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ABSTRACT

We present here a method for analyzing the neighborhoods
of all the vertices in a large graph. We first give an algorithm
for characterizing a simple undirected graph that relies on
enumeration of small induced subgraphs. We make a step
further in this direction by identifying not only subgraphs
but also the positions occupied by the different vertices of
the graph. We are thus able to compute the roles played
by the vertices of the graph, roles found according to a new
definition that we introduce. We apply this method to the
neighborhood of each vertex in a 2.7M vertices, 6 M edges
mobile phone graph. We analyze how the contacts of each
person are connected to each other and the positions they
occupy in the neighborhood network. Then we compare
their quantity of communication (duration and frequency) to
their positions, finding that the two are not independent. We
finally interpret and explain the results using social studies
on phone communications.?

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining; G.2.2 [Discrete Mathematics|: Graph The-
ory—Graph algorithms; J.4. [Computer Applications]:
Social and Behavioral Sciences—=Sociology

General Terms
Algorithms, Human Factors, Measurement, Theory

Keywords
social networks, roles, patterns, complex networks, personal
networks

1. INTRODUCTION

The study of social networks has changed a lot since the early
pioneering works of anthropologists who decided to focus

'Supplementary  material is  available online at
www.liafa.jussieu.fr/“stoica/neighborhoods

Christophe Prieur
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on relationships instead of individuals [7, 4, 3]. After the
technical framework of social network analysis was settled
in the 1970’s by the combination of mathematical tools such
as graph theory, algebra and statistics [26, 8, 32, 33], the
field has been again shaken with the exponential growing of
the size of relational databases coming with the development
of communication tools. The tremendous research activity
on the structure of the World-Wide Web [14, 11, 12] that
have pre-dated Google’s PageRank algorithm [9] have given
birth to a new object of study, namely complex networks,
due to the common properties found to be shared not only
by the graph of the WWW [2, 34] but also by many networks
appearing in various contexts (biology, linguistics, economics
and, of course, social networks) [29, 6].

There is thus a wide gap between these kinds of studies of
the global structure of huge networks and qualitative studies
of personal networks, sometimes built from face-to-face in-
terviews (for a historical survey of this trend, see [35]), even
though more and more such studies now take as data per-
sonal networks scraped from internet’s social network ser-
vices [18]. Inbetween, the classical problem of identifying
roles in a (possibly quite large) network, introduced in the
1970’s as one of the main tools of social network analysis
[37], relies on the fact that some nodes have similar po-
sitions in the sense that they are linked to the same other
nodes, which is defined as the so-called structural equivalence
of nodes, or the more general notion of reqular equivalence,
where two nodes are equivalent if the neighbors of the two
are equivalent to each other [5].

Our work is at the intersection of these three research trends:
we study the roles of nodes in the personal networks of all
individuals of a large (thus ‘complex’) network. In [31] (in
French), we already compared to a classical ethnographic
study what can be achieved in terms of qualitative analy-
sis with such a large-scale (2 million) collection of personal
networks.

Now to address the issue of roles, we devised a method rely-
ing on a very popular data mining problem: the search for
frequent subgraphs in a given (possibly large) graph. On
this issue, some authors considered that frequent subgraphs
are the ones that appear in a given graph (or set of graphs)
more often than a chosen threshold. Some algorithms [19,
21] extend the apriori-based candidate generation-and-test
approach [1], while others [5, 39] use a pattern-growth ap-
proach [15]. More recently, several algorithms have been



proposed for significant graph pattern mining [17, 38]. Milo
et al [28] used another approach to find interesting patterns.
They compared the frequency of subgraphs with the ones
appearing in randomly generated graphs that share some
properties of the network. Several methods for an efficient
counting of subgraphs with a given maximal size have been
proposed since [36, 20]. Here, we apply the method intro-
duced by Wernicke to the neighborhood of each vertex of the
given network. This allows us to compute in the same time
the subgraphs that appear more frequently than a chosen
threshold and the ones that appear more frequently than
in randomly generated networks. Unlike previously done,
to our knowledge, we are also able to identify the positions
that the different neighbors occupy and therefore the roles
they play.

We apply this method to a large network built from mobile
phone communications. Of course, there are many forms
of social interactions between two people: face-to-face in-
teractions, emails, instant messages, (fixed) telephone, the
mobile phone communications capturing only a subset of the
underlying social network. However, studies on the strength
of ties have shown that mobile phone is among the most inti-
mate communication tools and moreover that people a mo-
bile phone conversation suggests a certain relation between
the two individuals, given that there aren’t any listings of
mobile phone numbers. Moreover, people that contact each
other via one communication tool tend to communicate via
other ones as well [16], hence the relevance of analyzing a
mobile phone network in the search of understanding the
underlying social network.

Different properties have been already identified in large mo-
bile phone networks [30, 10]. Onnela et al [30] show with no
surprise that the distributions of degree and of the duration
of calls are power-laws. More strikingly they also give a def-
inition for the strength of ties depending on the duration of
calls and they analyze the connection between the strength
and the connectivity or the community structure.

As in complex network studies, all of these properties are
global, characterizing the structure of the mobile phone graph
as a whole. Here, our aim is to identify the local structure,
the way the persons contacted by a given individual (ego)
are connected to each other relatively to their importance”
to ego. In order to do that, we use the frequency and the
total duration of communications between ego and each of
his contacts.

The paper is organized as follows. After recalling some ba-
sic definition on graphs (Section 2), we detail in Section 3
a formal framework to address the issue of characterizing a
graph in terms of a position equivalence along with an algo-
rithm to do it. The main algorithm to characterize all the
neighborhoods of a large graph is given in Section 4 and in
Section 5 we apply it to a mobile phone graph and discuss
the results by comparing them to an ethnographic study on
communication tools.

2. PRELIMINARIES

Let G = (V,E) be a graph; V is the set of its vertices,
E C V x V is the set of its edges. We define its size as
|V|, the number of its vertices. Two vertices u,v € V are

adjacent in G if (u,v) € E. The graph G is undirected if,
for all u,v € V, there is no difference between (u,v) and
(v,u), it is connected if there exists a finite path between
every two vertices and it is simple if there is no multiple
edge and no self-loop ((v,v) ¢ E, for all v € V). For a
vertex v € V, we denote by N(v) = {u € V, (u,v) € E} its
neighborhood, by N [v] = N(v)U{v} its closed neighborhood
and by d(v) = |N(v)| its degree. The betweenness centrality

. _ 0u(s,1)
[13] of a vertex v is defined as c(v) = >, oy, 5(s.0)
0(s,t) denotes the number of shortest paths from s to ¢ and
0 (s, t) denotes the number of shortest paths from s to ¢ that
pass through v.

where

Two graphs G = (Vg, E¢) and H = (Vy, En) are isomor-
phic if and only if there exists a bijective function ¢ : Vg —
Vi (called isomorphism of G and H) such that any two
vertices u and v are adjacent in G if and only if p(u) and
p(v) are adjacent in H. When G and H are one and the
same graph, the function ¢ is called automorphism of G.
The graph isomorphism is an equivalence relation on graphs
so it partitions the class of graphs into equivalence classes,
called isomorphism classes.

Given a graph G = (Vg,Eg), a graph H = (Vg, Eg) is
a subgraph of G if Vg C Vg and for all u,v € Vg, if
(u,v) € En then (u,v) € Eq. H is an induced subgraph
of G (denoted by H — G) if Vg C V¢ and for all u,v € Vp,
(u,v) € Eg if and only if (u,v) € Eg.

For a graph G and an positive integer k, Wernicke [36] pro-
posed an algorithm that efficiently enumerates all the con-
nected induced subgraphs of G with exactly k vertices. This
algorithm, called ESU(G, k), starts with a vertex of G and
adds neighboring vertices until a set of k vertices is obtained,
hence a connected induced subgraph with k& vertices. The
neighboring vertices must satisfy certain conditions in order
to be added to the already selected ones. This guarantees
that each subgraph is listed exactly once.

3. A CHARACTERIZATION OF GRAPHS

This section introduces a method to characterize a graph and
its vertices. Given a graph, we enumerate all its connected
induced subgraphs with size at most 5 and we group them
into isomorphism classes. Then, for each vertex of the graph,
we compute the position it occupies in each one of the found
subgraphs. For example, for the graph in Figure 1 a, the
number of its different induced subgraphs and the positions
occupied by the vertices u and v are presented in Figure 1
b, ¢ and d respectively.

3.1 Definitions

Given a graph G and a vertex v of G, we call neighb-degree
of v, denoted by nd(v) = 3_,cnp, d(u), the sum between
its degree and the degrees of its neighbors. We call degrees
combination of the graph G the ascending sorted list of the
neighb-degrees of its vertices. Note that for a graph G with
n vertices and m edges one compute the neighb-degrees of all
the vertices of G in O(m) time, then its degrees combination
in O(n - logn) time.

Given two graphs G and H and two vertices u € Vg and v €
Vi, we say that u and v are position equivalent if there exists



5x 6—@ e 2x —@
v

2x ——o—
i —o— a weE—e—e
2x ——o—0 1

1x 0—6—@
2x —0—0—9 @ x @
1x 1x 1% 1x 1x %
/3 & » u A
u v ¥
s 5‘ v/ T 14
u
v

a b) < d)

—e—o—o
1

Figure 1: A graph (a), its connected induced sub-
graphs (b) and the positions of the vertices u (¢) and
v (d).

an isomorphism ¢ of G and H such that ¢(u) = v. When G
and H are one and the same graph, the position equivalence
is the automorphic equivalence. In the isomorphism class
C of a graph G, the set of all vertices is partitioned by
the position equivalence into equivalence classes, called the
position classes in C; we denote by P(C) this set.

We denote by G the class of all undirected simple graphs,
by C its isomorphism classes and by P = Ucec P(C) the set
of all the positions; Gi, Cx and Py are the restrictions of
these sets to connected graphs with at most k vertices and
at least 1 edge. We call the 30 non-isomorphic graphs with
size at most 5 (i.e. the graphs in Cs) patterns. In Figure 2 is
represented the set of patterns such that, for each pattern,
each color corresponds to a different position class; there
are 73 position classes in C5. We sort in ascending order
the position classes of a same pattern by their betweenness
centrality, then by their degree. We call peripheral the first
position class in this order and central the last one. The
position classes that are not central nor peripheral or are
both central and peripheral are called intermediate.

We define the function Sub : G x C — N such that, for a
graph G and an isomorphism class C, Sub(G, C) counts the
number of induced subgraphs of G that belong to C' :

Sub(G,C)=|{H st H— G and H € C}|.

We define the function Pos : G X P X UgegVa — N such
that for a graph G, a position class P and a vertex v €
Ve, Pos(G, P,v) counts the number of subgraphs of G that
contain v in the position P :

Pos(G,P,v) = |{H st H — G, v € Vg, P is a position class

in the isomorphism class of H and v € P}|.

Suby and Posy are the restrictions of these functions to the
sets Cr, and Py, respectively.

A new definition of social roles. We introduce here a
new definition of equivalence of vertices in order to identify
actors that play the same social role. We consider that ver-
tices with the same role must have the same positions with
regard to the vertices situated at a certain maximal distance
from them. In other words, they must connect in the same
way to the vertices around them.

Given a graph G with n vertices and a vertex v € Vg, we

call position vector of v in G the vector Ps(v) such that
Ps(v)[P] = Pos(G, P,v), for each position class P € P.
The k—position vector of v, denoted by Psk(v), is the vec-
tor computed only for the position classes in Pi. Given two
vertices u,v € Vg and a positive integer k < n, we call u
and v k—position equivalent if and only if their k—position
vectors are identical. In other words, two vertices of G are
k—position equivalent if and only if, in the induced sub-
graphs of size at most k of GG, they occupy the same position
the same number of times.

Let us observe that two vertices are 2—position equivalent if
and only if they have the same degree and that two k—position
equivalent vertices are also (k — 1)—position equivalent be-
cause Pr_1 C P,. The k—position equivalence is a weaker
condition than the structural equivalence: two vertices that
are structural equivalent are also n—position equivalent; the
vice-versa is not always true. It is also weaker than the auto-
morphic equivalence, two vertices being automorphic equiv-
alent if and only if they are n—position equivalent.

3.2 The algorithm

Given two connected graphs with size at most 5, one can
check if they are isomorphic and if two vertices are position
equivalent by using only the neighb-degrees of their vertices.
This is shown by the following lemma.

LEMMA 1. Two graphs G, H € G5 are isomorphic if and
only if their degrees combination are identical. Moreover, if
G and H belong to the same isomorphism class C, then two
vertices u € Vg and v € Vi are position equivalent if and
only if they have the same neighb-degree.

PrOOF. The proof is straightforward, it suffices to check
the two statements for all the graphs in Gi. [

COROLLARY 1. Given a graph G € Gs with n vertices and
m edges, its isomorphism class is computed in time O(m +
n-logn) and the position classes of its vertices in time O(m).

We propose in Algorithm 1 a method to characterize an
undirected simple graph G. First we compute the number
of occurrences of the 30 patterns as induced subgraphs of G
(the array Sb). Then we compute, for each vertex of G, its
number of occurrences in the position classes of the different
patterns (the array Ps).

The choice of limiting the size of the researched induced sub-
graphs at 5 is motivated by several reasons: the number of
isomorphism classes and position classes grows with the size,
so the time and memory complexities increase. Moreover,
when limiting the size at 5, we dispose of a very efficient
method to compute the different equivalence classes, hence
the number of their occurrences.

For the first part of the characterization method (line 1),
we use the algorithm ESU(G, k) [36] with k& < 5. For the
second task (line 2), we apply Lemma 1, so we compute
the neighb-degrees of the vertices in each subgraph. The
time complexity of this algorithm is linear in the number of



VAVAR :

21

27

22

/i

:

23 28

[ ]

24
29

9 LF ..

25
T j 30
20

Figure 2: The sets of patterns and their positions. The order of the colors is black (1), blue (2), green (3)
and red(4) corresponding to the ascending order of centrality and degree.

Algorithm 1 characterize. Characterizes an undirected
stmple graph

Input: A set of edges representing an undirected simple graph G

Output: An array Sb such that Sb[C] = Subs(G, C) and
an array Ps such that Ps[v][P] = Poss(G, P,v)

1. enumerate all the connected induced subgraphs of G
of size at most 5 = the set S

2. for each graph H € S
2.1. find its isomorphism class C' and increment Sb[C]
2.2. for each vertex v of H, find its position class P in C
and increment Ps[v][P)]

connected induced subgraphs of size at most 5 of the input
graph: for the first part (the enumeration), see [36]; for the
second part, note that it takes a constant time to compute
the isomorphism class and the position classes of each sub-
graph found in the first part (see Corollary 1). As for the
space complexity, note that one doesn’t need to explicitly
build and store the set S, but only one subgraph at a time.
When a connected induced subgraph of G of size at most
5 is found, its isomorphism class and the position classes of
its vertices are computed before proceeding to the search of
another subgraph.

Note that Algorithm 1 can be easily modified in order to enu-
merate all the connected induced subgraphs with a maximal
number of edges. As in the case of the graphs with at most
5 vertices, the isomorphism class of a graph with at most 6
edges can be identified using only the degrees combination.
Moreover, two vertices u and v belonging to two isomorphic
graphs with at most 6 edges are position equivalent if and

only if

> ondt)= Y nd(t).

tEN [u] tEN[v]

4. NEIGHBORHOODS

In this section, we propose a method (Algorithm character-
ize_neighborhoods) to analyze the local structure of a large
graph using the notions introduced in the previous section.
For each vertex v of a given large graph G, we first compute
the subgraph Gn(v) induced by the neighbors of v, so we
need to list the triangles containing v. The latter problem
has been extensively studied in [23]; we rely on Algorithm
new-vertez-listing proposed in this paper in order to com-
pute, for each vertex v € GM, the subgraph Gn(v).

We characterize the obtained neighborhood graph Gn(v) us-
ing Algorithm 1, so we compute the number of occurrences
of each pattern in Gn(v) (the array Sb in Algorithm 1) and
the position classes occupied by the neighbors of v (the array
Ps in Algorithm 1). Using the arrays Sb and Ps we update
two global arrays S’ and P’. The first one contains, for each
pattern, its total number of occurrences in the neighborhood
graphs of the given large graph. After having associated, us-
ing extra-data, different types to the neighbors of each vertex
in the large graph, one can compute the second array: the
number of occurrences in each position class of the vertices
of a certain type. We detail the updating of the two arrays
in the next section.

As in Algorithm new-vertez-listing of [23], we use the adja-
cency matrix of G (the array A) without explicitly storing it,
this way being able to test for any edge (v, w) in O(1) time
and space. The array A is built in O(|Vg|) time and space
at the beginning of the algorithm and is then just modified
in time O(d(v)) for each vertex v. Thus, for each vertex v,
the subgraph Gn(v) induced by its neighbors is computed



Algorithm 2 characterize_neighborhoods. Characterizes
the neighborhood of each vertex of a large graph

Input: An undirected simple large graph G
Output: Two arrays S’ and P’

1. create an array A of |V| integers and set them to —1
2. for each vertex v of the graph G

2.1. initialize E to the empty set

2.2. for each vertex u in N (v), set Afu] to v

2.3. for each vertex u in N(v)

2.3.1. for each vertex w in N (u)
if Alw] = v then add (w,u) to E
2.4. characterize(E)
2.5. update S’ and P’

in time O(}_,,¢ n[, d(u)). Now, the complexity O(d(u)) will
be added for each one of the neighbors of u which give a
time complexity O3, . d*(v) + |Va| + |Ec|) for the entire
set of vertices of the large graph G.

In the next section, we apply Algorithm 2 to a large social
graph. We also present the degree and triangle distributions,
important parameters for the complexity of our method.

5. ANALYSIS OF A LARGE SOCIAL GRAPH

5.1 Description of the graph

We analyze a large graph built from a mobile phone database.

The database contains a month of mobile phone communi-
cations (phone calls and short messages) between the clients
of a same operator in a European country. We build a graph
where the vertices are the clients; we connect such two ver-
tices by an undirected edge if each of the two persons has
contacted at least once the other person during the recorded
month. This way we don’t take into consideration the one-
way contacts (calls or messages), single events in most of the
cases suggesting that the two individuals don’t know each
other personally. We obtain a graph (that we call GM) with
2.7 x 10° vertices and 6.4 x 10° edges; 83% of its vertices
and 99% of its edges belong to the same giant connected
component.

For each vertex (ego) v in GM, we study the graph Gn(v) in-
duced by its neighborhood, so we analyze 2.7 x 10° graphs;
we denote by D = {Gn(v),v € GM} this set of neighbor-
hood graphs. As expected, most of these graphs have a
small number of vertices (this number is equal to the degree
of v) while only a small minority have a great number of ver-
tices. The same statement is valid for the number of edges
of each graph in D (this number is equal to the number of
triangles containing ego). Table 1 contains the minimum,
maximum, median and average values of the two parame-
ters, as well as the number of graphs in D where the value
of the parameter is greater than 100. Figure 3 contains the
distribution of the number of vertices and of the number of
edges of the graphs in D. Only 20 graphs (i.e. 7 x 107*%)
have more that 100 vertices and more that 100 edges. The
average of the densities of the graphs in D is the clustering
coefficient of GM, equal to 0.097.

Empirical complexity of the method. Let us discuss

parameter | min | max | average | median | nb.  net-

@ works s. t.
a > 100

n 0 367 4.66 3 56

m 0 887 2.28 1 560

Table 1: Different measures for the number of ver-
tices (n) and the number of edges (m) of the 2.7 x 10°
neighborhood networks

the complexity of the method characterize when it is ap-
plied to the graphs in D, i.e. when Algorithm 2 is applied
to the mobile phone graph GM. For a graph G in D, let ng
be its number of vertices, m¢ its number of edges and s¢ its
number of patterns. As we explained in the previous section,
the time complexity of characterize(G) is O(sqg). After ap-
plying Algorithm 2 to GM, we know, for each graph G € D,
the number s¢, so we are able to empirically determine the
complexity of Algorithm 2 on GM. For all graphs G € D,
we have sg < m2, and for 98.5% of these graphs sg < mZ,
so, on our graph GM, the observed time complexity of the
method characterize(G) is O(mZ) in 98.5% of the cases and
O(m¥;) in the rest of the cases. Given that the graphs in D
are not very dense, it is not very time-consuming to list all
the induced subgraphs instead of just counting them. We
compared the time complexity of the method proposed by
Kloks et al. [20] that counts the induced subgraphs with
exactly 4 vertices to that of the method proposed by Wer-
nicke [36], that we use in Algorithm 1. On the one hand,
for a graph G with ng vertices, the complexity of Kloks’
algorithm is O(ng + %), where O(n&) is the time needed
to compute the square of the adjacency matrix of G. On
the other hand, for each graph G € D, the number of in-
duced subgraphs with 4 vertices is smaller than (2 x mg)?
and than (5 x ng)?. Therefore, for the mobile phone graph
GM, the time complexities of the two methods are compa-
rable. Then it is worth listing all the subgraphs, given that
we make a step further by computing not just the number of
the different subgraphs but also the position classes of the
vertices.

5.2 Characteristic patterns

We address here the problem of identifying the patterns that
are “characteristic” for the set D of neighborhood graphs.
There are several possible definitions for a characteristic pat-
tern C for a set of graphs D:

Def 1. the number of occurrences of the pattern C' as in-
duced subgraph of the graphs in D is greater than a
given threshold;

Def 2. the number of graphs in D that contain the pattern
C' as induced subgraph is greater than a given thresh-
old (this is the adopted approach in [17, 19, 21, 39]);

Def 3. the number of occurrences of the pattern C' as in-
duced subgraph is higher for the graphs in D than
for randomly generated graphs of same sizes (this ap-
proach was introduced in [28]).

Def 1. We computed, for each pattern C' with k < 5 ver-
tices, the number of occurrences of C' as induced subgraph
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in D divided by the number of occurrences of a pattern with
k vertices in D, i.e. the probability that the subgraph in-
duced by k connected vertices of a graph in D represents
the pattern C. Figure 4 (left) contains the values of these
probability for k > 3. We observe that the patterns that oc-
cur the most are the paths and the stars (possibly with an
extra edge). Of course the counting of all the occurrences
of a certain pattern gives an advantage to those containing
vertices of degree 1.

Def 2. Figure 4 (right) contains, for each pattern C' with
k < 5 vertices, the number of graphs in D that contain C'
as induced subgraph divided by the number of graphs in D
that contain at least one pattern with k& vertices, i.e. the
probability that a graph in D with at least k connected ver-
tices contains C. We observe that the most frequent patterns
are the paths, possibly with one extra edge (added to form
a star or a triangle).

Def 3. For each connected component of a graph in D
we randomly generated connected graphs using the method
introduced in [27]. This method computes dK —series of
probability distributions (i.e. all degree correlations within
d—sized subgraphs).We built graphs for d = 1,2 and 3 re-
spectively. For d = 1, the generated graphs preserve the
degree distribution of the original graphs, thus assuring also
the same number of vertices and edges. For d = 2, the joint
degree distribution is preserved, thus keeping also the same
degree distribution. For d = 3, the graph generation pre-
serves the number of triangles and wedges (i.e. chains of 3
vertices connected by 2 edges) between vertices with degrees
k1, k2, k3, Vki, ko, ks € N.

For each value of d, let Ry be the set of randomly gener-
ated graphs. Note that all the three generations (for d =
1,2, 3) preserve the degree and the clustering coefficient of
the graph GM. For each pattern, we computed the ratio
between its number of occurrences in the graphs in D and
in the graphs in R4. When the graphs in D are compared
to the graphs in R4, the patterns with the greatest values
of the ratios are characteristic for the the graphs in D and
the ones with the smallest values are characteristic for the

graphs in Rq. For d = 1 and d = 2, the same patterns are
identified as characteristic (see Figure 5), with smaller values
of the ratio for d = 2 than for d = 1. These patterns suggest
that, although the densities of the input graphs are pre-
served in the generated ones, there are graphs in D that are
locally more dense than the corresponding generated ones.
So, in the neighborhood of certain vertices, several neigh-
bors form dense clusters even though they belong to the
same connected component; these clusters may correspond
to the different groups of contacts of that person. Note how-
ever that the two generations don’t preserve the clustering
coefficients of the graphs in D. When k = 3, the clustering
coefficient is preserved and the observed values of the ratio
are placed between 0.99 and 1.003 for all the patterns. The
generated graphs essentially reconstruct the original ones, so
the 3k—distribution suffices in order to capture the distribu-
tions of the different patterns in the neighborhood graphs in
GM. Nevertheless, this generation is very constraining for
small graphs like those in D; in many cases there is only
one graph that has the 3k—distribution of the original one:
the original one. Besides, the structure of neighborhoods
refers not only to the distributions of the different patterns,
but also to the roles played by the vertices; this question is
discussed in the next section.

5.3 Positions of the vertices

Recall that by applying Algorithm 2 to the graph GM we
computed, for each ego v in GM and each vertex u in the
neighborhood Gn(v) of v, the positions of u in Gn(v). We
analyze here, for each ego v and each vertex u in Gn(v), the
relation between the positions occupied by u in Gn(v) and
the quantity of its communications with v. Note that the
positions of u are completely determined by its links with
the other vertices in Gn(v); the quantity of communication
of u with ego v will also be relativized to the quantity of
communication between ego and the other persons in his
network.

5.3.1 The maximal number of calls

First, for each ego v, we index his neighbors depending on
the number of calls they exchanged with him: the greater the
number of calls exchanged with ego, the smaller the index,
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such that the vertex with the greatest number of calls has
index 1 and the one with the smallest has index d(v).

Let Ds be the set of graphs in D with at least 5 vertices,
i.e. the set of neighborhood graphs of the vertices in GM
with degree at least 5. For each graph in Ds, we study the
positions occupied by its vertices with indices 1, 2, 3 and 4
and by a randomly chosen vertex between those with index
greater than 4 to which we give the index 0. In order to do
that, we answer two questions regarding the entire set Ds:

Q1 given a position class in Ps, which of the five indices
occupies this position the most frequently and which
one the least frequently?

Q2 given a class C € Cs and an index ¢ < 5, in which
position class of C i appears the most frequently and
in which one the least frequently?

For an index ¢ < 5, let I(¢) be the set of vertices that have
index ¢ in the graphs in Ds along with the corresponding

graphs: I(i) = {(u,G) s.t. u € Vg, G € Ds and index(u) = i}.

For an index ¢ < 5 and a position class P € Ps, we define:

e the absolute frequency of occurrence Fa(i, P) of i in
P as the total number of occurrences in P of the ver-
tices with index ¢ divided by the sum of degrees of the
vertices with index :

Z(u,G)eI(i) Poss (G, P, u)

Fa(i, P) =
Z(u,G)EI(i) d(u)

e the relative frequency of occurrence Fr(i, P) of i in P
as the number of graphs in Ds where a vertex with in-
dex 7 appears in the position P divided by the number
of graphs in Ds where a vertex with index ¢ has the
degree at least 1 :

. _ {(u,G) € I(i), Poss(G,P,u) >0}
Frie P) = =1, @) € 1), d(w) > 0]

Question Q1. For each position class P € Ps, we sorted re-
spectively the five values Fa(i, P) and the five values Fr(i, P)
for 1 € {0,1,2,3,4}. We find that, for most of the central
position classes, the vertices with index 1 occur more often
than the ones with index 2 and they occur more often than
the ones with index 3 etc; the randomly selected vertices
occur the least often in these central position classes. The
opposite situation happens for most of the peripheral posi-
tion classes, that are occupied the most frequently by the
randomly chosen vertices and the least frequently by the
ones with index 1. As for the intermediate positions, they
are mostly occupied by the vertices with indices 3 and 4.
The position classes of all the 30 isomorphism classes follow
this tendency, except for those of the five following classes:
8, 21, 22, 26 and 29. Note however that in these cases the
difference between central and peripheral is not very sharp
and that these classes are not very frequent (see Figure 4).

Question Q2. For each isomorphism class C' € Cs and each
index i € {0,1,2,3,4}, we sorted the values Fa(i, P) of

)



the position classes P of C. We observe that, for all of the
isomorphism classes (except 10 and 27), the vertices with
index 1 occupy most frequently the central positions and
least frequently the peripheral ones. The randomly chosen
vertex occupies mostly the peripheral positions and least
frequently the central ones, while the vertices with indices
2, 3 and 4 have a tendency placed between these two.

These results allow us to make the following statement: in
most of the induced subgraphs where it appears, the person
that exchanged the greatest number of calls with ego plays a
central role, being a connection point between several other
neighbors. The roles of the next three vertices are less cen-
tral, but they remain more central than that of the randomly
chosen neighbor. Note that this centrality of roles is iden-
tified using the small induced subgraphs where the vertices
appear. This means that a vertex has a more or less impor-
tant position with regard to the vertices that are around it
and not to the whole graph. This corresponds to our aim
of computing the roles of the vertices rather than measure
their centrality.

5.3.2  The maximal sum of duration of calls

We analyze, for the network of each ego, the position classes
occupied by the vertex that had the greatest sum of duration
of calls with ego. In 78.2% of the cases, the person that
exchanged the greatest number of calls with ego (the vertices
with index 1 of the previous section) is also the person that
has the greatest total duration. In the other cases, we gave
index 1 to the vertex with the greatest number of calls and
index 2 to the vertex with the greatest sum of duration of
calls. We also randomly chose a vertex among the other
neighbors of ego. We observe that the vertices with index 2
appear less often in a central position that the vertices with
index 1 but more often that the randomly chosen vertices.
The vertices with index 2 prefer the intermediate positions.

5.4 Interpretation of the results

We rely on the results of several studies in order to try to ex-
plain the positions occupied by the two types of contacts of
ego: the ones with the greatest frequency of calls and the one
with the greatest total duration. In [25], Licoppe et Smoreda
analyzed the relation between social networks, exchanges
between actors and communication tools using databases of
telephone calls, Internet traffic and several interviews fo-
cusing on the use of telephone. For a pair of actors, they
identified two patterns of relationship and the corresponding
communication tools. The first pattern is that of "connected
presence”; where the two persons, socially and often also ge-
ographically close, are frequently in contact with each other,
exchanging many short calls and messages. They share ac-
tivities that require numerous calls for synchronization and
coordination, the mobile phone being especially suitable for
this. In our network, the person that exchanged the greatest
number of calls with ego has an important role in the net-
work of neighbors, occupying central positions more often
than other vertices and often connecting neighbors other-
wise disconnected. The next three persons have also more
important positions than a randomly selected neighbor. The
second pattern identified by Licoppe et Smoreda is that of
”intermittent presence”, where the two persons, close friends
or intimate relatives, are not able to see each other or talk
very often. Their conversations are long, they give and re-

ceive news, trying to compensate for the rarity of face-to-face
contacts. In our network, the person that has the greatest
sum of duration of calls with ego, when he doesn’t have
the greatest frequency too, occupies more important posi-
tions than a randomly selected neighbor. It has however a
less central role than the person that has the most frequent
calls.

The relation between the geographical distance between two
persons and the probability of existence of a link connecting
them has also been studied [22, 24]. In [22], Lambiotte et
al. showed that in a mobile phone network this probability
is inversely proportional to the square of the geographical
distance. According to [24], a similar tendency is observed
in a different kind of large social networks (bloggers com-
munity): the probability of existence of a link is inversely
proportional to the number of closer friends. Therefore, one
can imagine that in most of the neighborhoods in our mo-
bile phone graph many of ego’s contacts are geographically
close to him. The person that has long, but rare calls with
ego probably doesn’t see him very often; it is not surprising
that this person’s position is not as important as that of the
contact with the greatest frequency. The duration of the
calls suggests though a certain social closeness between this
person and ego; he probably knows and calls some of ego’s
contacts, which explains his more important position than
that of a randomly chosen neighbor. Imagine, for instance,
that the persons that have frequent contacts with ego are
his friends or colleagues that he sees nearly daily and the
person that has the greatest sum of durations is a childhood
friend.

6. CONCLUSIONS AND PERSPECTIVES

We presented in this paper a method for analyzing the local
structure of large graphs that we applied to a 2.7M vertices,
6M edges mobile phone graph. In the neighborhood of each
vertex (called ego) of the graph, we listed all the patterns
and we identified the characteristic ones. Then we addressed
the notion of role in a graph, focusing on the position occu-
pied by each vertex and the importance of this position. Our
goal was not to define a certain centrality of the vertices, but
rather to find how they connect to each other, how they are
placed and how important they are in the local structures
they form with the other vertices.

A step further could be to compare neighborhood graphs
for instance by merging vertices having ”similar” functions.
We believe indeed that the identification of patterns and
positions of vertices can offer the context for new definitions
of similarity. We hope that future research based on the
notions introduced in this paper will provide new methods
for measuring the similarity between graphs and between
roles of vertices. It would also be interesting to apply this
method to another kind of large graphs, for instance to on-
line communities where the neighborhoods are more dense
but the connections between people are weaker.
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