Djamal Habet 
email: djamal.habet@ema.fr
  
Chu Min Li 
  
Laure Devendeville 
  
Michel Vasquez 
email: michel.vasquez@ema.fr
  
A Hybrid Approach for SAT

Exploiting variable dependencies has been shown very useful in local search algorithms for SAT. In this paper, we extend the use of such dependencies by hybridizing a local search algorithm, Walksat, and the DPLL procedure, Satz. At each node reached in the DPLL search tree to a fixed depth, we construct the literal implication graph. Its strongly connected components are viewed as equivalency classes. Each one is substituted by a unique representative literal to reduce the constructed graph and the input formula. Finally, the implication dependencies are closed under transitivity. The resulted implications and equivalencies are exploited by Walksat at each node of the DPLL tree. Our approach is motivated by the power of the branching rule used in Satz that may provide a valid path to a solution, and generate more implications at deep nodes. Experimental results confirm the efficiency of our approach.

Introduction

Consider a propositional formula F in Conjunctive Normal Form (CNF) on a set of boolean variables {x 1 , x 2 , . . . , x n }, the satisfiability problem (SAT) consists in testing wether all clauses in F can be satisfied by some consistent assignment of truth values to variables.

SAT is the first known [START_REF] Cook | The Complexity of Theorem Proving Procedures[END_REF] and one of the most well-studied NP-complete problem. It has many applications like graph coloring, circuit designing or planning, since such problems can be encoded into CNF formulas in a natural way.

Stochastic Local Search (SLS) approaches for SAT became prominent, when independently Selman, Levesque, and Mitchell [START_REF] Selman | A New Method for Solving Hard Satisfiability Problems[END_REF] as well as Gu [START_REF] Gu | Efficient Local Search for Very Large-Scale Satisfiability problems[END_REF] introduced algorithms based on stochastic local hill-climbing. They are considered as the most powerful incomplete methods for solving large and hard SAT instances. However, such algorithms can get stuck in the local minima of the search space, and do not integrate the structural relations between variables in their resolution. On the other hand, the complete methods, based on the Davis-Putnam-Logemann-Loveland procedure (DPLL) [START_REF] Davis | A Machine Program for Theorem Proving[END_REF], depend on the choice of the variable to branch on. One of the best recent implementations of DPLL procedure,

Walksat

Originally introduced in [START_REF] Selman | Noise Strategies for Improving Local Search[END_REF], Walksat performs a greedy local search for a satisfying assignment of a set of propositional clauses in SAT format. The procedure starts with a randomly generated truth assignment. It then changes (flips) the assignment of a variable chosen under the heuristic described in algorithm 2 below. Flips are repeated until either a satisfying assignment is found or a preset maximum number of flips, Max-Flips, is reached. This process is repeated up to a maximum number of Max-Tries times. Compared to its predecessors, like GSAT, Walksat differs in one important aspect. In fact, while GSAT architecture is characterized by a static neighborhood relation between assignments with Hamming distance one, Walksat's one is based on a dynamically determined subset of the GSAT neighborhood relation. Effectively, the experimental results show that Walksat outperforms the existing SLS algorithms proposed before, and it is proved Probabilistically Approximately Complete (PAC property) with a noise setting wp > 0 [START_REF] Hoos | Local search algorithms for SAT: An empirical evaluation[END_REF].

Satz

Despite its simplicity and seniority, the Davis-Putnam-Logemann-Loveland procedure (DPLL) remains one of the best complete procedures for SAT. It essentially constructs a binary search tree and its nodes are results of recur-sive calls. While a solution is not found, all leaves represent a dead-end where a contradiction (empty clause) is found. DPLL procedure performance is closely related to the selection of the branching variable. In fact, this selection affects the search tree size, and consequently the required time to solve F . A popular and a cheap branching heuristic is the MOM1 heuristic [START_REF] Freeman | Hard Random 3-SAT Problems and the Davis-Putnam Procedure[END_REF], which picks the variable that occurs the most often in the minimal size clauses. However, work realized in Posit [START_REF] Freeman | Improvements to Propostional Satisfiability Search Algorithms[END_REF][START_REF] Freeman | Hard Random 3-SAT Problems and the Davis-Putnam Procedure[END_REF], Tableau [START_REF] Crawford | Experimental Results on the Crosover Point in Random 3-SAT[END_REF], and Satx [START_REF] Li | Exploiting Yet More the Power of Unit Clause Propagation to solve 3-SAT Problem[END_REF] have suggested to integrate unit propagations to the heuristic H. It results in an UP 2 heuristic which examines the variable x by respectively adding the unit clauses x and x into F , and independently making two unit propagations. The real effect of those propagations is then used to weigh x. However, since examining variables by two unit propagations is time consuming, it is necessary to reduce the number of variables examined by the UP heuristic. Taking into account the number of binary occurrences of variables, Satz gets the best restrictions on the number of examined variables. In that way, combining the MOM and UP heuristics, Satz reduces the size of the search tree by detecting failed literals as early as possible.

Hybrid Approach

Variable Dependencies

SAT encodings of structured problems, such as planning and diagnosis, often contain large numbers of variables whose values are constrained to be a simple boolean function of other variables. These variables are then dependent. Variables whose values cannot be easily determined to be a simple function of other variables are independent. For a given SAT problem, there may be many different ways to classify the variables as dependent. In this work, we use the dependency definition given in [START_REF] Lang | Complexity Results for Independence and Definability in Propositional Logic[END_REF] as follows:

Definition 1. Let Σ be a set of clauses, V the related variables, C finite con- junctions of literals such that V C ⊆ V ,

and a variable y such that Σ |= (y ⇒ C).

Then we say that the variables of V C depend on the variable y. Roughly speaking, if y is instantiated then all variables of V C are instantiated too. The implications are naturally constructed by unit propagations, performed by Satz when looking for the variable to branch on, and are represented by a directed graph, where nodes are literals and edges relate two dependent literals. This construction is done in linear time.

Favorably, two literals mutually implied are equivalent. An equivalency is a stronger dependency than a simple implication. A set of equivalent literals, constituting a class, is a strongly connected component of the implication graph, where a representative literal, chosen randomly, substitutes the other element of its class. Consequently, the input formula is reduced and the implication graph is also reduced and becomes acyclic.

Dependencies Consistency

In the preprocessing of a SAT formula or when a branching occurs, Satz fixes some variables and their states become passive. To maintain the implications coherent, this state must be propagated through the implication graph for the satisfied literals, and through its transposed graph for the falsified literals. Those propagations are performed by a Depth-First-Search procedure in a linear time, which is also used to construct the equivalency classes restricted to the active variables. On the other hand, the implication relation is transitive. Once again, by the Depth-First-Search procedure, the implication closure is constructed from the reduced implication graph. At this stage, the implications are fully enumerated and are consistent.

Proposed Algorithm: WalkSatz

After applying the enumerated processes to each sub-formula obtained in a current node of the Satz tree, Walksat is then applied by considering the equivalency classes rather than original variables. The class to flip is selected as described in the section 2. The implications are to be integrated advantageously in the Walksat resolution. In fact, three cases are distinguished when Walksat chooses a variable to flip: a zero-damage-flip, a minimal-damage-flip, and a random walk. It is then possible to merge the implication constraint in one, two, or all the three cases, i.e., in any case, if a class is flipped then the implied ones are flipped too. We have tested the eight possible combinations under a large variety of problems, and the best integration was observed in the case of a minimal-damage-flip. Such result can be interpreted by: 1. The zero-damage-flip is the best case, but flipping the implied classes may increase the violated clause number. 2. The random walk is incompatible with the deterministic behavior of implications, and integrating the implication relation to all levels, without any improved mechanism, the search may be trapped easily in the local minima.

We should remark that a large reduction of an instance size may cause, in the undesirable cases, a cancellation of successive actions (flips) applied to a same class. To avoid this, a tabu list [START_REF] Glover | Tabu Search[END_REF] of a tenure fixed empirically to 1, is used as follows: each flipped class, as well as the related ones by the implication relation (if flipped), are forbidden to any change during one iteration. The full steps of the hybrid approach are resumed in the developed algorithm, WalkSatz, which is incomplete because of the restriction on the depth of the Satz tree. The hybrid approach is the result of combining a systematic method and a local search one. Consequently, it is not so evident to give comparative criteria between such families. However, in order to evaluate the performances of WalkSatz, we compare it with Walksat and Satz on a broad range of benchmarks Despite the importance of the noise parameter, no optimization is made on. However, its value is fixed to an identical value, 0.5, to both algorithms. The depth of the Satz tree is limited to 3, the root being at level 0, at most fifteen nodes are then developed, and the total number of the authorized flips is identical for WalkSatz and Walksat. The columns T%, # flips, and sec. correspond respectively to the success rate, average flips, and average run time in second. # flips and sec. are calculated for the successful executions, and the running time for Satz is limited to 7200 seconds. All the used instances are satisfiable.

Latin Square

Given a set S, a Latin square indexed by S is an |S| × |S| array such that each row and each column of the array are a permutation of the elements in S. |S| is called the order of the Latin square. These instances have been contributed by H. Zhang [START_REF] Zhang | Implementing the davis-putnam method[END_REF]. 

DIMACS Benchmarks

"aim" instances: proposed by Iwama and al. [START_REF] Asahiro | Random Generation of Test Instances with Controlled Attributes[END_REF], the instances are all generated with a particular random 3-SAT instance generator.

"ssa" instances: contributed by A.V. Gelder and al., the instances correspond to single-stuck-at-faults problem in circuit analysis. The used instances are selected formulas from those generated by N emesis [START_REF] Ferguson | Test Pattern Generation for Realistic Bridging Faults in CMOS ICS[END_REF][START_REF] Larrabee | Test Pattern Generation Using Boolean Satisfiability[END_REF], which is a testpattern generation program. "par8" instances: contributed by J. Crawford and suggested by M. Kearns, these instances are propositional versions of the parity learning problem.

Superscalar Processor Verification

Defined by M.N. Velev [START_REF] Velev | Superscalar processor verification using efficient reductions of the logic of equality with uninterpreted functions to propositional logic[END_REF], these instances result from the verification of exceptions, multicycle functional units, and branching prediction in superscalar microprocessors, DLX.

Beijing-Challenge Benchmarks

This set comprises the instances which have been proposed for the International Competition on SAT Testing in Beijing, 1996, including planning and scheduling problems [START_REF] Kautz | Encoding Plans in Propositional Logic[END_REF][START_REF] Kautz | Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search[END_REF]. 

Kautz & Selman Planning Problems

Proposed by H. Kautz and B. Selman [START_REF] Kautz | Encoding Plans in Propositional Logic[END_REF][START_REF] Kautz | Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search[END_REF], these instances correspond to the planning logistic problem.

Experimental Result Discussion

Globally and when Compared to Walksat, WalkSatz largely reduces the required flips number to get a solution, and has a good behavior when solving hard instances. These statements may be justified as follows:

1. The equivalency classes reduce the problem size and eliminate the cyclic implications. On the other side, the implication transitive closure permit to enumerate all the dependent literals, and so, exploit fully their advantage. 2. The implication relation can be viewed as a tabu which restricts the visited neighborhood by the local search. Furthermore, checking the implication consistency allows to verify implicit constraints, then reduce the number of flips required to reach a solution. 3. The branching rule used by Satz gives two sub-formulas completely disjoint.

So, the space search explored by Walksat is diversified.

Excepting "qg1-08", "qg5-11", and "4blocks" instances, the high rate success of WalkSatz shows the robustness of this hybrid algorithm. Furthermore, whenever Satz works well, WalkSatz takes advantage in robustness, and when Satz works less well, for example for the "dlx2 cc" instances, there is a small improvement in robustness at the expense of computation time. On random SAT problems containing few variable dependencies, Walksatz and Walksat essentially have the same behavior. The experimental results are not presented here. As said in the section 5, it is less evident to make an adjusted comparison, and the used parameters are retained to compare the behavior of WalkSatz and WalkSat with a same number of authorized flips. However, other parameters are to underline: in the above experiments, if WalkSatz fails in a given node of the Satz tree, no restart is done on (only one try is authorized), but other experiments show that WalkSatz works better with more tries: a restart is an useful aspect in a local search. The depth of the Satz tree is also prominent, and its optimized value can be found for each problem class. However, a tardeoff should be respected: it is look not so interesting to develop many nodes, in the Satz tree, to let the local search reaching a solution. At the end, the tabu tenure and list, used by WalkSatz, are to be well handled: because of the instance reduction, these tabu parameters can be a function of the number/size of the equivalency classes.

The main weakness of WalkSatz is the computation time requirements. It is mainly caused by the repeated Depth-First-Search procedures at every node of the Satz search tree. In fact, the version elaborated in this paper is not optimized. This lack is easily improved by an incremental construction of the implications and equivalencies at each branching and backtracking done by Satz. Despite this drawback, the experimental results prove the efficiency of our approach.

Conclusion

In this paper, we presented a hybrid approach between two efficient algorithms Walksat and Satz. Our work is motivated by the performances of such algorithms. In fact, by its powerful branching rule, Satz provides an optimal search tree, and by its variable selection heuristic, Walksat outperforms the precedent SLS algorithms. On the other hand, SAT formulas contain implicit variable dependencies that are so useful in a SAT resolution, especially in a local search process. To well exploit those elements, WalkSatz was elaborated. It is the result of numerous experiments in the aim to get a good hybridization that increases the contribution of implication and equivalency relationships in the resolution mechanism. The obtained results support our approach.

As perspective works, more powerful variants of Walksat, such as Novelty and R-Novelty [START_REF] Mcallester | Evidence for Invariants in Local Search[END_REF], are also indicated for such approach. The variable dependencies, as well as tabu, noise setting, and other WalkSatz parameters, are to be further studied to increase their effects. Finally, to improve the computation time, these dependencies must be constructed incrementally.

Example 1 .

 1 Consider the set of clauses Σ ={¬l ∨ a, ¬l ∨ ¬b, b ∨ ¬c}. If l is fixed then the literals a, ¬b, ¬c are fixed too. So we have the dependencies l → {a, ¬b, ¬c}. Such dependencies are implications.

Algorithm 1 :

 1 WalksatInput: SAT-formula F, Max-Tries,Max-Flips Output: A satisfying truth assignment T of F, if found

	begin
	for try=1 to Max-Tries do
	T ←randomly generated truth assignment;
	for flip=1 to Max-Flips do
	if T satisfies F then return T ;
	c←randomly selected clause violated under T ;
	v←Heuristic(F,c);
	T ←T with v flipped;
	return "Solution not found";
	end;
	Algorithm 2: Heuristic

Input: SAT-formula F, violated clause c Output: Selected variable to flip, v begin for each variable u appearing in c do Calculate score(u) equal to the violated clause number in F if u is flipped; if there are variables with null score then v←randomly select one (zero-damage-flip); else switch a probability value (noise setting) do case wp : v←variable with minimal score (minimal-damage-flip); otherwise v ←randomly select a variable from c (random walk); return v ; end;

  Construct for F, the implication graph I and its transposed I t ; Propagate variables state under I and I t ; Construct the equivalency classes and reduce F, I, and I t ; Construct the implication closure for the reduced graphs I and I t ; Apply Walksat to F reduced to its equivalency classes, taking into account the reduced graphs I and I t when minimizing the total number of violated clauses (minimal-damage-flip);

	if the last step returns "Solution T found" then
	return "Solution T , by Walksat";
	return "Solution not found";
	end;

Algorithm 5: WalkSatz Input: SAT-formula F Output: A satisfying truth assignment T of F, if found begin for each node reached by Satz, down to a fixed depth do if F is empty then return "Solution T found, by Satz";

  3 . WalkSatz is coded in Linux/C++ and compiled with g++ compiler. Comparative parameters used in our experiments 4 are:

		WalkSatz Walksat
	Max-Tries	1	100
	Max-Flips	10 5	15 × 10 5
	Number of runs	100	1
	Noise setting	0.5	0.5

Table 1 .

 1 Experimental results for the "qg" instances

	Latin square	WalkSatz		Walksat		Satz
	Instance # Vars. # Cls. T% # flips.	sec. T% # flips. sec.	sec.
	qg1-08	512 148957 6 1307271 1499.446 0	-	-	125.220
	qg2-07	343	68083 100 39719	0.901 25 693660 694.622 24.340
	qg3-08	512 148957 100 238622 1.505	9 628604 148.794 0.210
	qg4-09	512	10469 83 701706 9.169	1 328792 3226.650 0.750
	qg5-11	1331 64054 8 277167 370.769 0	-	-	4.830
	qg6-09	729	21844 100 368	0.664	0	-	-	0.830
	qg7-09	729	22060 100	81	0.824	0	-	-	0.970

Table 2 .

 2 Experimental results for the "aim" instances

	AIM		WalkSatz	Walksat		Satz
	Instance	# Vars. # Cls. T% # flips. sec. T% # flips. sec.	sec.
	aim-50-1-6-yes1-1	50	300 100	1	0.001 6 920684 44.422 0.020
	aim-50-1-6-yes1-2	50	300 100	1	< 0.001 1 64016 148.600 0.030
	aim-50-1-6-yes1-3	50	300 100	1	< 0.001 34 685077 6.378 0.010
	aim-50-1-6-yes1-4	50	300 100	1	< 0.001 0	-	-	0.010
	aim-50-2-0-yes1-1	50	100 100	1	< 0.			

Table 3 .

 3 Experimental results for the "ssa" instances

	SSA	WalkSatz	Walksat	Satz
	Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.
	ssa7552-160 1391 3126 100 385 2.270 100 30875 0.061 0.080
	ssa7552-159 1363 3032 100 344 2.265 100 22006 0.433 0.080
	ssa7552-158 1363 3034 100 255 2.218 100 26738 0.052 0.070
	ssa7552-038 1501 3575 100 991 2.581 100 80673 0.167 0.120

Table 4 .

 4 Experimental results for the "par8" instances

		PAR		WalkSatz	Walksat	Satz
	Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec. sec.
	par8-1-c	64	254 100 12062 0.024 100 10628 0.025 0.02
	par8-1	350	1149 100 68175 0.180 4 977367 79.366 0.01
	par8-2-c	68	270 100	1	0.003 100 15504 0.036 0.02
	par8-2	350	1157 100 120942 0.356 2 483886 160.791 0.02
	par8-3-c	75	298 100 35293 0.069 100 37213 0.089 0.02
	par8-3	350	1171 100 96110 0.272 3 538312 107.811 0.02
	par8-4-c	67	266 100	1	0.000 100 41423 0.098 0.02
	par8-4	350	1155 100 22966 0.681 0	-	-	0.02
	par8-5-c	75	298 100 12843 0.027 100 34534 0.084 0.02
	par8-5	350	1171 100 77604 0.284 1 304169 330.066 0.03

Table 5 .

 5 Experimental results for the "dlx cc" instances

	DLX2 CC	WalkSatz	Walksat	Satz
	Instance	# Vars. # Cls. T% # flips. sec. T% # flips. sec.	sec.
	dlx2 cc bug01 1515 12808 100 989391 49.607 79 603523 24.857 > 7200
	dlx2 cc bug02 1515 12808 100 858251 43.818 80 517174 21.958 > 7200
	dlx2 cc bug03 1515 12808 100 1013661 51.013 71 723533 33.193 > 7200
	dlx2 cc bug14 1516 12811 100 458607 26.524 98 381390 10.122 > 7200
	dlx2 cc bug16 1516 12811 100 461816 25.555 92 417319 13.432 > 7200
	dlx2 cc bug33 1516 12798 100 636107 23.721 99 265186 6.820 > 7200
	dlx2 cc bug34 1516 12718 100 965240 43.048 98 369863 9.282 > 7200
	dlx2 cc bug38 1515 12783 100 652728 35.267 63 516764 1.404 > 7200
	dlx2 cc bug39 1482 12111 93 1141143 49.067 66 640518 33.861 > 7200
	dlx2 cc bug40 1520 12811 100 629230 33.210 98 358702 9.688 > 7200

Table 6 .

 6 Experimental results for the Beijing instances

	Beijing	WalkSatz	Walksat	Satz
	Instance	#Vars. # Cls. T% # flips. sec. T% # flips.	sec.	sec.
	3blocks		370 13732 100 26768 0.222 100 49960	0.626	0.060
	4blocks		900 59285 34 519608 102.429 0	-	-	0.060
	4blocksb		540 34199 100 264532 3.655 19 694517 210.913 0.650
	e0ddr2-10-by-5-1 19500 108887 100 246496 1067.484 0	-	-	137.820
	e0ddr2-10-by-5-4 19500 104527 98 463371 3116.833 18 1202849 132.465 185.900
	enddr2-10-by-5-1 20700 111567 97 292415 2352.466 0	-	-	112.960
	enddr2-10-by-5-8 21000 113729 100 261973 1463.593 2 1329010 1448.225 105.230
	ewddr2-10-by-5-1 21800 118607 97 252841 1119.552 0	-	-	401.460
	ewddr2-10-by-5-8 22500 123329 100 205542 846.741 1 1456023 3136.267 120.640

Table 7 .

 7 Experimental results for the Kautz & Selman planning problem

	Planning	WalkSatz	Walksat		Satz
	Instance # Vars. # Cls. T% # flips. sec. T% # flips. sec.	sec.
	logistics.a 828	6718 100 21508 0.088 100 133275 0.469 2.750
	logistics.b 843	7301 100 36783 0.142 100 249287 0.887 0.090
	logistics.c 1141 10719 100 77653 0.334 87 490317 2.896 0.420
	logistics.d 4713 21991 100 286041 155.530 74 624500 6.990 507.490
	bw large.a 459	4675 100 5146 0.199 100 14359 0.057 0.070
	bw large.b 1087 13772 100 96838 1.899 86 564590 6.249 0.240
	bw large.c 3016 50157 100 198672 22.738 0	-	-	2.740

Maximum Occurrences of clauses of Minimum size

http://www.satlib.org

All experiments are on a Duron 800 Mhz machine with 256 MB of RAM.

This work is partially supported by French CNRS under grant number SUB/2001/0111/DR16