
HAL Id: hal-00359416
https://hal.science/hal-00359416v1

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Approach for SAT
Djamal Habet, Chu Min Li, Laure Brisoux Devendeville, Michel Vasquez

To cite this version:
Djamal Habet, Chu Min Li, Laure Brisoux Devendeville, Michel Vasquez. A Hybrid Approach for
SAT. CP 2002 : principles and practice of constraint programming, Sep 2002, Ithaca NY, United
States. pp.172-184, �10.1007/3-540-46135-3_12�. �hal-00359416�

https://hal.science/hal-00359416v1
https://hal.archives-ouvertes.fr

A Hybrid Approach for SAT�

Djamal Habet1, Chu Min Li2, Laure Devendeville2, and Michel Vasquez1

1 Centre LGI2P, école des Mines d’Alès, Site EERIE
Parc Scientifique Georges Besse, 30035, Cedex 01, Nı̂mes, France

{Djamal.Habet,Michel.Vasquez}@ema.fr
2 LaRIA, Université de Picardie Jules Verne

5, Rue du Moulin Neuf, 80000, Amiens, France
{cli,devendev}@laria.u-picardie.fr

Abstract. Exploiting variable dependencies has been shown very useful
in local search algorithms for SAT. In this paper, we extend the use of
such dependencies by hybridizing a local search algorithm, Walksat, and
the DPLL procedure, Satz. At each node reached in the DPLL search tree
to a fixed depth, we construct the literal implication graph. Its strongly
connected components are viewed as equivalency classes. Each one is
substituted by a unique representative literal to reduce the constructed
graph and the input formula. Finally, the implication dependencies are
closed under transitivity. The resulted implications and equivalencies are
exploited by Walksat at each node of the DPLL tree. Our approach is
motivated by the power of the branching rule used in Satz that may
provide a valid path to a solution, and generate more implications at
deep nodes. Experimental results confirm the efficiency of our approach.

1 Introduction

Consider a propositional formula F in Conjunctive Normal Form (CNF) on a set
of boolean variables {x1, x2, . . . , xn}, the satisfiability problem (SAT) consists
in testing wether all clauses in F can be satisfied by some consistent assignment
of truth values to variables.

SAT is the first known [3] and one of the most well-studied NP-complete
problem. It has many applications like graph coloring, circuit designing or plan-
ning, since such problems can be encoded into CNF formulas in a natural way.

Stochastic Local Search (SLS) approaches for SAT became prominent, when
independently Selman, Levesque, and Mitchell [25] as well as Gu [12] introduced
algorithms based on stochastic local hill-climbing. They are considered as the
most powerful incomplete methods for solving large and hard SAT instances.
However, such algorithms can get stuck in the local minima of the search space,
and do not integrate the structural relations between variables in their resolu-
tion. On the other hand, the complete methods, based on the Davis-Putnam-
Logemann-Loveland procedure (DPLL) [5], depend on the choice of the vari-
able to branch on. One of the best recent implementations of DPLL procedure,
� This work is partially supported by French CNRS under grant number
SUB/2001/0111/DR16

Satz [19,20], uses a branching heuristic based on examining the amount of unit
propagations that reduces the largest clause’s number in the input SAT formula.

Improving stochastic local search on structured problems by efficiently han-
dling variable dependencies is one of the ten challenges proposed by Selman,
Kautz, and McAllester [24]. In this aim, combining systematic and stochastic
search was suggested. Ginsberg and McAllester [10] have combined GSAT [25],
a local search algorithm for SAT, and a dynamic backtracking [9]. The resulted
algorithm allows substantial freedom of a movement in the search space but
enough information is retained to ensure systematicity. Jussien and Lhomme [14]
proposed a hybrid approach, for the Constraint Satisfaction Problem (CSP),
performing an overall local search, based on the tabu mechanism, and using a
systematic search, by filtering techniques, either to select a candidate neighbor
or to prune the search space. Mazure, Säıs, and Grégoire [21] use a local search
to implement the variable ordering heuristic for a systematic search. By the unit
propagation process, Devendeville, Säıs, and Grégoire [2] extract variable impli-
cations, that are integrated to the tabu search mechanism of TSAT. Hirsch and
Kojevnikov [13] developed a SAT solver, UnitWalk, by combining a local search
and unit clause elimination.

In this paper, we extend the use of variable dependencies to a full construction
of implications and equivalencies between literals (a literal is either a variable or
its negation). This is performed by combining two main algorithms, Walksat [22]
and Satz [19,20]. At each node of the DPLL search tree, we first construct an
implication graph which is ensured consistent by propagating every instantiation.
Secondly, we reduce the implication graph to its collapse strongly connected
components, where each component is an equivalency class represented by an
unique literal. Thirdly, because of the transitivity property of the implication,
we generate its transitive closure. At the end, considering these implications, we
apply Walksat to the reduced formula where a tabu list is added to forbid any
cycling. This process terminates if either a solution is found or a maximal fixed
depth of the Satz tree is reached. These treatments allow the DPLL procedure to
support the local search mechanism, strengthened by the variable dependencies.

This paper is organized as follows: sections 2 and 3 respectively present the
two combined algorithms Walksat and Satz. Section 4 describes the different
steps of our approach. Section 6 discusses the experimental results presented in
section 5, and section 7 concludes.

2 Walksat

Originally introduced in [23], Walksat performs a greedy local search for a
satisfying assignment of a set of propositional clauses in SAT format. The proce-
dure starts with a randomly generated truth assignment. It then changes (flips)
the assignment of a variable chosen under the heuristic described in algorithm 2
below. Flips are repeated until either a satisfying assignment is found or a preset
maximum number of flips, Max-Flips, is reached. This process is repeated up to
a maximum number of Max-Tries times.

Algorithm 1: Walksat

Input: SAT-formula F , Max-Tries,Max-Flips
Output: A satisfying truth assignment T of F , if found
begin

for try=1 to Max-Tries do
T←randomly generated truth assignment;
for flip=1 to Max-Flips do

if T satisfies F then return T ;
c←randomly selected clause violated under T ;
v←Heuristic(F ,c);
T←T with v flipped;

return “Solution not found”;
end;

Algorithm 2: Heuristic

Input: SAT-formula F , violated clause c
Output: Selected variable to flip, v
begin

for each variable u appearing in c do

Calculate score(u) equal to the violated clause number in F if u is flipped;

if there are variables with null score then
v←randomly select one (zero-damage-flip);

else
switch a probability value (noise setting) do

case wp : v←variable with minimal score (minimal-damage-flip);
otherwise v ←randomly select a variable from c (random walk);

return v ;
end;

Compared to its predecessors, like GSAT, Walksat differs in one important
aspect. In fact, while GSAT architecture is characterized by a static neighbor-
hood relation between assignments with Hamming distance one, Walksat’s one
is based on a dynamically determined subset of the GSAT neighborhood rela-
tion. Effectively, the experimental results show that Walksat outperforms the
existing SLS algorithms proposed before, and it is proved Probabilistically Ap-
proximately Complete (PAC property) with a noise setting wp > 0 [13].

3 Satz

Despite its simplicity and seniority, the Davis-Putnam-Logemann-Loveland pro-
cedure (DPLL) remains one of the best complete procedures for SAT. It
essentially constructs a binary search tree and its nodes are results of recur-

sive calls. While a solution is not found, all leaves represent a dead-end where a
contradiction (empty clause) is found.

Algorithm 3: DPLL

Input: SAT-formula F
Output: SAT-decision
begin

if F is empty then return “Satisfiable”;
F ← UnitPropagation(F);
if F contains an empty clause then return “Unsatisfiable”;
Select a variable x in F according to a heuristic H (Branching rule);
if DPLL(F∪{x}) return “Satisfiable” then return “Satisfiable”;
else return the result of calling DPLL(F∪{x̄});

end;

Algorithm 4: UnitPropagation

Input: SAT-formula F
Output: F simplified by unit propagations
begin

while there is no empty clause and a unit clause l exists in F do
Assign true to l and simplify F ;

return F ;
end;

DPLL procedure performance is closely related to the selection of the branch-
ing variable. In fact, this selection affects the search tree size, and consequently
the required time to solve F . A popular and a cheap branching heuristic is the
MOM1 heuristic [8], which picks the variable that occurs the most often in the
minimal size clauses. However, work realized in Posit [7,8], Tableau [4], and
Satx [19] have suggested to integrate unit propagations to the heuristic H . It
results in an UP2 heuristic which examines the variable x by respectively adding
the unit clauses x and x̄ into F , and independently making two unit propaga-
tions. The real effect of those propagations is then used to weigh x. However,
since examining variables by two unit propagations is time consuming, it is nec-
essary to reduce the number of variables examined by the UP heuristic. Taking
into account the number of binary occurrences of variables, Satz gets the best
restrictions on the number of examined variables. In that way, combining the
MOM and UP heuristics, Satz reduces the size of the search tree by detecting
failed literals as early as possible.
1 Maximum Occurrences of clauses of Minimum size
2 Unit Propagation

4 Hybrid Approach

4.1 Variable Dependencies

SAT encodings of structured problems, such as planning and diagnosis, often
contain large numbers of variables whose values are constrained to be a simple
boolean function of other variables. These variables are then dependent. Vari-
ables whose values cannot be easily determined to be a simple function of other
variables are independent. For a given SAT problem, there may be many different
ways to classify the variables as dependent. In this work, we use the dependency
definition given in [17] as follows:

Definition 1. Let Σ be a set of clauses, V the related variables, C finite con-
junctions of literals such that VC ⊆ V , and a variable y such that Σ |= (y ⇒ C).
Then we say that the variables of VC depend on the variable y. Roughly speaking,
if y is instantiated then all variables of VC are instantiated too.

Example 1. Consider the set of clauses Σ ={¬l ∨ a, ¬l ∨ ¬b, b ∨ ¬c}. If l is
fixed then the literals a, ¬b, ¬c are fixed too. So we have the dependencies
l → {a,¬b,¬c}. Such dependencies are implications.

The implications are naturally constructed by unit propagations, performed
by Satz when looking for the variable to branch on, and are represented by a
directed graph, where nodes are literals and edges relate two dependent literals.
This construction is done in linear time.

Favorably, two literals mutually implied are equivalent. An equivalency is
a stronger dependency than a simple implication. A set of equivalent literals,
constituting a class, is a strongly connected component of the implication graph,
where a representative literal, chosen randomly, substitutes the other element of
its class. Consequently, the input formula is reduced and the implication graph
is also reduced and becomes acyclic.

4.2 Dependencies Consistency

In the preprocessing of a SAT formula or when a branching occurs, Satz fixes
some variables and their states become passive. To maintain the implications
coherent, this state must be propagated through the implication graph for the
satisfied literals, and through its transposed graph for the falsified literals. Those
propagations are performed by a Depth-First-Search procedure in a linear time,
which is also used to construct the equivalency classes restricted to the active
variables. On the other hand, the implication relation is transitive. Once again,
by the Depth-First-Search procedure, the implication closure is constructed from
the reduced implication graph. At this stage, the implications are fully enumer-
ated and are consistent.

4.3 Proposed Algorithm: WalkSatz

After applying the enumerated processes to each sub-formula obtained in a cur-
rent node of the Satz tree, Walksat is then applied by considering the equivalency
classes rather than original variables. The class to flip is selected as described
in the section 2. The implications are to be integrated advantageously in the
Walksat resolution. In fact, three cases are distinguished when Walksat chooses
a variable to flip: a zero-damage-flip, a minimal-damage-flip, and a random walk.
It is then possible to merge the implication constraint in one, two, or all the three
cases, i.e., in any case, if a class is flipped then the implied ones are flipped too.
We have tested the eight possible combinations under a large variety of prob-
lems, and the best integration was observed in the case of a minimal-damage-flip.
Such result can be interpreted by:

1. The zero-damage-flip is the best case, but flipping the implied classes may
increase the violated clause number.

2. The random walk is incompatible with the deterministic behavior of impli-
cations, and integrating the implication relation to all levels, without any
improved mechanism, the search may be trapped easily in the local minima.

We should remark that a large reduction of an instance size may cause, in the
undesirable cases, a cancellation of successive actions (flips) applied to a same
class. To avoid this, a tabu list [11] of a tenure fixed empirically to 1, is used as
follows: each flipped class, as well as the related ones by the implication relation
(if flipped), are forbidden to any change during one iteration. The full steps of
the hybrid approach are resumed in the developed algorithm, WalkSatz, which
is incomplete because of the restriction on the depth of the Satz tree.

Algorithm 5: WalkSatz

Input: SAT-formula F
Output: A satisfying truth assignment T of F , if found
begin

for each node reached by Satz, down to a fixed depth do
if F is empty then return “Solution T found, by Satz”;
Construct for F , the implication graph I and its transposed It;
Propagate variables state under I and It;
Construct the equivalency classes and reduce F , I , and It;
Construct the implication closure for the reduced graphs I and It;
Apply Walksat to F reduced to its equivalency classes, taking into

account the reduced graphs I and It when minimizing the total
number of violated clauses (minimal-damage-flip);

if the last step returns “Solution T found” then
return “Solution T , by Walksat”;

return “Solution not found”;
end;

5 Experimental Results

The hybrid approach is the result of combining a systematic method and a local
search one. Consequently, it is not so evident to give comparative criteria between
such families. However, in order to evaluate the performances of WalkSatz, we
compare it with Walksat and Satz on a broad range of benchmarks3. WalkSatz is
coded in Linux/C++ and compiled with g++ compiler. Comparative parameters
used in our experiments4 are:

WalkSatz Walksat

Max-Tries 1 100
Max-Flips 105 15× 105

Number of runs 100 1
Noise setting 0.5 0.5

Despite the importance of the noise parameter, no optimization is made on.
However, its value is fixed to an identical value, 0.5, to both algorithms. The
depth of the Satz tree is limited to 3, the root being at level 0, at most fifteen
nodes are then developed, and the total number of the authorized flips is iden-
tical for WalkSatz and Walksat. The columns T%, # flips, and sec. correspond
respectively to the success rate, average flips, and average run time in second. #
flips and sec. are calculated for the successful executions, and the running time
for Satz is limited to 7200 seconds. All the used instances are satisfiable.

5.1 Latin Square

Given a set S, a Latin square indexed by S is an |S| × |S| array such that each
row and each column of the array are a permutation of the elements in S. |S| is
called the order of the Latin square. These instances have been contributed by
H. Zhang [27].

Table 1. Experimental results for the “qg” instances

Latin square WalkSatz Walksat Satz

Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.

qg1-08 512 148957 6 1307271 1499.446 0 - - 125.220
qg2-07 343 68083 100 39719 0.901 25 693660 694.622 24.340
qg3-08 512 148957 100 238622 1.505 9 628604 148.794 0.210
qg4-09 512 10469 83 701706 9.169 1 328792 3226.650 0.750
qg5-11 1331 64054 8 277167 370.769 0 - - 4.830
qg6-09 729 21844 100 368 0.664 0 - - 0.830
qg7-09 729 22060 100 81 0.824 0 - - 0.970

3 http://www.satlib.org
4 All experiments are on a Duron 800 Mhz machine with 256 MB of RAM.

http://www.satlib.org

Table 2. Experimental results for the “aim” instances

AIM WalkSatz Walksat Satz

Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.

aim-50-1-6-yes1-1 50 300 100 1 0.001 6 920684 44.422 0.020
aim-50-1-6-yes1-2 50 300 100 1 < 0.001 1 64016 148.600 0.030
aim-50-1-6-yes1-3 50 300 100 1 < 0.001 34 685077 6.378 0.010
aim-50-1-6-yes1-4 50 300 100 1 < 0.001 0 - - 0.010
aim-50-2-0-yes1-1 50 100 100 1 < 0.001 2 702 83.125 0.010
aim-50-2-0-yes1-2 50 100 100 1 < 0.001 97 22170 0.094 0.020
aim-50-2-0-yes1-3 50 100 100 1 < 0.001 100 151431 0.287 0.020
aim-50-2-0-yes1-4 50 100 100 1 < 0.001 100 137124 0.237 0.020
aim-100-1-6-yes1-1 100 160 100 1 < 0.001 0 - - 0.020
aim-100-1-6-yes1-2 100 160 100 1 < 0.001 0 - - 0.030
aim-100-1-6-yes1-3 100 160 100 1 < 0.001 0 - - 0.030
aim-100-1-6-yes1-4 100 160 100 1 < 0.001 0 - - 0.030
aim-100-2-0-yes1-1 100 200 100 1 < 0.001 0 - - 0.020
aim-100-2-0-yes1-2 100 200 100 1 0.001 0 - - 0.030
aim-100-2-0-yes1-3 100 200 100 1 < 0.001 0 - - 0.030
aim-100-2-0-yes1-4 100 200 100 1 < 0.001 0 - - 0.020
aim-200-1-6-yes1-1 200 360 100 1 0.003 0 - - 0.050
aim-200-1-6-yes1-2 200 360 100 1 0.003 0 - - 0.090
aim-200-1-6-yes1-3 200 360 100 1 < 0.001 0 - - 0.050
aim-200-1-6-yes1-4 200 360 100 1 0.001 0 - - 0.050
aim-200-2-0-yes1-1 200 400 100 1 0.001 0 - - 0.050
aim-200-2-0-yes1-2 200 400 100 1 0.001 0 - - 0.040
aim-200-2-0-yes1-3 200 400 100 1 0.001 0 - - 0.100
aim-200-2-0-yes1-4 200 400 100 1 0.001 0 - - 0.070

5.2 DIMACS Benchmarks

“aim” instances: proposed by Iwama and al. [1], the instances are all gen-
erated with a particular random 3-SAT instance generator.

“ssa” instances: contributed by A.V. Gelder and al., the instances corre-
spond to single-stuck-at-faults problem in circuit analysis. The used instances
are selected formulas from those generated by N emesis [6,18], which is a test-
pattern generation program.

Table 3. Experimental results for the “ssa” instances

SSA WalkSatz Walksat Satz

Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.

ssa7552-160 1391 3126 100 385 2.270 100 30875 0.061 0.080
ssa7552-159 1363 3032 100 344 2.265 100 22006 0.433 0.080
ssa7552-158 1363 3034 100 255 2.218 100 26738 0.052 0.070
ssa7552-038 1501 3575 100 991 2.581 100 80673 0.167 0.120

Table 4. Experimental results for the “par8” instances

PAR WalkSatz Walksat Satz

Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.

par8-1-c 64 254 100 12062 0.024 100 10628 0.025 0.02
par8-1 350 1149 100 68175 0.180 4 977367 79.366 0.01
par8-2-c 68 270 100 1 0.003 100 15504 0.036 0.02
par8-2 350 1157 100 120942 0.356 2 483886 160.791 0.02
par8-3-c 75 298 100 35293 0.069 100 37213 0.089 0.02
par8-3 350 1171 100 96110 0.272 3 538312 107.811 0.02
par8-4-c 67 266 100 1 0.000 100 41423 0.098 0.02
par8-4 350 1155 100 22966 0.681 0 - - 0.02
par8-5-c 75 298 100 12843 0.027 100 34534 0.084 0.02
par8-5 350 1171 100 77604 0.284 1 304169 330.066 0.03

“par8” instances: contributed by J. Crawford and suggested by M. Kearns,
these instances are propositional versions of the parity learning problem.

5.3 Superscalar Processor Verification

Defined by M.N. Velev [26], these instances result from the verification of ex-
ceptions, multicycle functional units, and branching prediction in superscalar
microprocessors, DLX.

5.4 Beijing-Challenge Benchmarks

This set comprises the instances which have been proposed for the International
Competition on SAT Testing in Beijing, 1996, including planning and scheduling
problems [15,16].

Table 5. Experimental results for the “dlx cc” instances

DLX2 CC WalkSatz Walksat Satz

Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.

dlx2 cc bug01 1515 12808 100 989391 49.607 79 603523 24.857 > 7200
dlx2 cc bug02 1515 12808 100 858251 43.818 80 517174 21.958 > 7200
dlx2 cc bug03 1515 12808 100 1013661 51.013 71 723533 33.193 > 7200
dlx2 cc bug14 1516 12811 100 458607 26.524 98 381390 10.122 > 7200
dlx2 cc bug16 1516 12811 100 461816 25.555 92 417319 13.432 > 7200
dlx2 cc bug33 1516 12798 100 636107 23.721 99 265186 6.820 > 7200
dlx2 cc bug34 1516 12718 100 965240 43.048 98 369863 9.282 > 7200
dlx2 cc bug38 1515 12783 100 652728 35.267 63 516764 1.404 > 7200
dlx2 cc bug39 1482 12111 93 1141143 49.067 66 640518 33.861 > 7200
dlx2 cc bug40 1520 12811 100 629230 33.210 98 358702 9.688 > 7200

Table 6. Experimental results for the Beijing instances

Beijing WalkSatz Walksat Satz

Instance #Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.

3blocks 370 13732 100 26768 0.222 100 49960 0.626 0.060
4blocks 900 59285 34 519608 102.429 0 - - 0.060
4blocksb 540 34199 100 264532 3.655 19 694517 210.913 0.650
e0ddr2-10-by-5-1 19500 108887 100 246496 1067.484 0 - - 137.820
e0ddr2-10-by-5-4 19500 104527 98 463371 3116.833 18 1202849 132.465 185.900
enddr2-10-by-5-1 20700 111567 97 292415 2352.466 0 - - 112.960
enddr2-10-by-5-8 21000 113729 100 261973 1463.593 2 1329010 1448.225 105.230
ewddr2-10-by-5-1 21800 118607 97 252841 1119.552 0 - - 401.460
ewddr2-10-by-5-8 22500 123329 100 205542 846.741 1 1456023 3136.267 120.640

Table 7. Experimental results for the Kautz & Selman planning problem

Planning WalkSatz Walksat Satz

Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.

logistics.a 828 6718 100 21508 0.088 100 133275 0.469 2.750
logistics.b 843 7301 100 36783 0.142 100 249287 0.887 0.090
logistics.c 1141 10719 100 77653 0.334 87 490317 2.896 0.420
logistics.d 4713 21991 100 286041 155.530 74 624500 6.990 507.490
bw large.a 459 4675 100 5146 0.199 100 14359 0.057 0.070
bw large.b 1087 13772 100 96838 1.899 86 564590 6.249 0.240
bw large.c 3016 50157 100 198672 22.738 0 - - 2.740

5.5 Kautz & Selman Planning Problems

Proposed by H. Kautz and B. Selman [15,16], these instances correspond to the
planning logistic problem.

6 Experimental Result Discussion

Globally and when Compared to Walksat, WalkSatz largely reduces the required
flips number to get a solution, and has a good behavior when solving hard
instances. These statements may be justified as follows:

1. The equivalency classes reduce the problem size and eliminate the cyclic
implications. On the other side, the implication transitive closure permit to
enumerate all the dependent literals, and so, exploit fully their advantage.

2. The implication relation can be viewed as a tabu which restricts the visited
neighborhood by the local search. Furthermore, checking the implication
consistency allows to verify implicit constraints, then reduce the number of
flips required to reach a solution.

3. The branching rule used by Satz gives two sub-formulas completely disjoint.
So, the space search explored by Walksat is diversified.

Excepting “qg1-08”, “qg5-11”, and “4blocks” instances, the high rate success of
WalkSatz shows the robustness of this hybrid algorithm. Furthermore, whenever
Satz works well, WalkSatz takes advantage in robustness, and when Satz works
less well, for example for the “dlx2 cc” instances, there is a small improvement
in robustness at the expense of computation time. On random SAT problems
containing few variable dependencies, Walksatz and Walksat essentially have the
same behavior. The experimental results are not presented here.

As said in the section 5, it is less evident to make an adjusted comparison,
and the used parameters are retained to compare the behavior of WalkSatz and
WalkSat with a same number of authorized flips. However, other parameters
are to underline: in the above experiments, if WalkSatz fails in a given node
of the Satz tree, no restart is done on (only one try is authorized), but other
experiments show that WalkSatz works better with more tries: a restart is an
useful aspect in a local search. The depth of the Satz tree is also prominent,
and its optimized value can be found for each problem class. However, a tarde-
off should be respected: it is look not so interesting to develop many nodes, in
the Satz tree, to let the local search reaching a solution. At the end, the tabu
tenure and list, used by WalkSatz, are to be well handled: because of the instance
reduction, these tabu parameters can be a function of the number/size of the
equivalency classes.

The main weakness of WalkSatz is the computation time requirements. It is
mainly caused by the repeated Depth-First-Search procedures at every node of
the Satz search tree. In fact, the version elaborated in this paper is not optimized.
This lack is easily improved by an incremental construction of the implications
and equivalencies at each branching and backtracking done by Satz. Despite this
drawback, the experimental results prove the efficiency of our approach.

7 Conclusion

In this paper, we presented a hybrid approach between two efficient algorithms
Walksat and Satz. Our work is motivated by the performances of such algo-
rithms. In fact, by its powerful branching rule, Satz provides an optimal search
tree, and by its variable selection heuristic, Walksat outperforms the precedent
SLS algorithms. On the other hand, SAT formulas contain implicit variable de-
pendencies that are so useful in a SAT resolution, especially in a local search
process. To well exploit those elements, WalkSatz was elaborated. It is the result
of numerous experiments in the aim to get a good hybridization that increases
the contribution of implication and equivalency relationships in the resolution
mechanism. The obtained results support our approach.

As perspective works, more powerful variants of Walksat, such as Novelty and
R-Novelty [22], are also indicated for such approach. The variable dependencies,
as well as tabu, noise setting, and other WalkSatz parameters, are to be further
studied to increase their effects. Finally, to improve the computation time, these
dependencies must be constructed incrementally.

References

1. Y. Asahiro, K. Iwama, and E. Miyano. Random Generation of Test Instances with
Controlled Attributes. In D. S.Johnson and M. A.Trick, editors, Cliques, Color-
ing, and Satisfiability; The Second DIMACS Implementation Challenge, volume 26,
pages 377–394, 1996. 179

2. L. Brisoux Devendeville, L. Säıs, and E. Grégoire. Recherche locale: vers une
exploitation des propriétés structurelles. In proceedings of JNPC’2000, pages 243–
244, Marseille, France, 2000. 173

3. S. Cook. The Complexity of Theorem Proving Procedures. In Proceeding oh the
Third Annual ACM Symp. on Theory of Computing, pages 151–158, 1971. 172

4. J. M. Crawford and L. D. Auton. Experimental Results on the Crosover Point in
Random 3-SAT. Artificial Intelligence Journal, 81(1-2):31–57, 1996. 175

5. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem
Proving. In Communication of ACM Journal, volume 5(7), pages 394–397, July
1962. 172

6. F. J. Ferguson and T. Larrabee. Test Pattern Generation for Realistic Bridging
Faults in CMOS ICS. In Proceedings of the International Testing Conference, pages
492–499, 1991. 179

7. J. W. Freeman. Improvements to Propostional Satisfiability Search Algorithms.
PhD thesis, Departement of Computer and Information Science, University of
Pennsylvania, Philadelphia, PA, 1995. 175

8. J. W. Freeman. Hard Random 3-SAT Problems and the Davis-Putnam Procedure.
In Artificial Intelligence Journal, pages 81:183–198, 1996. 175

9. M. L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25–46, 1993. 173

10. M. L. Ginsberg and D. A. McAllester. GSAT and Dynamic Backtracking. In
P. Torasso, J. Doyle, and E. Sandewall, editors, Proceedings of the 4th Inter-
national Conference on Principles of Knowledge Representation and Reasoning
KR’94, pages 226–237. Morgan Kaufmann, 1994. 173

11. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997. 177
12. J. Gu. Efficient Local Search for Very Large-Scale Satisfiability problems. In ACM

SIGART Bulletin, pages 3(1):8–12, 1992. 172
13. H. H. Hoos and T. Stutzle. Local search algorithms for SAT: An empirical evalu-

ation. Journal of Automated Reasoning, 24(4):421–481, 2000. 173, 174
14. N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-

based heuristics. In Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI’2000), pages 169–174, Austin, TX, USA, August 2000. 173

15. H. Kautz, D. McAllester, and B. Selman. Encoding Plans in Propositional Logic.
In Proceedings of the 4th International Conference on the Principle of Knowledge
Representation and Reasoning, KR’96, pages 374–384, 1996. 180, 181

16. H. Kautz and B. Selman. Pushing the Envelope: Planning, Propositional Logic,
and Stochastic Search. In Howard Shrobe and Ted Senator, editors, Proceedings
of the 13th National Conference on Artificial Intelligence and the 8th Innovative
Applications of Artificial Intelligence Conference, pages 1194–1201, Menlo Park,
California, 1996. 180, 181

17. J. Lang and P. Marquis. Complexity Results for Independence and Definability
in Propositional Logic. In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, edi-
tors, Proceedings of the Sixth International Conference on Principles of Knowledge
Representataion and Reasoning, KR’98, pages 356–367, 1998. 176

18. T. Larrabee. Test Pattern Generation Using Boolean Satisfiability. In IEEE Trans-
actions on Computer-Aided Design, pages 11(1):6–22, 1992. 179

19. C. M. Li. Exploiting Yet More the Power of Unit Clause Propagation to solve
3-SAT Problem. In ECAI’96 Workshop on Advances in Propositional Deduction,
pages 11–16, Budapest, Hungray, 1996. 173, 175

20. C. M. Li and Anbulagan. Heuristic Based on Unit Propagation for Satisfiability. In
Proceedings of CP’97, Springer-Verlag, LNCS 1330, pages 342–356, Austria, 1997.
173

21. B. Mazure, L. Säıs, and E. Grégoire. Boosting Complete Techniques Thanks to
Local Search. Annals of Mathematics and Artificial Intelligence, 22(3-4):319–331,
1998. 173

22. D. McAllester, B. Selman, and H. Kautz. Evidence for Invariants in Local Search.
In Proceedings of the 14th National Conference on Artificial Intelligence, AAAI’97,
pages 321–326, Providence, Rhode Island, 1997. MIT Press. 173, 182

23. B. Selman, H. Kautz, and B. Cohen. Noise Strategies for Improving Local Search.
In MIT press, editor, Proceedings of the 12th National Conference on Artificial
Intelligence AAAI’94, volume 1, pages 337–343, 1994. 173

24. B. Selman, H. Kautz, and D. McAllester. Ten Challenges in Propositional Reason-
ing and Search. In Proceedings of IJCAI’97, pages 50–54, Nagoya, Aichi, Japan,
August 1997. 173

25. B. Selman, H. J. Levesque, and D. Mitchell. A New Method for Solving Hard Satis-
fiability Problems. In Paul Rosenbloom and Peter Szolovits, editors, Proceedings of
the 10th National Conference on Artificial Intelligence, AAAI’92, pages 440–446,
Menlo Park, California, 1992. 172, 173

26. M. N. Velev and R. E. Bryant. Superscalar processor verification using efficient
reductions of the logic of equality with uninterpreted functions to propositional
logic. In Correct Hardware Design and Verification Methods, CHARME’99, 1999.
180

27. H. Zhang and M. E. Stickel. Implementing the davis-putnam method. Journal of
Automated Reasoning, 24(1):277–296, 2000. 178

