ1 > 0 and M > a3

0, let us consider the following problem:

(PM,ℓ1)

{
minµ(ρ)
ρ ∈ RM

a0,S,ℓ1
.

(24)

The map ρ ∈ Ra0,S,ℓ1 7→ µ(ρ) is continuous for the L∞ weak-* topology. To prove this, it suffices to
adapt the proof in the Dirichlet case (See for example [7]). The set RM

a0,S,ℓ1
is compact for this topology.

This yields the existence of a minimizer for this problem. We denote by ρM,ℓ1 , a minimizer for (PM,ℓ1).
We prove now the following lemma, which gives an interesting precision on the profile of the solution

of problem (24).

Lemma 3.2. The solution ρM,ℓ1 of problem (24) is a bang-bang function. More precisely, there exists
two real numbers ξ1 and ξ2 such that function ρM,ℓ1 verifies:

ρM,ℓ1(y) =






M on (0, ξ1)
a3
0 on (ξ1, ξ2)
M on (ξ2, ℓ1)

and

∫ ℓ1

0

ρM,ℓ1(y)dy = S.

Moreover, the eigenfunction w associated to µ(ρM,ℓ1) verifies w2(ξ1) = w2(ξ2).

We prove now this lemma. For that purpose, let us introduce the Lagrangian of this problem, denoted
by L and defined, for (ρ, λ) ∈ RM

a0,S,ℓ1
× R+ by:

L(ρ, λ) := µ(ρ) + λ

(∫ ℓ1

0

ρ(y)dy − S

)
.

The first order optimality conditions give the existence of a couple (ρM,ℓ1 , λ) of RM
a0,S,ℓ1

×R+ such that〈
dL
dρ

(ρM,ℓ1 , λ), h
〉
≥ 0, for all admissible perturbation h, which can be written, by lemma (3.1):

∫ ℓ1

0

h(y)(−µ(ρM,ℓ1)w
2(y) + λ)dy ≥ 0. (25)

Let us introduce the sets:
– I0(ρM,ℓ1): any element of the class of subsets of [0, ℓ1] in which ρM,ℓ1(y) = a3

0 a.e.;
– IM (ρM,ℓ1): any element of the class of subsets of [0, ℓ1] in which ρM,ℓ1(y) = M a.e.;
– I⋆(ρM,ℓ1): any element of the class of subsets of [0, ℓ1] in which a3

0 < ρM,ℓ1(y) < M a.e.
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We write I⋆(ρM,ℓ1) :=

+∞⋃

k=1

{
y ∈ (0, ℓ1) : a3

0 +
1

k
< ρM,ℓ1(y) < M − 1

k

}
=

+∞⋃

k=1

I⋆,k(ρM,ℓ1). We want to

prove that I⋆,k(ρM,ℓ1) has zero measure, for all integer k 6= 0. We argue by contradiction.
Let us assume that one of these sets I⋆,k(ρM,ℓ1) is of positive measure. For any y0 ∈ I⋆,k(ρM,ℓ1) and

any measurable sequence of subsets (Gk,n)n≥0 ⊂ I⋆,k(ρM,ℓ1) containing y0, perturbations ρM,ℓ1 + th
and ρM,ℓ1 − th are admissible for t small enough. Let us choose h = χGk,n

. Then:

〈
dL
dρ

(ρM,ℓ1 , λ), h

〉
=

∫ ℓ1

0

h(y)(−µ(ρM,ℓ1)w
2(y) + λM,ℓ1)dy = 0

⇐⇒
∫

Gk,n

(−µ(ρM,ℓ1)w
2(y) + λM,ℓ1)dy = 0.

We can deduce that

∫

Gk,n

(−µ(ρM,ℓ1)w
2(y) + λ)dy = 0. We divide by |Gk,n| and we let Gk,n shrink to

y0 as n→ +∞.

The Lebesgue density theorem shows that w2(y0) =
µ(ρM,ℓ1

)

λ
, a.e. for y0 ∈ I⋆,k(ρM,ℓ1). This is

clearly a contradiction, since µ(ρM,ℓ1) is a non zero eigenvalue and this justifies that the associated
eigenfunction cannot be constant on a set of non zero measure.

This proves that |I⋆,k(ρM,ℓ1)| = 0 and then I⋆(ρM,ℓ1) has also zero measure, what implies that ρM,ℓ1

equals a3
0 or M almost everywhere.

Moreover, standard arguments on the nodal domains (see [5] and [1]) show that w, the eigenfunction
associated to µ(ρM,ℓ1) has two nodal domains. On the set {w ≥ 0}, w is concave and since w′(0) = 0,
w′ ≤ 0 on this set and w is decreasing. On the set {w ≤ 0}, w is convex and since w′(ℓ1) = 0, w′ ≤ 0
on this set and w is decreasing. It follows that w is monotone decreasing.

Since ρM,ℓ1 is bang-bang and by the optimality conditions, we know that:

– w2(y0) ≤ µ(ρM,ℓ1
)

λ
on I0(ρM,ℓ1).

– w2(y0) ≥ µ(ρM,ℓ1
)

λ
on IM (ρM,ℓ1).

Moreover, let us notice that if ρ1 and ρ2 denote two functions of RM
a0,S,ℓ1

such that ρ1 ≤ ρ2 almost

everywhere, then, we clearly have µ(ρ2) ≤ µ(ρ1) by formulae (23).

Hence, it follows that
∫ ℓ⋆

1

0
ρM,ℓ1(y)dy = S.

We deduce immediatly from this the existence of two real numbers ξ1 and ξ2 such that function ρM,ℓ1

verifies:

ρM,ℓ1(y) =






M on (0, ξ1)
a3
0 on (ξ1, ξ2)
M on (ξ2, ℓ

⋆
1)

and

∫ ℓ1

0

ρM,ℓ1(y)dy = S.

The fact that w2(ξ1) = w2(ξ2) is an immediate consequence of the construction of the optimum. The
graph below illustrates this construction.

• 2nd step: Variations around of the optimum ρ⋆

Let us denote by:

– ρ⋆
ε , an element of RM⋆+ε

a0,S,ℓ⋆
1

verifying:

ρ⋆
ε(y) =






M⋆ + ε on (0, ξ′1)
a3
0 on (ξ′1, ξ

′
2)

M⋆ + ε on (ξ′2, ℓ
⋆
1),

with 0 ≤ ξ′1 ≤ ξ1 < ξ2 ≤ ξ′2 ≤ ℓ⋆1 and
∫ ℓ⋆

1

0 ρ⋆
ε(y)dy = S (the representation of a possible function ρ⋆

ε

is done in appendix A.1).
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Figure 1. Representation of the eigenfunction w2 and construction of ξ1 and ξ2

ξ2ξ10 ℓ1

w2

µ(ρM,ℓ1
)

λ

– ρM,ℓ1a minimizer of {µ(ρ), ρ ∈ RM
a0,S,ℓ1

}. In other words, ρM,ℓ1 ∈ argmin {µ(ρ), ρ ∈ RM
a0,S,ℓ1

}.
One has obviously µ(ρM⋆+ε,ℓ⋆

1
) := min{µ(ρ), ρ ∈ RM⋆+ε

a0,S,ℓ⋆
1

}. Then, since RM⋆

a0,S,ℓ⋆
1

⊂ RM⋆+ε
a0,S,ℓ⋆

1

, we have:

µ(ρM⋆+ε,ℓ⋆
1
) ≤ µ(ρ⋆), and since lemma (A.1), µ(ρM⋆+ε,ℓ⋆

1
) ≤ µ(ρ⋆

ε) < µ(ρ⋆).

Let us notice the existence of a upper bound for ℓ1: if a ∈ Aa0,S , then, necessary, ℓ1 =
∫ ℓ

0
dt

a2(t) ≤ ℓ
a2

0

.

That is why we will now consider that ℓ1 is an element of (0, ℓ
a2

0

).

Then, let us choose M >M⋆ +ε and ℓ1 <
ℓ

a2

0

. Since the first step, we know that ρM,ℓ1 is a bang-bang

function which verifies
∫ ℓ1

0
ρ(y)dy = S. Moreover, since lemma (A.2), we know that ℓ1 ∈ (0, ℓ/a2

0) 7→
µ(ρM,ℓ1) is a decreasing function. Let M (resp. ℓ1) going to +∞ (resp. ℓ

a2

0

). The achievement of the

upper constraint (
∫ ℓ1

0
ρM,ℓ1(y)dy = S) and the bang-bang profile of ρM,ℓ1 prove the existence of a real

t ∈ [0, 1] such that the sequence (ρM,ℓ1) converges in the sense of measure to:

ρ∞ := a3
0 + (S − a0ℓ)(tδ0 + (1 − t)δ ℓ

a2
0

).

We are incited to define µ(ρ∞) as the solution of the following eigenvalue problem:

{ −v′′ = µa3
0v + µ(S − a0ℓ)(tδ0 + (1 − t)δ ℓ

a2
0

) y ∈ (0, ℓ
a2

0

)

v′(0) = v′( ℓ
a2

0

) = 0
. (26)

By taking the variational formulation of this problem and using the change of variable y = x
a2

0

, we can

easily show that first eigenvalue of problem (26) is the first non zero eigenvalue of:






−u′′ = µa0u x ∈ (0, ℓ)
u′(0) − µ(S − a0ℓ)tu(0) = 0
u′(ℓ) + µ(S − a0ℓ)(1 − t)u(ℓ) = 0

, (27)
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where u(x) = v(y), for all x ∈ [0, ℓ] and y ∈ [0, ℓ
a2

0

]. Moreover, µ(ρM,ℓ1) converges to µ(ρ∞) when M

goes to +∞. It can be easily proved by standard arguments (adapting e.g. the proof of Appendix A
in [8]), and by construction, µ(ρ∞) < µ(ρ⋆).

Remark 3.2. The well possedness of problems (26) and (27) is well known. For example, one can refer
to [17].

• 3rd step: Conclusion
Let us denote by (an)n∈N, a sequence of functions of Aa0,S which verifies:

(1) an

√
1 + a′2n ⇀

n→∞
a0 + (S − a0ℓ)(tδ0 + (1 − t)δℓ) in the sense of measure.

(2) an
L∞(0,ℓ)−−−−−→
n→+∞

a0.

(3)
∫ ℓ

0 an(x)
√

1 + a′2n (x)dx = S.
The construction of such a sequence will be done in section 3.4. Then, by the same classical argument
as before, one can prove that the sequence (µ(an))n∈N converges to µ(ρ∞). However, we have seen in
the previous step that µ(ρ∞) ≤ µ(ρ⋆

ε) < µ(ρ⋆) and we have consequently found a better function than
ρ⋆ for our criterion, which is absurd.

Direct consequence: The theorem is proved and the sequence (an)n∈N constructed above is a
minimizing sequence of µ1(a).

3.4. An example of minimizing sequence

Let n be a non zero integer and (un)n≥0, the sequence of functions defined on the interval [0, ℓ] by:

un(x) =






√
n2 − (−x+ n)2 on

[
0, 1

2n2

]
;√

n2 − (x+ n− 1
n2 )2 on

[
1

2n2 ,
1

n2

]
;

un

(
x− i

n2

)
on
[

i
n2 ,

i+1
n2

]
, ∀i ∈ {1, ..., n− 1} ;

0 on
[

1
n
, ℓ
]
.

Let (an)n≥0 be the sequence defined by:

∀x ∈ [0, ℓ], an(x) = a0 + (S − a0ℓ)(tun(x) + (1 − t)un(ℓ − x).

Then, that is simple to verify that:






an
‖.‖∞−−−−−→

n→+∞
a0;

an

√
1 + an

′2 = a0 + (S − a0ℓ)[tnχ[0, ℓ
n

] + (1 − t)nχ[ℓ− ℓ
n

,ℓ]];

an

√
1 + an

′2 ⇀
n→+∞

a0 + (S − a0ℓ)(tδ0 + (1 − t)δℓ);
∫ ℓ

0 an(x)
√

1 + an
′2(x)dx = S.

The graph 3.4 represents the sequence (un)n∈N used to build the sequence (an)n∈N in every case.

3.5. Some remarks on the problem (12)

Remark 3.3. Relaxation of problem (12).
Since we have proved the non existence of a solution for the problem of the minimization of µ1(a) in the

classe Aa0,S, it seems natural to define a relaxed problem. Let us define the imbedding τ by:

τ : W 1,∞(0, ℓ) →֒ L∞(0, ℓ) ×Mb(0, ℓ)

a 7−→ (a, a
√

1 + a′2),
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Figure 2. Representation of a minimizing sequence

ℓ(1 − 1
n2 )ℓ

n20 ℓ

a0

an

where Mb(0, ℓ) denotes the set of bounded Radon measures. Let us introduce Âa0,S, the completion of Aa0,S

for the topology induced by τ . Then, it is possible to define µ̂1(a, b) as the second eigenvalue of the following
problem: {

−
(
a2u′

)′
= µ̂(a, b)bu x ∈ (0, ℓ)

u′(0) = u′(ℓ) = 0

Since b is a measure, this problem has to be understood with its variational formulation. Moreover, the existence
of µ̂(a, b) is a direct consequence of the classical spectral decomposition theorem and one has:

• µ̂1 is an extension of µ1 in the class Âa0,S.

• inf{µ1(a), a ∈ Aa0,S} = min{µ̂1(a, b), (a, b) ∈ Âa0,S}.
Remark 3.4. Generalization of problem (12).
Let us introduce the generalized problem, consisting in minimizing µk(a), the k-th non zero eigenvalue of problem
(3), with k ≥ 1, among the elements of Aa0,S. The same result as before holds for this problem:

Theorem 3.2. Let S and a0 be two (strictly) positive real numbers.
The following problem: {

minµk(a)
a ∈ Aa0,S

(28)

has no solution. Moreover there exists k + 1 elements of [0, ℓ] ξ0 = 0, ξ1, ..., ξk = ℓ and k + 1 elements t0, ...,

tk of [0, 1] which verifies
∑k

i=0 ti = 1, such that any (an)n∈N satisfying:






an
‖.‖∞−−−−−→

n→+∞
a0;

an

√
1 + an

′2 = a0 + (S − a0ℓ)
∑k

i=0 tiδξi
;∫ ℓ

0 an(x)
√

1 + an
′2(x)dx = S.
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is a minimizing sequence of elements of Aa0,S for the criterion µk(a).

The proof of this theorem is just an adaptation of the proof of theorem (3.1). The principle is exactly the
same as before. The main difference comes from the profile of w, the eigenfunction associated to µk(a). We
have to notice that w has k nodal domains (to prove this, one can refer to [1] or [5]), which implies that the
solution of the following problem (after the change of variable (1.4)):

{
minµk(ρ)
ρ ∈ RM

S,a0,ℓ1
,

for some ℓ1 > 0 and M > a3
0, is a bang-bang function, with k discontinuities. This profile explains the

construction of the new minimizing sequence.

Appendix A. Monotonicity of µ(ρ) with respect to some parameters

A.1. Monotonicity of µ(ρ) with respect to M

Lemma A.1. Let M1 and M2 be two real numbers such that M2 > M1 > a3
0. Let ℓ1 and S be two (strictly)

positive numbers. Then:

min{µ(ρ), ρ ∈ RM2

a0,S,ℓ1
} < min{µ(ρ), ρ ∈ RM1

a0,S,ℓ1
}.

Proof. Since RM2

a0,S,ℓ1
⊃ RM1

a0,S,ℓ1
, we clearly have:

min{µ(ρ), ρ ∈ RM2

a0,S,ℓ1
} ≤ min{µ(ρ), ρ ∈ RM1

a0,S,ℓ1
}.

Let us denote by ρM1
, the solution of the optimization problem min{µ(ρ), ρ ∈ RM1

a0,S,ℓ1
}. We have already seen

that
∫ ℓ1

0
ρM1

(y)dy = S and that:

ρM1
(y) =






M1 on (0, ξ1)
a3
0 on (ξ1, ξ2)
M1 on (ξ2, ℓ1),

for some ξ1 and ξ2 such that 0 ≤ ξ1 < ξ2 ≤ ℓ1. Let h be an admissible perturbation of ρM1
such that the

function ρε defined for some ε > 0 such that M1 + ε < M2 by ρε := ρM1
+ h verifies:

ρε(y) =






M1 + ε on (0, ξ′1)
a3
0 on (ξ′1, ξ

′
2)

M1 + ε on (ξ′2, ℓ1),

with 0 ≤ ξ′1 ≤ ξ1 < ξ2 ≤ ξ′2 ≤ ℓ1 and
∫ ℓ1

0
ρε(y)dy = S. Such a choice of ξ′1 and ξ′2 is always possible.

Moreover, one has necessary µ(ρε) ≤ min{µ(ρ), ρ ∈ RM1

a0,S,ℓ1
}. It suffices to prove now that µ(ρε) <

min{µ(ρ), ρ ∈ RM1

a0,S,ℓ1
}, which will prove the lemma.

By lemma (3.1), one can write:

µ(ρε) − µ(ρM1
) = −µ(ρM1

)

∫ ℓ1

0

w2(y)h(y)dy + o
ε→0

(ε). (29)
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Figure 3. Representation of functions ρM1
and ρε

ξ′1 ξ2ξ1 ξ′20 ℓ1

M1

M1 + ε ρM1

ρε

Let us recall that w denotes the eigenfunction associated to µ(ρ). Since h = ρε − ρM1
, one has:

∫ ℓ1

0

w2(y)h(y)dy ∼
ε→0

ε

(∫ ξ′

1

0

w2(y)dy +

∫ ℓ1

ξ′

2

w2(y)dy

)

+(a3
0 −M1)

(∫ ξ′

1

ξ1

w2(y)dy +

∫ ξ′

2

ξ2

w2(y)dy

)
.

Using the facts that
∫ ℓ1

0
ρM1

(y)dy =
∫ ℓ1

0
ρε(y)dy = S and w2(ξ1) = w2(ξ2) (which comes from the optimality

conditions detailed in subsection 3.3), an expansion at the first order yields:

∫ ξ′

1

ξ1

w2(y)dy +

∫ ξ′

2

ξ2

w2(y)dy ∼
ε→0

(ξ1 − ξ′1 + ξ′2 − ξ2)w
2(ξ1)

∼
ε→0

ε
S − a3

0ℓ1
(M1 − a3

0)
2
w2(ξ1).

And according to the profile of w2 (see figure 3.3), one can deduce that:

∫ ℓ1

0

w2(y)h(y)dy ∼
ε→0

ε

(∫ ξ1

0

w2(y)dy +

∫ ℓ1

ξ2

w2(y)dy − S − a3
0ℓ1

M1 − a3
0

w2(ξ1)

)

> ε

(
w2(ξ1)(ℓ1 − ξ2 + ξ1) −

S − a3
0ℓ1

M1 − a3
0

w2(ξ1)

)
= 0.

The previous inequality associated with formulae (29) give the desired result. �
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A.2. Monotonicity of µ(ρ) with respect to ℓ1

Lemma A.2. Let a0, S and M > a3
0 be three real (strictly) positive numbers.

The map ℓ1 ∈ R+ 7→ min{µ(ρ), ρ ∈ RM
a0,S,ℓ1

} is strictly decreasing.

Proof. Like in the proof of lemma A.1, let us consider a function ρℓ1 ∈ RM
a0,S,ℓ1

and the function ρε := ρℓ1 + h,
where h denotes the perturbation:

h := −(M − a3
0)[χ[ξ′

1
,ξ1] + χ[ξ2,ξ′

2
]] +Mχ[ℓ1,ℓ1+ε].

We use the same notations as in the proof of lemma A.1. The graph below represents the profile of ρℓ1 and ρε.

Figure 4. Representation of functions ρℓ1 and ρε

ξ′1 ξ2ξ1 ξ′20 ℓ1 ℓ1 + ε

M

a3
0

ρℓ1

ρε

According to lemma 3.1, one has the following expansion:

µ(ρε) − µ(ρℓ1) = µ(ρℓ1)(M − a3
0)

∫

[ξ′

1
,ξ1]∪[ξ2,ξ′

2
]

w2(y)dy

−µ(ρℓ1)M

∫

[ℓ1,ℓ1+ε]

w2(y)dy + o
ε→0

(ε).

As before, by noticing that
∫ ℓ1
0 ρℓ1(y)dy =

∫ ℓ1+ε

0 ρε(y)dy = S, one can write:

µ(ρε) − µ(ρℓ1) ∼
ε→0

−µ(ρℓ1)ε
(
(M − a3

0)w
2(ξ1)(ξ

′
1 − ξ1 − ξ′2 + ξ2) +Mw2(ℓ1)

)

∼
ε→0

−µ(ρℓ1)εM(w2(ℓ1) − w2(ξ1)) < 0.

The conclusion follows. �
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